SlideShare une entreprise Scribd logo
1  sur  66
Télécharger pour lire hors ligne
Section	3.5
     Inverse	Trigonometric
           Functions
                V63.0121.027, Calculus	I



                   October	29, 2009


Announcements


                                      .    .   .   .   .   .
What	functions	are	invertible?



   In	order	for f−1 to	be	a	function, there	must	be	only	one a in D
   corresponding	to	each b in E.
       Such	a	function	is	called one-to-one
       The	graph	of	such	a	function	passes	the horizontal	line	test:
       any	horizontal	line	intersects	the	graph	in	exactly	one	point
       if	at	all.
       If f is	continuous, then f−1 is	continuous.




                                                .    .   .   .    .    .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .



                             .       .       .                              x
                                                                            .
                             π               π                       s
                                                                     . in
                           −
                           .               −
                                           .
                             2               2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .

                                             .
                             .       .       .                              x
                                                                            .
                             π               π                       s
                                                                     . in
                           −
                           . .             −
                                           .
                             2               2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .
                                                 y
                                                 . =x
                                             .
                             .       .       .                              x
                                                                            .
                             π               π                       s
                                                                     . in
                           −
                           . .             −
                                           .
                             2               2




                                                  .     .   .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                     y
                                     .
                                           . . rcsin
                                             a
                                                .
                             .       .       .                                x
                                                                              .
                             π               π                         s
                                                                       . in
                           −
                           . .             −
                                           .
                             2               2
                                 .


         The	domain	of arcsin is [−1, 1]
                               [ π π]
         The	range	of arcsin is − ,
                                  2 2

                                                       .   .   .   .    .         .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .


                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .

                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .
                                               y
                                               . =x
                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]

                                . . rccos
                                  a
                                     y
                                     .

                                     .
                                                                       c
                                                                       . os
                                      .     .          .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .



         The	domain	of arccos is [−1, 1]
         The	range	of arccos is [0, π]

                                                 .         .   .   .    .      .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
                                                         y
                                                         . =x
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .

                                  π
                                  .                                         a
                                                                            . rctan
                                  2

                                        .                                   x
                                                                            .

                                    π
                                −
                                .
                                    2

         The	domain	of arctan is (−∞, ∞)
                               ( π π)
         The	range	of arctan is − ,
                                  2 2
                         π                  π
          lim arctan x = , lim arctan x = −
         x→∞             2  x→−∞            2
                                                  .   .    .    .       .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .




                                     .                                      x
                                                                            .
             3π              π             π                  3π
           −
           .               −
                           .               .                  .
              2              2             2                    2




                                               s
                                               . ec


                                                      .   .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                     .
                                     .                                          x
                                                                                .
             3π              π             π                      3π
           −
           .               −
                           .               .              .       .
              2              2             2                        2




                                               s
                                               . ec


                                                      .       .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                                          y
                                                          . =x
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                    .
                                    .                                          x
                                                                               .
             3π             π             π                      3π
           −
           .              −
                          .               .              .       .
              2             2             2                        2




                                              s
                                              . ec


                                                     .       .    .    .   .       .
arcsec                           3π
                                 .
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                   2
   [0, π/2) ∪ (π, 3π/2].
                                . .  y

                                  π
                                  .
                                  2 .

                                     .   .                                x
                                                                          .
                                                      .



         The	domain	of arcsec is (−∞, −1] ∪ [1, ∞)
                               [ π ) (π ]
         The	range	of arcsec is 0,   ∪    ,π
                                   2    2
                         π                 3π
          lim arcsec x = , lim arcsec x =
         x→∞             2 x→−∞             2
                                                  .       .   .   .   .       .
Values	of	Trigonometric	Functions

                           π     π     π          π
                x    0
                            6    √4    √3         2
                            1      2     3
             sin x   0                            1
                           √2    √2     2
                             3     2    1
             cos x   1                            0
                            2     2    √2
                            1
             tan x   0     √      1      3       undef
                             3
                           √            1
             cot x undef     3   1     √          0
                                         3
                            2     2
             sec x   1     √     √      2        undef
                             3     2
                                  2     2
             csc x undef    2    √     √          1
                                   2     3


                                             .     .     .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2




                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6




                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4



                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4
          3π
           4

                                    .   .   .   .   .   .
Caution: Notational	ambiguity




           . in2 x =.(sin x)2
           s                               . in−1 x = (sin x)−1
                                           s




      sinn x means	the nth	power	of sin x, except	when n = −1!
      The	book	uses sin−1 x for	the	inverse	of sin x.
                        1
      I use csc x for       and arcsin x for	the	inverse	of sin x.
                      sin x

                                                 .    .    .      .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                              1
                       (f−1 )′ (b) =   ′ −1
                                       f (f   (b))




                                                     .   .   .   .   .    .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f   (b))


“Proof”.
If y = f−1 (x), then
                                 f (y ) = x ,
So	by	implicit	differentiation

                      dy        dy     1         1
             f′ (y)      = 1 =⇒    = ′     = ′ −1
                      dx        dx   f (y)   f (f (x))



                                                        .   .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                    dy        dy     1          1
            cos y      = 1 =⇒    =       =
                    dx        dx   cos y   cos(arcsin x)




                                             .   .   .     .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:




                                                  .



                                              .       .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                          1
                                                          .
                                                                      x
                                                                      .



                                                  .



                                              .       .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                           1
                                                           .
                                                                       x
                                                                       .


                                                      y
                                                      . = arcsin x
                                                  .



                                              .        .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                         1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .
   So
     d                 1                            y
                                                    . = arcsin x
        arcsin(x) = √
     dx               1 − x2                      . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
Graphing	arcsin	and	its	derivative



                                     1
                                .√
                                     1 − x2
                                . . rcsin
                                  a


                       .
                       |   .    .
                                |
                     −
                     . 1       1
                               .




                                         .    .   .   .   .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                   dy        dy      1             1
         − sin y      = 1 =⇒    =         =
                   dx        dx   − sin y   − sin(arccos x)




                                              .   .   .   .   .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                    dy        dy      1             1
          − sin y      = 1 =⇒    =         =
                    dx        dx   − sin y   − sin(arccos x)

  To	simplify, look	at	a	right
  triangle:
                     √
     sin(arccos x) = 1 − x2                          1
                                                     .           √
                                                                 . 1 − x2
  So
   d                   1                        y
                                                . = arccos x
      arccos(x) = − √                       .
   dx                 1 − x2                         x
                                                     .


                                                 .       .   .      .   .   .
Graphing	arcsin	and	arccos



       a
       . rccos



                      a
                      . rcsin


       .
       |    .     .
                  |
     −
     . 1         1
                 .




                                .   .   .   .   .   .
Graphing	arcsin	and	arccos



       a
       . rccos
                                Note
                                                      (π    )
                                          cos θ = sin    −θ
                      a
                      . rcsin                          2
                                                  π
                                    =⇒ arccos x = − arcsin x
                                                  2
       .
       |    .     .
                  |             So	it’s	not	a	surprise	that	their
     −
     . 1         1
                 .              derivatives	are	opposites.




                                              .    .    .     .     .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                    dy        dy     1
           sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                    dx        dx   sec2 y




                                              .    .   .      .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:




                                                   .



                                               .       .   .   .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                   x
                                                                   .



                                                   .
                                                           1
                                                           .


                                               .       .   .   .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                    x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:


                                               √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                          1
    cos(arctan x) = √
                         1 + x2                √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                      dy        dy     1
             sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                      dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                           1
    cos(arctan x) = √
                          1 + x2                √
                                                . 1 + x2             x
                                                                     .
   So
        d                1                              y
                                                        . = arctan x
           arctan(x) =                              .
        dx             1 + x2
                                                            1
                                                            .


                                                .       .   .    .       .   .
Graphing	arctan	and	its	derivative



                         y
                         .
                              . /2
                              π
                                                      a
                                                      . rctan


                          .                             1
                                                      x
                                                      .
                                                      1 + x2


                              −
                              . π/2




                                      .   .   .   .   .    .
Example
                    √
Let f(x) = arctan       x. Find f′ (x).




                                          .   .   .   .   .   .
Example
                    √
Let f(x) = arctan       x. Find f′ (x).

Solution

         d        √       1     d√     1   1
            arctan x =    (√ )2    x=    · √
         dx            1+    x  dx    1+x 2 x
                           1
                     = √       √
                       2 x + 2x x




                                          .   .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                   dy        dy        1                1
     sec y tan y      = 1 =⇒    =             =
                   dx        dx   sec y tan y   x tan(arcsec(x))




                                               .   .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                             .



                                                 .   .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                             .



                                                 .   .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                     x
                                                     .



                                             .
                                                         1
                                                         .


                                                 .           .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                      x
                                                      .


                                                 y
                                                 . = arcsec x
                                             .
                                                          1
                                                          .


                                                  .           .   .   .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                  √
                          1                           x
                                                      .               . x2 − 1


                                                 y
                                                 . = arcsec x
                                             .
                                                          1
                                                          .


                                                  .           .   .      .   .   .
The	derivative	of	arcsec

   Let y = arcsec x, so x = sec y. Then

                      dy        dy        1                1
        sec y tan y      = 1 =⇒    =             =
                      dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                    √
                          1                             x
                                                        .               . x2 − 1
   So
    d                1                             y
                                                   . = arcsec x
       arcsec(x) = √                           .
    dx            x x2 − 1
                                                            1
                                                            .


                                                    .           .   .      .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).




                                        .   .   .   .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).

  Solution
                                                 1
                          f′ (x) = earcsec x · √
                                              x x2 − 1




                                                    .    .   .   .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Application


  Example
  One	of	the	guiding	principles
  of	most	sports	is	to	“keep
  your	eye	on	the	ball.” In
  baseball, a	batter	stands 2 ft
  away	from	home	plate	as	a
  pitch	is	thrown	with	a
  velocity	of 130 ft/sec (about
  90 mph). At	what	rate	does
  the	batter’s	angle	of	gaze
  need	to	change	to	follow	the
  ball	as	it	crosses	home	plate?



                                   .   .   .   .   .   .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
angle	the	batter’s	eyes	make	with	home	plate	while	following	the
ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
y = 0.




                                                              y
                                                              .


                                                              1
                                                              . 30 ft/sec

                                                   .
                                                   θ
                                           .
                                       .           2
                                                   . ft

                                               .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
   dθ        1         1 dy
      =              ·
                    2 2 dt
   dt   1 + ( y /2 )

                                                               y
                                                               .


                                                               1
                                                               . 30 ft/sec

                                                    .
                                                    θ
                                            .
                                        .           2
                                                    . ft

                                                .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
                                                .
                                            .           2
                                                        . ft

                                                    .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
 The	human	eye	can	only                         .
track	at 3 rad/sec!                         .           2
                                                        . ft

                                                    .    .     .       .   .     .
Recap


        y          y′
                   1
    arcsin x   √
                 1 − x2
                    1      Remarkable	that	the
    arccos x − √
                  1 − x2   derivatives	of	these
                   1
    arctan x               transcendental functions
                1 + x2     are	algebraic	(or	even
                    1
    arccot x  −            rational!)
                 1 + x2
                   1
    arcsec x   √
              x x2 − 1
                    1
    arccsc x − √
               x x2 − 1


                             .   .   .    .   .       .

Contenu connexe

Tendances

4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
5 1 quadratic transformations
5 1 quadratic transformations5 1 quadratic transformations
5 1 quadratic transformationslothomas
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functionslgemgnani
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationMatthew Leingang
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric functionAzurah Razak
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsDennis Almeida
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
Lesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationLesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationMatthew Leingang
 

Tendances (20)

4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
5 1 quadratic transformations
5 1 quadratic transformations5 1 quadratic transformations
5 1 quadratic transformations
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functions
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Application of Derivatives
Application of DerivativesApplication of Derivatives
Application of Derivatives
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Power series
Power series Power series
Power series
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
Double integration
Double integrationDouble integration
Double integration
 
Lesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationLesson 12: Implicit Differentiation
Lesson 12: Implicit Differentiation
 

En vedette

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayMatthew Leingang
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityMatthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesMatthew Leingang
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayMatthew Leingang
 
Lesson 20: The Mean Value Theorem
Lesson 20: The Mean Value TheoremLesson 20: The Mean Value Theorem
Lesson 20: The Mean Value TheoremMatthew Leingang
 
Lesson 3: The Concept of Limit
Lesson 3: The Concept of LimitLesson 3: The Concept of Limit
Lesson 3: The Concept of LimitMatthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
Maths in architecture
Maths in architectureMaths in architecture
Maths in architecturezlatprac
 

En vedette (20)

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving Infinity
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
Lesson 7: The Derivative
Lesson 7: The DerivativeLesson 7: The Derivative
Lesson 7: The Derivative
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Lesson 20: The Mean Value Theorem
Lesson 20: The Mean Value TheoremLesson 20: The Mean Value Theorem
Lesson 20: The Mean Value Theorem
 
Lesson 3: The Concept of Limit
Lesson 3: The Concept of LimitLesson 3: The Concept of Limit
Lesson 3: The Concept of Limit
 
Lesson 24: Optimization
Lesson 24: OptimizationLesson 24: Optimization
Lesson 24: Optimization
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Maths in architecture
Maths in architectureMaths in architecture
Maths in architecture
 

Plus de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 

Plus de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Dernier

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Dernier (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Lesson 16: Inverse Trigonometric Functions

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.027, Calculus I October 29, 2009 Announcements . . . . . .
  • 2. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 3. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 4. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . π π s . in − . − . 2 2 . . . . . .
  • 5. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . . x . π π s . in − . . − . 2 2 . . . . . .
  • 6. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . y . =x . . . . x . π π s . in − . . − . 2 2 . . . . . .
  • 7. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . rcsin a . . . . x . π π s . in − . . − . 2 2 . The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 2 2 . . . . . .
  • 8. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . 0 . . π . . . . . .
  • 9. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . c . os . . x . 0 . . π . . . . . . .
  • 10. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . y . =x . c . os . . x . 0 . . π . . . . . . .
  • 11. arccos Arccos is the inverse of the cosine function after restriction to [0, π] . . rccos a y . . c . os . . . x . 0 . . π . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • 12. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 13. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 14. arctan Arctan is the inverse of the tangent function after restriction to y . =x [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 15. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 . . . . . .
  • 16. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 s . ec . . . . . .
  • 17. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 18. arcsec Arcsecant is the inverse of secant after restriction to y . =x [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 19. arcsec 3π . Arcsecant is the inverse of secant after restriction to 2 [0, π/2) ∪ (π, 3π/2]. . . y π . 2 . . . x . . The domain of arcsec is (−∞, −1] ∪ [1, ∞) [ π ) (π ] The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 . . . . . .
  • 20. Values of Trigonometric Functions π π π π x 0 6 √4 √3 2 1 2 3 sin x 0 1 √2 √2 2 3 2 1 cos x 1 0 2 2 √2 1 tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 . . . . . .
  • 21. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 . . . . . .
  • 22. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 . . . . . .
  • 23. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 . . . . . .
  • 24. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 3π 4 . . . . . .
  • 25. Caution: Notational ambiguity . in2 x =.(sin x)2 s . in−1 x = (sin x)−1 s sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x. 1 I use csc x for and arcsin x for the inverse of sin x. sin x . . . . . .
  • 26. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 27. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 28. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f (y ) = x , So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ = ′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 29. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) . . . . . .
  • 30. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • 31. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • 32. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . . . . . . .
  • 33. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 34. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 35. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 y . = arcsin x arcsin(x) = √ dx 1 − x2 . √ . 1 − x2 . . . . . .
  • 36. Graphing arcsin and its derivative 1 .√ 1 − x2 . . rcsin a . | . . | − . 1 1 . . . . . . .
  • 37. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) . . . . . .
  • 38. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 1 . √ . 1 − x2 So d 1 y . = arccos x arccos(x) = − √ . dx 1 − x2 x . . . . . . .
  • 39. Graphing arcsin and arccos a . rccos a . rcsin . | . . | − . 1 1 . . . . . . .
  • 40. Graphing arcsin and arccos a . rccos Note (π ) cos θ = sin −θ a . rcsin 2 π =⇒ arccos x = − arcsin x 2 . | . . | So it’s not a surprise that their − . 1 1 . derivatives are opposites. . . . . . .
  • 41. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y . . . . . .
  • 42. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . . . . . . .
  • 43. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 44. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . y . = arctan x . 1 . . . . . . .
  • 45. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 46. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 47. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . So d 1 y . = arctan x arctan(x) = . dx 1 + x2 1 . . . . . . .
  • 48. Graphing arctan and its derivative y . . /2 π a . rctan . 1 x . 1 + x2 − . π/2 . . . . . .
  • 49. Example √ Let f(x) = arctan x. Find f′ (x). . . . . . .
  • 50. Example √ Let f(x) = arctan x. Find f′ (x). Solution d √ 1 d√ 1 1 arctan x = (√ )2 x= · √ dx 1+ x dx 1+x 2 x 1 = √ √ 2 x + 2x x . . . . . .
  • 51. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) . . . . . .
  • 52. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 53. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 54. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 55. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . y . = arcsec x . 1 . . . . . . .
  • 56. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 y . = arcsec x . 1 . . . . . . .
  • 57. The derivative of arcsec Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 So d 1 y . = arcsec x arcsec(x) = √ . dx x x2 − 1 1 . . . . . . .
  • 58. Another Example Example Let f(x) = earcsec x . Find f′ (x). . . . . . .
  • 59. Another Example Example Let f(x) = earcsec x . Find f′ (x). Solution 1 f′ (x) = earcsec x · √ x x2 − 1 . . . . . .
  • 60. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 61. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? . . . . . .
  • 62. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 63. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 64. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ . . 2 . ft . . . . . .
  • 65. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ The human eye can only . track at 3 rad/sec! . 2 . ft . . . . . .
  • 66. Recap y y′ 1 arcsin x √ 1 − x2 1 Remarkable that the arccos x − √ 1 − x2 derivatives of these 1 arctan x transcendental functions 1 + x2 are algebraic (or even 1 arccot x − rational!) 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .