SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
Actividad 1. La ley de Bode.
G. Edgar Mata Ortiz
Números Reales y Notación Científica
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 2
La astronomía ha sido, desde hace mucho tiempo, la fuente de numerosos avances científicos. Desde las Leyes
de Kepler a las Leyes de Newton que dieron lugar a la invención del cálculo diferencial e integral. Este material
toma como base el conocimiento astronómico para abordar el tema de los números reales y la notación
científica.
Contenido
Introducción. ............................................................................................................................................................3
La unidad de medida: Unidad Astronómica (U. A.)..............................................................................................3
¿Qué dice la Ley de Bode?........................................................................................................................................3
Comprobación de la Ley de Bode.........................................................................................................................4
Predicciones de la Ley de Bode. ...........................................................................................................................5
Notación científica....................................................................................................................................................5
Cantidades muy grandes en notación científica...................................................................................................6
Cantidades muy pequeñas en notación científica................................................................................................7
La nanotecnología y sus aplicaciones.......................................................................................................................8
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 3
Introducción.
El nombre correcto de esta ley, tal vez debería ser:
Ley de Titius – Bode
Con base en la información que se muestra a la izquierda acerca de las
características de una teoría científica, consulta la historia de la Ley de
Bode y escribe un ensayo de 600 palabras acerca del tema.
La unidad de medida: Unidad Astronómica (U. A.)
Con la finalidad de facilitar el manejo de distancias astronómicas se
emplea, en lugar del metro o kilómetro, la U. A.
El valor de esta unidad de medida es la distancia de la tierra al sol. Puesto
que la órbita de la tierra alrededor del sol es elíptica, la distancia no es
constante, por lo que se toma el promedio, y es igual a: 149’675,000 Km.
¿Qué dice la Ley de Bode?
Esta “ley”, predice a qué distancia del sol se encuentran los planetas
expresadas en unidades astronómicas. El procedimiento para determinar
estas distancias es relativamente sencillo:
1. Se genera una sucesión de números que empieza en cero, tres, seis, …
y luego se van duplicando los números:
0, 3, 6, 12, 24, 48, 96, 192, 384,…
2. Este es el valor de n en la fórmula:
𝑑 =
𝒏 + 4
10
3. Se sustituyen los valores de n en la fórmula y se obtiene:
𝑑 =
𝟎+4
10
=
4
10
= 0.4
Según la Ley de Bode, el planeta más cercano al sol debe encontrase a 0.4
U. A. del sol.
Calcula las distancias de los demás planetas aplicando la misma fórmula y
anota los resultados en la siguiente línea:
0.4, _________________________________________________________
Leyes
científicas.
Las leyes científicas son
afirmaciones que se
caracterizan porque pueden
ser verificadas en la
realidad.
Se considera que una ley
científica es válida mientras
no se encuentre evidencia
en contra.
Las leyes de la ciencia,
constantemente se someten
a prueba mediante la
observación de hechos
naturales o experimentos
diseñados especialmente
para confirmar o refutar su
validez.
Una de las leyes científicas
más conocidas por las
personas es la ecuación de
equivalencia masa – energía
de Albert Einstein:
E = mc2
También son conocidas las
leyes de Newton sobre el
movimiento de los cuerpos y
la ley de la gravitación
universal.
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 4
Comprobación de la Ley de Bode.
Pero, esta Ley de Bode, ¿realmente funciona?
En la siguiente tabla se encuentran las distancias de cada uno de los planetas, al sol. Convierte las distancias a
unidades astronómicas y compara los resultados de la fórmula de Bode con las distancias reales.
Nombre del
planeta
Distancia al sol en km Distancia al sol en U.A.
Predicción de la
Ley de Bode
Mercurio 57’910,000
Venus 108’200,000
Tierra 149’675,000
Marte 227’940,000
¿?
Júpiter 778’330,000
Saturno 1,429’400,000
Urano 2,870’990,000
Neptuno 4,504’300,000
Plutón 5,913’520,000
Escribe, en el siguiente espacio, tu opinión acerca de la Ley de Bode. Argumenta tu respuesta.
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 5
Predicciones de la Ley de Bode.
Cuando se publicó esta ley, el planeta Urano no se había descubierto, de modo que cuando se descubre y su
distancia al sol coincide con la predicción de Bode, esta ley ganó cierta notoriedad.
Lo mismo podemos decir del espacio en blanco identificado con signos de interrogación entre Marte y Júpiter.
Según Bode, ahí debería existir un planeta; posteriormente se confirmó que tenía razón, aproximadamente a
esa distancia se encuentran los asteroides que, según ciertas teorías, son los restos de un paneta que fue
destruido.
Por otro lado, la predicción “falla” con Neptuno, que parece ser una anomalía, y Plutón se encuentra a la
distancia “correcta”.
¿Qué explicaciones existen acerca de los aciertos de Bode?
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Notación científica.
El uso de la unidad astronómica fue una forma de facilitar el manejo de distancias muy grandes, sin embargo,
actualmente contamos con una mejor herramienta: la notación científica.
Por ejemplo; uno de los prefijos empleados en el sistema internacional de unidades es Tera, que significa
billones, 5.8 Terámetros son 5.8 billones de metros. Este es el nombre correcto que se da a esta unidad de
medida, sin embargo, actualmente se prefiere expresar como 5.8x1012
metros.
También las calculadoras, cuando se obtiene un resultado muy grande, lo expresan en notación científica. Es
muy útil, solamente debemos aprender a interpretar esta notación mediante una sencilla regla: Si el exponente
del 10 es positivo, significa que debemos recorrer el punto decimal hacia la derecha tantos lugares como
indique la potencia del diez, y si es negativo, entonces el punto se recorre hacia la izquierda.
Ejemplos:
1.5x1015
significa recorrer el punto decimal 15 lugares hacia la derecha, rellenando con
ceros los lugares que se van generando: 1,500’000,000’000,000
3.1x10-12
significa recorrer el punto decimal 12 lugares hacia la izquierda, rellenando
con ceros los lugares que se van generando: 0.000 000 000 0031
15 lugares hacia la derecha desde
donde estaba originalmente.
12 lugares hacia la izquierda desde
donde estaba originalmente.
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 6
Cantidades muy grandes en notación científica.
Vamos a practicar la notación científica realizando algunas operaciones relacionadas con la velocidad de la luz.
¿Sabes lo que es un año luz? Se le llama así a la distancia que recorre la luz en un año. Si la velocidad de la luz
en el vacío es de: 299,792.458 Km/s determina las siguientes distancias:
Distancia que recorre la luz en un segundo: _______________________________________________ Km.
Distancia que recorre la luz en un minuto: _______________________________________________ Km.
Distancia que recorre la luz en una hora: _______________________________________________ Km.
Distancia que recorre la luz en un día: _______________________________________________ Km.
Distancia que recorre la luz en un año: _______________________________________________ Km.
Seguramente algunos de estos resultados fueron presentados por la calculadora empleando notación
científica. El último resultado es la equivalencia, en kilómetros, de un año luz. Consulta el valor exacto y explica
por qué existe diferencia con el valor que calculamos.
__________________________________________________________________________________________
__________________________________________________________________________________________
¿A cuántas unidades astronómicas equivale un año luz? ____________________________________________
¿Qué prefijo del sistema internacional de unidades conviene emplear para expresar la equivalencia de un año
luz en metros? _____________________________________________________________________________
¿A qué distancia se encuentra la estrella más cercana a la tierra (después del sol)? Anota esta distancia en
kilómetros empleando la notación normal y la notación científica. Después, convierte a unidades astronómicas
y finalmente utiliza el prefijo más adecuado para expresar la distancia en metros:
Distancia en kilómetros, notación común: ____________________________________________________
Distancia en kilómetros, notación científica: ____________________________________________________
Distancia en unidades astronómicas: ____________________________________________________
Distancia en metros con el prefijo adecuado: ____________________________________________________
El factorial de un número es el resultado de multiplicar todos los enteros hasta el número indicado, por
ejemplo, el factorial de 5 es: 1×2×3×4×5 = 120. Utiliza tu calculadora para obtener los siguientes factoriales:
20! = ______________________________________________________________________________________
30! = ______________________________________________________________________________________
40! = ______________________________________________________________________________________
50! = ______________________________________________________________________________________
¿Cuál es el máximo factorial que puedes obtener con una calculadora científica? Anótalo en seguida:
__________________________________________________________________________________________
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 7
Este factorial máximo que, generalmente puede obtenerse en una calculadora científica, es muy cercano al
valor de un número llamado Gúgol o Googol. Consulta el significado y el valor de estos números, anótalos y
escribe un comentario sobre el tema en las líneas siguientes:
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Cantidades muy pequeñas en notación científica.
El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10
metros y una masa de
alrededor de 1.7x10-27
gramos. Escribe estos números en la notación decimal común e indica el prefijo del
sistema internacional (SI) de unidades que es conveniente emplear con cada uno de ellos.
Diámetro del átomo de hidrógeno en notación común:
__________________________________________________________________________________________
Prefijo del SI que es conveniente emplear para expresar esta cantidad en metros: _______________________
Masa del átomo de hidrógeno en notación común:
__________________________________________________________________________________________
Prefijo del SI que es conveniente emplear para expresar esta cantidad en gramos: _______________________
El electrón tiene una masa, en reposo, de 9.11x10-31 Kg y su carga es de 1.6x10-19
Coulomb. Escribe estos
números en la notación decimal común e indica el prefijo del sistema internacional (SI) de unidades que es
conveniente emplear con cada uno de ellos.
Masa del electrón en notación común:
__________________________________________________________________________________________
Prefijo del SI que es conveniente emplear para expresar esta cantidad en gramos: _______________________
Carga del electrón en notación común:
__________________________________________________________________________________________
Prefijo del SI que es conveniente emplear para expresar esta cantidad en Coulomb: ______________________
Realiza un ejercicio similar para la carga y masa del protón.
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Números Reales y Notación Científica
http://licmata-math.blogspot.mx/ 8
La nanotecnología y sus aplicaciones.
Esta disciplina científica ha producido, en los últimos años, sorprendentes e interesantes resultados y
aplicaciones en diferentes ámbitos de la investigación científica y tecnológica.
Realiza una investigación y explica las magnitudes empleadas en esta disciplina científica. Selecciona tres
resultados de investigación que te llamen la atención y sus aplicaciones y anótalos en las siguientes líneas:
Magnitudes empleadas en la nanotecnología:
__________________________________________________________________________________________
__________________________________________________________________________________________
Resultado de investigación y aplicaciones (1):
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Resultado de investigación y aplicaciones (2):
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Resultado de investigación y aplicaciones (3):
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________
Lecturas complementarias recomendadas.

Contenu connexe

En vedette (12)

Exercise 1 complex numbers operations
Exercise 1   complex numbers operationsExercise 1   complex numbers operations
Exercise 1 complex numbers operations
 
Numeros irracionales 200
Numeros irracionales 200Numeros irracionales 200
Numeros irracionales 200
 
Numeros imaginarios 200
Numeros imaginarios 200Numeros imaginarios 200
Numeros imaginarios 200
 
Numeracion no posicional 400
Numeracion no posicional 400Numeracion no posicional 400
Numeracion no posicional 400
 
Ley de bode contestada
Ley de bode contestadaLey de bode contestada
Ley de bode contestada
 
Diferencia entre numeros enteros y racionales 200
Diferencia entre numeros enteros y racionales 200Diferencia entre numeros enteros y racionales 200
Diferencia entre numeros enteros y racionales 200
 
Fractales 600 palabras actividad 2
Fractales 600 palabras actividad 2 Fractales 600 palabras actividad 2
Fractales 600 palabras actividad 2
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Numeros complejos 600 palabras actividad 2.
Numeros complejos 600 palabras actividad 2. Numeros complejos 600 palabras actividad 2.
Numeros complejos 600 palabras actividad 2.
 
Numeros enteros 200
Numeros enteros 200Numeros enteros 200
Numeros enteros 200
 
Propiedades de los numeros naturales 200
Propiedades de los numeros naturales 200Propiedades de los numeros naturales 200
Propiedades de los numeros naturales 200
 
SISTEMAS TECNOLOGICOS
SISTEMAS TECNOLOGICOSSISTEMAS TECNOLOGICOS
SISTEMAS TECNOLOGICOS
 

Similaire à Bode's law: Real numbers and scientific notation

3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar
carolian4
 
3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar
carolian4
 
Modelos de examanes. El universo y Sistema solar
Modelos de examanes. El universo y Sistema solarModelos de examanes. El universo y Sistema solar
Modelos de examanes. El universo y Sistema solar
Recursos Educativos
 
Instrumento de eval. 7º estructuras cosmicas.
Instrumento de eval. 7º estructuras cosmicas.Instrumento de eval. 7º estructuras cosmicas.
Instrumento de eval. 7º estructuras cosmicas.
Pilar Llaitul
 

Similaire à Bode's law: Real numbers and scientific notation (20)

ejercicio ley de bode
ejercicio ley de bodeejercicio ley de bode
ejercicio ley de bode
 
3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar
 
3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar
 
3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar3ro estudiante nuestro_sistema_solar
3ro estudiante nuestro_sistema_solar
 
Vectores
VectoresVectores
Vectores
 
Presentación de la Charla: Efemérides Astronómicas SJG 120222
Presentación de la Charla: Efemérides Astronómicas SJG 120222Presentación de la Charla: Efemérides Astronómicas SJG 120222
Presentación de la Charla: Efemérides Astronómicas SJG 120222
 
Guía: Péndulo simple
Guía: Péndulo simpleGuía: Péndulo simple
Guía: Péndulo simple
 
Guia fisica
Guia fisica Guia fisica
Guia fisica
 
3er grado geometria
3er grado geometria3er grado geometria
3er grado geometria
 
Activity 1 1 intro differential calculus
Activity 1 1 intro differential calculusActivity 1 1 intro differential calculus
Activity 1 1 intro differential calculus
 
Tratado de dicotomia temporal del mundo.pdf
Tratado de dicotomia temporal del mundo.pdfTratado de dicotomia temporal del mundo.pdf
Tratado de dicotomia temporal del mundo.pdf
 
practica electricidad y magnetismo "fundamentos del magnetismo " FI ,UNAM
practica electricidad y magnetismo "fundamentos del magnetismo " FI ,UNAMpractica electricidad y magnetismo "fundamentos del magnetismo " FI ,UNAM
practica electricidad y magnetismo "fundamentos del magnetismo " FI ,UNAM
 
Libro astronomia2010
Libro astronomia2010Libro astronomia2010
Libro astronomia2010
 
Fotometria
FotometriaFotometria
Fotometria
 
M5 02
M5 02M5 02
M5 02
 
Modelos de examanes. El universo y Sistema solar
Modelos de examanes. El universo y Sistema solarModelos de examanes. El universo y Sistema solar
Modelos de examanes. El universo y Sistema solar
 
Instalaciones electricasi 1 umssfcyt
Instalaciones electricasi 1 umssfcytInstalaciones electricasi 1 umssfcyt
Instalaciones electricasi 1 umssfcyt
 
III BIMESTRE FISICA ELEMENTAL
III BIMESTRE FISICA ELEMENTAL III BIMESTRE FISICA ELEMENTAL
III BIMESTRE FISICA ELEMENTAL
 
Instrumento de eval. 7º estructuras cosmicas.
Instrumento de eval. 7º estructuras cosmicas.Instrumento de eval. 7º estructuras cosmicas.
Instrumento de eval. 7º estructuras cosmicas.
 
Cuaderno de apoyo Ciencias II Física
Cuaderno de apoyo Ciencias II FísicaCuaderno de apoyo Ciencias II Física
Cuaderno de apoyo Ciencias II Física
 

Plus de Edgar Mata

Plus de Edgar Mata (20)

Activity 12 c numb
Activity 12 c numbActivity 12 c numb
Activity 12 c numb
 
Pw roo complex numbers 2021
Pw roo complex numbers 2021Pw roo complex numbers 2021
Pw roo complex numbers 2021
 
Ar complex num 2021
Ar complex num 2021Ar complex num 2021
Ar complex num 2021
 
Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01
 
Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021
 
Problem identification 2021
Problem identification 2021Problem identification 2021
Problem identification 2021
 
Formato 1 1-limits ea2021
Formato 1 1-limits ea2021Formato 1 1-limits ea2021
Formato 1 1-limits ea2021
 
Activity 1 1 real numbers
Activity 1 1 real numbersActivity 1 1 real numbers
Activity 1 1 real numbers
 
Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021
 
Course presentation differential calculus ea2021
Course presentation differential calculus ea2021Course presentation differential calculus ea2021
Course presentation differential calculus ea2021
 
Course presentation linear algebra ea2021
Course presentation linear algebra ea2021Course presentation linear algebra ea2021
Course presentation linear algebra ea2021
 
Formato cramer 3x3
Formato cramer 3x3Formato cramer 3x3
Formato cramer 3x3
 
Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020
 
Exercise 4 1 - vector algebra
Exercise 4 1 - vector algebraExercise 4 1 - vector algebra
Exercise 4 1 - vector algebra
 
Exercise 3 2 - cubic function
Exercise 3 2 - cubic functionExercise 3 2 - cubic function
Exercise 3 2 - cubic function
 
Problemas cramer 3x3 nl
Problemas cramer 3x3 nlProblemas cramer 3x3 nl
Problemas cramer 3x3 nl
 
Cramer method in excel
Cramer method in excelCramer method in excel
Cramer method in excel
 
Cramer method sd2020
Cramer method sd2020Cramer method sd2020
Cramer method sd2020
 
Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020
 
Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020
 

Dernier

IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, eppIAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
CatalinaSezCrdenas
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
frank0071
 
Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.
ChiquinquirMilagroTo
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
frank0071
 

Dernier (20)

La Célula, unidad fundamental de la vida
La Célula, unidad fundamental de la vidaLa Célula, unidad fundamental de la vida
La Célula, unidad fundamental de la vida
 
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdfSEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
 
Diario experiencias Quehacer Científico y tecnológico vf.docx
Diario experiencias Quehacer Científico y tecnológico vf.docxDiario experiencias Quehacer Científico y tecnológico vf.docx
Diario experiencias Quehacer Científico y tecnológico vf.docx
 
La biodiversidad de Guanajuato (resumen)
La biodiversidad de Guanajuato (resumen)La biodiversidad de Guanajuato (resumen)
La biodiversidad de Guanajuato (resumen)
 
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, eppIAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
2. Hormonas y Ciclo estral de los animales
2. Hormonas y Ciclo estral de los animales2. Hormonas y Ciclo estral de los animales
2. Hormonas y Ciclo estral de los animales
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
 
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
Schuster, Nicole. - La metrópolis y la arquitectura del poder ayer hoy y mana...
 
CUADRO SINOPTICO IV PARCIAL/ TORAX . PDF
CUADRO SINOPTICO IV PARCIAL/ TORAX . PDFCUADRO SINOPTICO IV PARCIAL/ TORAX . PDF
CUADRO SINOPTICO IV PARCIAL/ TORAX . PDF
 
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptxMapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
 
Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.Terapia Cognitivo Conductual CAPITULO 2.
Terapia Cognitivo Conductual CAPITULO 2.
 
medicinatradicionalescuelanacionaldesalud.pptx
medicinatradicionalescuelanacionaldesalud.pptxmedicinatradicionalescuelanacionaldesalud.pptx
medicinatradicionalescuelanacionaldesalud.pptx
 
Matemáticas Aplicadas usando Python
Matemáticas Aplicadas   usando    PythonMatemáticas Aplicadas   usando    Python
Matemáticas Aplicadas usando Python
 
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPerfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
 
Glaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdfGlaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdf
 
Fresas y sistemas de pulido en odontología
Fresas y sistemas de pulido en odontologíaFresas y sistemas de pulido en odontología
Fresas y sistemas de pulido en odontología
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
 
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxPRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
 
Pelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibrasPelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibras
 

Bode's law: Real numbers and scientific notation

  • 1. Actividad 1. La ley de Bode. G. Edgar Mata Ortiz Números Reales y Notación Científica
  • 2. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 2 La astronomía ha sido, desde hace mucho tiempo, la fuente de numerosos avances científicos. Desde las Leyes de Kepler a las Leyes de Newton que dieron lugar a la invención del cálculo diferencial e integral. Este material toma como base el conocimiento astronómico para abordar el tema de los números reales y la notación científica. Contenido Introducción. ............................................................................................................................................................3 La unidad de medida: Unidad Astronómica (U. A.)..............................................................................................3 ¿Qué dice la Ley de Bode?........................................................................................................................................3 Comprobación de la Ley de Bode.........................................................................................................................4 Predicciones de la Ley de Bode. ...........................................................................................................................5 Notación científica....................................................................................................................................................5 Cantidades muy grandes en notación científica...................................................................................................6 Cantidades muy pequeñas en notación científica................................................................................................7 La nanotecnología y sus aplicaciones.......................................................................................................................8
  • 3. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 3 Introducción. El nombre correcto de esta ley, tal vez debería ser: Ley de Titius – Bode Con base en la información que se muestra a la izquierda acerca de las características de una teoría científica, consulta la historia de la Ley de Bode y escribe un ensayo de 600 palabras acerca del tema. La unidad de medida: Unidad Astronómica (U. A.) Con la finalidad de facilitar el manejo de distancias astronómicas se emplea, en lugar del metro o kilómetro, la U. A. El valor de esta unidad de medida es la distancia de la tierra al sol. Puesto que la órbita de la tierra alrededor del sol es elíptica, la distancia no es constante, por lo que se toma el promedio, y es igual a: 149’675,000 Km. ¿Qué dice la Ley de Bode? Esta “ley”, predice a qué distancia del sol se encuentran los planetas expresadas en unidades astronómicas. El procedimiento para determinar estas distancias es relativamente sencillo: 1. Se genera una sucesión de números que empieza en cero, tres, seis, … y luego se van duplicando los números: 0, 3, 6, 12, 24, 48, 96, 192, 384,… 2. Este es el valor de n en la fórmula: 𝑑 = 𝒏 + 4 10 3. Se sustituyen los valores de n en la fórmula y se obtiene: 𝑑 = 𝟎+4 10 = 4 10 = 0.4 Según la Ley de Bode, el planeta más cercano al sol debe encontrase a 0.4 U. A. del sol. Calcula las distancias de los demás planetas aplicando la misma fórmula y anota los resultados en la siguiente línea: 0.4, _________________________________________________________ Leyes científicas. Las leyes científicas son afirmaciones que se caracterizan porque pueden ser verificadas en la realidad. Se considera que una ley científica es válida mientras no se encuentre evidencia en contra. Las leyes de la ciencia, constantemente se someten a prueba mediante la observación de hechos naturales o experimentos diseñados especialmente para confirmar o refutar su validez. Una de las leyes científicas más conocidas por las personas es la ecuación de equivalencia masa – energía de Albert Einstein: E = mc2 También son conocidas las leyes de Newton sobre el movimiento de los cuerpos y la ley de la gravitación universal.
  • 4. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 4 Comprobación de la Ley de Bode. Pero, esta Ley de Bode, ¿realmente funciona? En la siguiente tabla se encuentran las distancias de cada uno de los planetas, al sol. Convierte las distancias a unidades astronómicas y compara los resultados de la fórmula de Bode con las distancias reales. Nombre del planeta Distancia al sol en km Distancia al sol en U.A. Predicción de la Ley de Bode Mercurio 57’910,000 Venus 108’200,000 Tierra 149’675,000 Marte 227’940,000 ¿? Júpiter 778’330,000 Saturno 1,429’400,000 Urano 2,870’990,000 Neptuno 4,504’300,000 Plutón 5,913’520,000 Escribe, en el siguiente espacio, tu opinión acerca de la Ley de Bode. Argumenta tu respuesta. __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________
  • 5. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 5 Predicciones de la Ley de Bode. Cuando se publicó esta ley, el planeta Urano no se había descubierto, de modo que cuando se descubre y su distancia al sol coincide con la predicción de Bode, esta ley ganó cierta notoriedad. Lo mismo podemos decir del espacio en blanco identificado con signos de interrogación entre Marte y Júpiter. Según Bode, ahí debería existir un planeta; posteriormente se confirmó que tenía razón, aproximadamente a esa distancia se encuentran los asteroides que, según ciertas teorías, son los restos de un paneta que fue destruido. Por otro lado, la predicción “falla” con Neptuno, que parece ser una anomalía, y Plutón se encuentra a la distancia “correcta”. ¿Qué explicaciones existen acerca de los aciertos de Bode? __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Notación científica. El uso de la unidad astronómica fue una forma de facilitar el manejo de distancias muy grandes, sin embargo, actualmente contamos con una mejor herramienta: la notación científica. Por ejemplo; uno de los prefijos empleados en el sistema internacional de unidades es Tera, que significa billones, 5.8 Terámetros son 5.8 billones de metros. Este es el nombre correcto que se da a esta unidad de medida, sin embargo, actualmente se prefiere expresar como 5.8x1012 metros. También las calculadoras, cuando se obtiene un resultado muy grande, lo expresan en notación científica. Es muy útil, solamente debemos aprender a interpretar esta notación mediante una sencilla regla: Si el exponente del 10 es positivo, significa que debemos recorrer el punto decimal hacia la derecha tantos lugares como indique la potencia del diez, y si es negativo, entonces el punto se recorre hacia la izquierda. Ejemplos: 1.5x1015 significa recorrer el punto decimal 15 lugares hacia la derecha, rellenando con ceros los lugares que se van generando: 1,500’000,000’000,000 3.1x10-12 significa recorrer el punto decimal 12 lugares hacia la izquierda, rellenando con ceros los lugares que se van generando: 0.000 000 000 0031 15 lugares hacia la derecha desde donde estaba originalmente. 12 lugares hacia la izquierda desde donde estaba originalmente.
  • 6. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 6 Cantidades muy grandes en notación científica. Vamos a practicar la notación científica realizando algunas operaciones relacionadas con la velocidad de la luz. ¿Sabes lo que es un año luz? Se le llama así a la distancia que recorre la luz en un año. Si la velocidad de la luz en el vacío es de: 299,792.458 Km/s determina las siguientes distancias: Distancia que recorre la luz en un segundo: _______________________________________________ Km. Distancia que recorre la luz en un minuto: _______________________________________________ Km. Distancia que recorre la luz en una hora: _______________________________________________ Km. Distancia que recorre la luz en un día: _______________________________________________ Km. Distancia que recorre la luz en un año: _______________________________________________ Km. Seguramente algunos de estos resultados fueron presentados por la calculadora empleando notación científica. El último resultado es la equivalencia, en kilómetros, de un año luz. Consulta el valor exacto y explica por qué existe diferencia con el valor que calculamos. __________________________________________________________________________________________ __________________________________________________________________________________________ ¿A cuántas unidades astronómicas equivale un año luz? ____________________________________________ ¿Qué prefijo del sistema internacional de unidades conviene emplear para expresar la equivalencia de un año luz en metros? _____________________________________________________________________________ ¿A qué distancia se encuentra la estrella más cercana a la tierra (después del sol)? Anota esta distancia en kilómetros empleando la notación normal y la notación científica. Después, convierte a unidades astronómicas y finalmente utiliza el prefijo más adecuado para expresar la distancia en metros: Distancia en kilómetros, notación común: ____________________________________________________ Distancia en kilómetros, notación científica: ____________________________________________________ Distancia en unidades astronómicas: ____________________________________________________ Distancia en metros con el prefijo adecuado: ____________________________________________________ El factorial de un número es el resultado de multiplicar todos los enteros hasta el número indicado, por ejemplo, el factorial de 5 es: 1×2×3×4×5 = 120. Utiliza tu calculadora para obtener los siguientes factoriales: 20! = ______________________________________________________________________________________ 30! = ______________________________________________________________________________________ 40! = ______________________________________________________________________________________ 50! = ______________________________________________________________________________________ ¿Cuál es el máximo factorial que puedes obtener con una calculadora científica? Anótalo en seguida: __________________________________________________________________________________________
  • 7. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 7 Este factorial máximo que, generalmente puede obtenerse en una calculadora científica, es muy cercano al valor de un número llamado Gúgol o Googol. Consulta el significado y el valor de estos números, anótalos y escribe un comentario sobre el tema en las líneas siguientes: __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Cantidades muy pequeñas en notación científica. El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10 metros y una masa de alrededor de 1.7x10-27 gramos. Escribe estos números en la notación decimal común e indica el prefijo del sistema internacional (SI) de unidades que es conveniente emplear con cada uno de ellos. Diámetro del átomo de hidrógeno en notación común: __________________________________________________________________________________________ Prefijo del SI que es conveniente emplear para expresar esta cantidad en metros: _______________________ Masa del átomo de hidrógeno en notación común: __________________________________________________________________________________________ Prefijo del SI que es conveniente emplear para expresar esta cantidad en gramos: _______________________ El electrón tiene una masa, en reposo, de 9.11x10-31 Kg y su carga es de 1.6x10-19 Coulomb. Escribe estos números en la notación decimal común e indica el prefijo del sistema internacional (SI) de unidades que es conveniente emplear con cada uno de ellos. Masa del electrón en notación común: __________________________________________________________________________________________ Prefijo del SI que es conveniente emplear para expresar esta cantidad en gramos: _______________________ Carga del electrón en notación común: __________________________________________________________________________________________ Prefijo del SI que es conveniente emplear para expresar esta cantidad en Coulomb: ______________________ Realiza un ejercicio similar para la carga y masa del protón. __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________
  • 8. Números Reales y Notación Científica http://licmata-math.blogspot.mx/ 8 La nanotecnología y sus aplicaciones. Esta disciplina científica ha producido, en los últimos años, sorprendentes e interesantes resultados y aplicaciones en diferentes ámbitos de la investigación científica y tecnológica. Realiza una investigación y explica las magnitudes empleadas en esta disciplina científica. Selecciona tres resultados de investigación que te llamen la atención y sus aplicaciones y anótalos en las siguientes líneas: Magnitudes empleadas en la nanotecnología: __________________________________________________________________________________________ __________________________________________________________________________________________ Resultado de investigación y aplicaciones (1): __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Resultado de investigación y aplicaciones (2): __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Resultado de investigación y aplicaciones (3): __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Lecturas complementarias recomendadas.