SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
ARE SALTMARSHES SUSCEPTIBLE TO CARBON LOSS FOLLOWING N 
LOADING? 
 
Ulrich Kakou, Sanderman J. 
Abstract 
 
There has been a growing interest in salt marsh protection and restoration for its economical,                             
recreational and, more recently, its value as a carbon sink. Salt marshes and many other coastal                               
wetlands have the capacity to store large amounts of carbon in the soil but that carbon may be in                                     
danger of being lost to eutrophication. This project focuses on evaluating soil quality and microbial                             
activity following eutrophication using diffuse reflectance Fourier­transform infrared spectroscopy                 
(DRIFTS) and bioavailability assay. Using DRIFTS revealed that the litter quality has improved as the                             
fertilized plots (XF) show more decomposition than the control plots (C). The amount of decomposition                             
can also be demonstrated using C:N ratio where a low ratio correlated with higher decomposition ratios                               
(index I values). Comparing C­plots bulk samples to XF indicated that XF plots were more decomposed                               
than the C­plots which is a testament to an overall change in OM composition following eutrophication.                               
The bioavailability assay revealed that the XF soil was on average less decomposable than soil from                               
the C­plots and that additional nitrogen loading feedbacks positively in soils deeper than 10 cm.                             
However, top soils did not respond favorably to additional nitrogen loading. The data provides some                             
important insights that suggest belowground carbon cycle has been substantially altered. 
 
 
   
INTRODUCTION 
 
Salt marshes are among the most productive and most important vegetated coastland ecosystems on                           
the planet. Their most notable roles include quenching storm surges, keeping up with sea level rise                               
(SLR), sequestering carbon (​McLeod et al. 2011​ ), and because of their incredible ability to retain                             
nitrogen (N) and other nutrients (​Valiela I 2015​ ), efficiently filter excess nutrient which prevents                           
eutrophication and pollution of other marine ecosystems. In the past few years, there has been an                               
increasing interest in salt marsh protection and restoration because of its economical and recreational                           
value (​McLeod et al. 2011, Chmura et al. 2012​ ). Despite their relatively low greenhouse gas emission                               
(​Chmura et al. 2003), there is new evidence that suggests that salt marshes are susceptible to emitting                                 
greenhouse gases, such as methane, nitrous oxide, and carbon dioxide, at a higher rate following                             
eutrophication (​Moseman­Valtierra et al. 2011​ ). This potential for increased greenhouse gas                     
emissions with high N loading may result in salt marshes switching from being carbon sinks to carbon                                 
sources. Unfortunately, pertinent data on eutrophication effects on the carbon balance of salt marshes                           
is lacking thus this project’s goal is to provide a more conclusive insight on this relationship based on a                                     
40+ year study of artificial eutrophication via fertilization on the Great Sippewissett salt marsh (GSM) in                               
Falmouth, Massachusetts. 
 
Most natural ecosystems’ biomass are nutrient limited which prevents optimal growth for some species.                           
This limitation is not inherently detrimental to the ecosystem. However, for the salt marsh ecosystems                             
alleviating this limitation can potentially destabilize the natural balance between plant species, microbial                         
activity, and carbon sequestration (​Deegan et al. 2007, Morris & Bradley 1999​ ). Salt marshes can                             
succumb to nitrogen enrichment via agricultural, urban and suburban runoff because pollution                       
anywhere in the upstream catchment can reach the marsh (​Moseman­Valtierra et al. 2011​ ). To further                             
understand this balance, parts of the Great Sippewissett marsh has been nitrogen, phosphorus, and                           
potassium enriched since 1971 (​Valiela I 2015). As expected, the control (C) plots have continued to                               
grow at the same rate maintaining the same plant species. However, the plots fertilized at an extra­high                                 
(XF) rate have seen a significant increase in aboveground biomass and a species shift. In contrast, the                                 
belowground biomass in the XF­plots has experienced a dramatic decrease compared to C­plots                         
(​Valiela I 2015). This has many implications for carbon storage and accumulation because one of the                               
greatest sources of the carbon for the marsh is from the root material that plants develop to forage for                                     
necessary nutrients. Following nutrient enrichment, plants may spend less resources building their                       
roots deeper in the soil as nutrients are more readily available (​Levine et al. 1998​ ). Additionally, plants                                 
may invest fewer resources into building defence structures resulting in litter that can be more easily                               
decomposed. Based on these observations, we believe that salt marshes might be at risk of becoming                               
carbon sources rather than carbon sinks under eutrophication 
 
We hypothesize that under eutrophication: 
 
(1) The quality of the litter will increase with chronic fertilization.  
(2) The increased litter quality (H1) in conjunction with greater nutrient availability to the microbial                             
community will feedback positively on decay rates.  
 
Under the anoxic conditions of the marsh (​Young and Frazer 1987, Morris & Bradley 1999​ ), lignin is                                 
much less decomposable (​Benner et al. 1984) than other organic matter such as proteins and                             
carbohydrates. If fertilization results in the root litter having less lignin and more protein, then this would                                 
result in more decomposable organic matter for microbes. Additionally, in the fertilized plots there are                             
more nutrients available to the microbial community itself which will likely stimulate decay rates. These                             
greater losses of organic matter coupled with the observed decreases in root biomass (i.e. Valiela I                               
2015) can the act together to reduce or even reverse carbon accumulation in marshes receiving high N                                 
loads. 
 
We tested these hypotheses by evaluating soil quality and microbial activity following eutrophication                         
using diffuse reflectance infrared spectroscopy (DRIFTS), elemental (C and N) analysis and a                         
bioavailability assay. Using DRIFTS will allow testing of hypothesis I by detecting any shift in overall soil                                 
organic matter composition that usually occurs in the mid­range (4000­400 cm­1) infrared region of soil                             
samples. The bioavailability assay will help elucidate the effect that nitrogen has on the decay rates by                                 
capturing, quantifying, and comparing CO2 emissions (H2). 
 
 
METHODS 
 
Site description 
 
The GSM has many sites (habitats) that have been sectionalized by plots which received various                             
fertilizer treatments. The plots are 10 m in radius and each plot is separated by a creek. Some plots                                     
have received high fertilizer treatment (HF), some extra fertilizer (XF), and some no treatment (C). The                               
plots have been chosen to represent the main habitats on the marsh and their height from mean sea                                   
level (MSL), i.e., low marsh (LM, 50­70 cm above MSL), high marsh (HM, >70 cm above MSL), and                                   
creek bank (CB, 30­50 cm above MSL), which may have different vegetative species. Each habitat,                             
divided in plots, received the various fertilizer treatments of a mixed fertilizer (10% N, 6% P2O4, 4%                                 
K2O), i.e., 2.52 for HF, 7.56 g N m​­2
week​­1
for XF. These treatments are 30 and 90 times the US                                         
Department of Agriculture recommended annual dosage for oats (​Valiela et al. 1973, Fox et al. 2012,​ ).                               
Each core sampled was 30 cm deep and split by 2 cm increments. For this project, we focused on the                                       
low marsh habitat C, HF, and XF whose dominant vegetative species is ​Spartina alterniflora because                             
this is the most common vegetative assemblage found in salt marshes of southern New England. 
 
Preparing samples 
 
Core segments were oven dried and half of each increment had live and dead root/rhizome material                               
separated from the bulk sediments. Bulk density had already been determined by measuring the                           
volume and weighing the half of each core segment that was not used for root biomass. Prior to                                   
analysis, all samples were first broken down using a coffee grinder then ground to a fine powder using                                   
the ​D8000 Mixer/Mill grinder. Upon completion, each sample was placed in small vials and labelled to                               
be prepared for the FTIR run, which consisted of filling each sample cup with finely ground GSM                                 
samples and carefully place them on the FTIR tray.  
 
DRIFTS (FTIR) 
 
The bioavailability assay soil samples and soil samples cored from the various plots on GSM were ran                                 
on a Bruker Vertex 70 FTIR spectrometer with a Pike Autodiff diffuse reflectance accessory. For each                               
sample, 60 scans were collected at a 2 cm­1 resolution. Background subtracted spectra were then                             
baseline corrected and peaks attributed to major functional groups were identified as laid out in the                               
Margenot et al. (2015). Amines show up around 3400 cm­1, amides closer to 1575 cm­1, phenols at                                 
1270 cm­1, polysaccharides at 1110 and 1080 cm­1, aromatics at 920 and 840 cm­1, and aliphatic                               
groups (most abundant) at 2924, 2850, 1470, 1405, and 1390 cm­1 (​Margenot et al. 2015). To                               
determine the relative amount of decomposition, the ratio of aromatic to aliphatic functional groups was                             
calculated as Index I. Index II ratio is the ratio of C to O­functional groups which determines relative                                   
recalcitrance of soil organic matter (​Veum et al. 2014). These shifts in organic matter composition                             
detected by DRIFTS are attributed to the dipole moments of the aforementioned functional groups                           
(​Margenot et al. 2015). 
 
LECO 
 
The LECO employs a ​high temperature oxidative combustion followed by infrared detection to                         
determine the carbon and nitrogen content of organic matter. Each sample was weighed, placed in an                               
aluminum foil, and combusted to determine its elemental composition. A series of certified standards                           
were used to produce calibration curves that spanned the C and N concentrations in our unknown                               
samples. 
 
 BIOAVAILABILITY ASSAY 
 
To test whether microbial activity, or carbon decay rates may increase following eutrophication, an                           
incubation experiment was designed. Core samples from 3 plots (C­plot, high fertilizer­HF, extra high                           
fertilizer­XF) on the GSM of various depths and treatments, were grounded, weighed, and placed in 50                               
mL vials. After a 10 day preincubation period to restore microbial activity to the previously dried                               
samples, soil respiration rates were measured over a 3 week period. Accumulated CO2 was measured                             
in the headspace of the incubation vials using an infrared gas analyser (LICOR Li­820) at 5 time                                 
points over the 3 week period. About ~2L of creek water was sampled from GSM and used as                                   
inoculum. For the incubation, the low marsh (LM) habitat alone had samples from 3 depths,                             
categorized as top, mid, and deep. Each depth had 6 repetitions: 3 of which were treated with only the                                     
inoculum and the remaining 3 were treated with the inoculum and urea applied at a rate of                                 
approximately 200 kg N ha­1. To isolate the CO2 produced by microbes in the soil, 6 vials that                                   
contained no soil received the same amount of inoculum and inoculum+nutrient treatment to serve as                             
control. Along with 3 empty vials to account for the CO2 already present in the air, making a total of 63                                         
vials. 
 
   
RESULTS AND DISCUSSION 
 
Have carbon accumulation rates changed? 
 
We compiled some data on depth to amount of carbon which shows that the XF­plots have a lower %C                                     
but greater bulk density, resulting in greater overall carbon content in XF plots (F​igure 1​). While the                                 
lower C concentration is suggestive of a shift in belowground carbon cycling, to test whether                             
eutrophication has curtailed or increased the amount of carbon that is coming into the marsh, it would                                 
be advantageous to know the carbon accumulation rate on the various plots. But because we lack data                                 
to accurately age the soil, the accumulation rates cannot be determined for the span of this project. 
 
 
Figure 1: downcore profile of C to XF plots. %C is lower in XF but XF bulk density is higher thus higher 
C density 
Has litter quality increased? 
 
Looking at the results from the FTIR and C:N ratio data we see that there is in fact an increase in litter                                           
quality. Because of the protein and carbohydrate content, we expect to see the C:N ratio of live roots to                                     
be greater than both the dead roots and bulk material. If the C:N ratio is 22 then for every unit of N                                           
there are 22 units of C. Higher index I values are consistent with a more decomposed organic matter                                   
and higher index II values are consistent with more recalcitrant organic matter (​Veum et al. 2014). The                                 
data supports our initial expectation that C­plots would demonstrate less decomposition than                       
XF­plots.The lower index I data in conjunction with the higher C:N data of C­plots live and dead roots                                   
suggest that there is more protein in the litter. The XF plots, however, show a great shift in overall                                     
composition and lower C:N ratio (see ​Figure 2&3​). These findings support our hypothesis that nitrogen                             
loading will make more labile organic matter available to microbes to be decomposed. 
 
Figure 2: Live and Dead roots index I ratio. Higher index I indicate more decomposition 
 
 
Figure 3: C:N ratio of live and dead roots. Higher C:N indicates less decomposition  
 
Has bulk OM composition shifted? 
 
 
Figure 4: Bulk samples index I and C:N ratio. Higher index I values indicate more decomposition. 
Higher C:N ratio indicate less decomposition 
 
The data shows that the bulk material in XF are more decomposed than the C plots (see ​Figure 4​).                                     
This trend can be explained when we consider that the bulk material in C­plots have more recalcitrant                                 
OM, specifically lignin with the pronounced root system observed in C­plots, compared to XF (​Valiela                             
2015). The lower bulk C:N ratio results typically indicate more decomposed material since this ratio will                               
decrease towards the C:N ratio of microbial biomass (6­8) as decomposition of plant litter progresses.                             
In addition, coupling this data with the increased CO2 emission related to microbial decay (see next                               
section) offers a solid perspective for the difference in decomposition. With this evidence, we can                             
conclude that bulk OM composition has shifted following eutrophication. 
 
Have decomposition rates changed in response to chronic loading and short term nutrient addition? 
 
CO2 accumulation is expected to be greater in N(urea) treated vials in both C­plots and XF­plots. The                                 
data shows that the amount of CO2 that accumulated in the ambient treated incubation vials is greater                                 
in the C­plots (Figure 5) likely due to the lower observed decomposition state in the C­plots relative to                                   
the HF and XF plots (Figure 4). The natural log of the ratio of CO2 accumulated in vials treated with                                       
urea versus vials that received no urea treatment helps us evaluate the response to nitrogen loading,                               
where a positive number indicates that more CO2 was formed in response to urea and vice versa. The                                   
data shows that deeper soils (10­30 cm) responded positively to the urea treatment but the top 10 cm                                   
responded negatively (see ​Figure 6)​. The positive response to the urea treatment indicates that                           
decomposition rates were nutrient limited and this limitation has been alleviated and consequently                         
increased microbial activity. The negative response to urea treatment in both C­plots and XF­plots in                             
the top soils is not expected because top soils show less decomposition than deeper soils (see ​Figure                                 
5​). Further testing is required to validate or refute this response and identify the possible causes. 
 
 
Figure 5: CO2 accumulated per gC against treatment in ambient treated incubation vials 
 
Figure 6: Response to the urea treatment in incubation vials. Top soils produced less CO2 than mid to 
deep. 
 
IMPACT 
 
The data gathered for this project highlights some of the effects of eutrophication on soil quality and the                                   
microbial activity. Our data suggests that carbon concentrations have decreased but because bulk                         
density has increased, the carbon storage in the XF­plots is greater than the C­plots. This difference                               
may be closely linked to the increase in aboveground biomass following nutrient loading. However, we                             
don’t know whether the accumulation rates are similar in C­plots and XF­plots. Learning about the rates                               
will safely answer the question about salt marshes ability to store carbon under eutrophication.  
 
The FTIR and C:N data suggest that litter quality is better. This means that there is in fact more labile                                       
carbon and less recalcitrant carbon, which predicts more microbial activity. When coupling litter quality                           
results to the bioavailability assay results, we find that the data is consistent with hypothesis II, i.e.,                                 
microbial activity will deplete labile organic matter faster and produce more CO2. However, this trend is                               
only observed in mid to deep soils as the top soils respond negatively to the urea treatment. This                                   
seems to suggest that microbial activity might actually be stifled in top soils. While not consistent with                                 
soil quality data, further testing will prove advantageous in that we will learn of other factors that may                                   
prevent or promote microbial decay. 
 
Given the size of the data on this project, we cannot draw definite conclusions or make generalized                                 
statements about the fate of salt marshes at large. But the data does provide some important insights                                 
that suggest belowground carbon cycle has been substantially altered.  
 
ACKNOWLEDGEMENTS 
 
I’d like to thank Jonathan Sanderman for helping make this project an absolute success by providing a                                 
means of transport to and from work, for teaching all the necessary lab techniques, and skills, and                                 
assisting with presenting my mid summer report and final poster, and writing this paper. Elizabeth                             
Elmstrom and Ivan Valiela for providing the dried, segments cores for this project as well as bulk                                 
density data and giving an onsite detailed tour of the Great Sippewissett marsh. Michael Ernst for                               
helping me print my poster. SSF for organizing this entire internship program. Kama Thieler for her                               
support and being our main resource for everyday things, including providing a bike helmet, free rides,                               
and safekeeping mail. The WHRC for letting me use its facility to accomplish this project. NSF for                                 
providing the funding, and WHOI for providing the housing. 
 
 
   
REFERENCES 
 
Benner, R., Maccubbin, A. E., & Hodson, R. E. (1984). Anaerobic biodegradation of the lignin and polysaccharide                                 
components of lignocellulose and synthetic lignin by sediment microflora. ​Applied and Environmental Microbiology,                         
47(5), 998­1004. 
 
Margenot, Andrew J., et al. "Soil organic matter functional group composition in relation to organic carbon, nitrogen,                                 
and phosphorus fractions in organically managed tomato fields." ​Soil Science Society of America Journal 79.3                             
(2015): 772­782. 
 
Chmura, G. L., Burdick, D. M., & Moore, G. E. (2012). Recovering salt marsh ecosystem services through tidal                                   
restoration. In ​Tidal Marsh Restoration (pp. 233­251). Island Press/Center for Resource Economics. 
 
Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch (2003), Global carbon sequestration in tidal, saline wetland soils,                                           
Global Biogeochem. Cycles, 17, 1111, doi:10.1029/2002GB001917, 4. 
 
Deegan, L. A., Bowen, J. L., Drake, D., Fleeger, J. W., Friedrichs, C. T., Galván, K. A., Hobbie, J. E., Hopkinson, C., Johnson,                                             
D. S., Johnson, J. M., LeMay, L. E., Miller, E., Peterson, B. J., Picard, C., Sheldon, S., Sutherland, M., Vallino, J. and Warren,                                             
R. S. (2007), SUSCEPTIBILITY OF SALT MARSHES TO NUTRIENT ENRICHMENT AND PREDATOR REMOVAL.                         
Ecological Applications, 17: S42–S63. doi:10.1890/06­0452.1 
 
Levine, J. M., Brewer, J. S., & Bertness, M. D. (1998). Nutrients, competition and plant zonation in a New England                                       
salt marsh. ​Journal of Ecology, ​86(2), 285­292. 
 
Fox, L., Valiela, I., & Kinney, E. L. (2012). Vegetation cover and elevation in long­term experimental                               
nutrient­enrichment plots in Great Sippewissett Salt Marsh, Cape Cod, Massachusetts: implications for                       
eutrophication and sea level rise. ​Estuaries and Coasts, ​35(2), 445­458. 
 
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H. and Silliman, B.                                             
R. (2011), A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in                                     
sequestering CO2. Frontiers in Ecology and the E, 9: 552–560. doi: 10.1890/110004 
 
Morris, J. T., & Bradley, P. M. (1999). Effects of nutrient loading on the carbon balance of coastal wetland sediments.                                       
Limnology and Oceanography,​44(3), 699­702. 
 
Moseman­Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C., Crusius, J., ... & Shelton, J. (2011).                                     
Short­term nitrogen additions can shift a coastal wetland from a sink to a source of N 2 O. ​Atmospheric                                     
Environment,​45(26), 4390­4397. 
 
Valiela, I., J.M. Teal, and W.J. Sass. 1973. Production and dynamics of salt marsh vegetation and the effects of                                     
experimental treatment with sewage sludge: Biomass, production and species composition. Journal of Applied                         
Ecology 12: 973–981 
 
Valiela, I. (2015). The Great Sippewissett salt marsh plots—some history, highlights, and contrails from a long­term                               
study. ​Estuaries and Coasts, ​38(4), 1099­1120. 
 
Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological indicators of soil quality                                           
and soil organic matter characteristics in an agricultural management continuum. ​Biogeochemistry,​117(1), 81­99. 
 
Young, L. Y., & Frazer, A. C. (1987). The fate of lignin and lignin‐derived compounds in anaerobic environments.                                   
Geomicrobiology journal, ​5(3­4), 261­293. 

Contenu connexe

Tendances

Zn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeZn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeSilvana Torri
 
Assessing the potential of soil organic carbon sequestration in African soils
Assessing the potential of soil organic carbon sequestration in African soilsAssessing the potential of soil organic carbon sequestration in African soils
Assessing the potential of soil organic carbon sequestration in African soilsExternalEvents
 
el yunque poster-1
el yunque poster-1el yunque poster-1
el yunque poster-1Bowen Chang
 
Dynamics of k in soils and their role in management of k nutrition
Dynamics of k in soils and their role in management of k nutritionDynamics of k in soils and their role in management of k nutrition
Dynamics of k in soils and their role in management of k nutritionAndrew Hutabarat
 
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeDynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeSilvana Torri
 
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...Jen Benson
 
Cooley Preville Snyder Final Draft
Cooley Preville Snyder Final DraftCooley Preville Snyder Final Draft
Cooley Preville Snyder Final DraftOlivia Cooley
 
Challenges of soil organic carbon sequestration in drylands
Challenges of soil organic carbon sequestration in drylandsChallenges of soil organic carbon sequestration in drylands
Challenges of soil organic carbon sequestration in drylandsExternalEvents
 
Carbon sequestration through the use of biosolids in soils of the Pampas reg...
 Carbon sequestration through the use of biosolids in soils of the Pampas reg... Carbon sequestration through the use of biosolids in soils of the Pampas reg...
Carbon sequestration through the use of biosolids in soils of the Pampas reg...Silvana Torri
 
Soil Organic Carbon stabilization in compost amended soils
Soil Organic Carbon stabilization in compost amended soilsSoil Organic Carbon stabilization in compost amended soils
Soil Organic Carbon stabilization in compost amended soilsExternalEvents
 
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...ExternalEvents
 
Justin Beslity -Thesis
Justin Beslity -ThesisJustin Beslity -Thesis
Justin Beslity -ThesisJustin Beslity
 
Patrick Hayes Honours seminar
Patrick Hayes Honours seminarPatrick Hayes Honours seminar
Patrick Hayes Honours seminarelalib
 
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower DanianThe Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower DanianIain Gilmour
 
0c9605211e66c2f5be000000
0c9605211e66c2f5be0000000c9605211e66c2f5be000000
0c9605211e66c2f5be000000Thomas Saunders
 
Management of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationManagement of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationAndrew Hutabarat
 
Marine Fertilization and Carbon Sequestration
Marine Fertilization and Carbon SequestrationMarine Fertilization and Carbon Sequestration
Marine Fertilization and Carbon SequestrationIslam Md Jakiul
 

Tendances (20)

Soil Organic Carbon
Soil Organic CarbonSoil Organic Carbon
Soil Organic Carbon
 
Zn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeZn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludge
 
Assessing the potential of soil organic carbon sequestration in African soils
Assessing the potential of soil organic carbon sequestration in African soilsAssessing the potential of soil organic carbon sequestration in African soils
Assessing the potential of soil organic carbon sequestration in African soils
 
el yunque poster-1
el yunque poster-1el yunque poster-1
el yunque poster-1
 
Potassium in agriculture
Potassium in agriculturePotassium in agriculture
Potassium in agriculture
 
Dynamics of k in soils and their role in management of k nutrition
Dynamics of k in soils and their role in management of k nutritionDynamics of k in soils and their role in management of k nutrition
Dynamics of k in soils and their role in management of k nutrition
 
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeDynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
 
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
 
Cooley Preville Snyder Final Draft
Cooley Preville Snyder Final DraftCooley Preville Snyder Final Draft
Cooley Preville Snyder Final Draft
 
Challenges of soil organic carbon sequestration in drylands
Challenges of soil organic carbon sequestration in drylandsChallenges of soil organic carbon sequestration in drylands
Challenges of soil organic carbon sequestration in drylands
 
Carbon sequestration through the use of biosolids in soils of the Pampas reg...
 Carbon sequestration through the use of biosolids in soils of the Pampas reg... Carbon sequestration through the use of biosolids in soils of the Pampas reg...
Carbon sequestration through the use of biosolids in soils of the Pampas reg...
 
Soil Organic Carbon stabilization in compost amended soils
Soil Organic Carbon stabilization in compost amended soilsSoil Organic Carbon stabilization in compost amended soils
Soil Organic Carbon stabilization in compost amended soils
 
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...
Carbon Management and Sequestration in Drylands soils of Morocco: Nexus Appro...
 
Justin Beslity -Thesis
Justin Beslity -ThesisJustin Beslity -Thesis
Justin Beslity -Thesis
 
Patrick Hayes Honours seminar
Patrick Hayes Honours seminarPatrick Hayes Honours seminar
Patrick Hayes Honours seminar
 
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower DanianThe Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
 
Acosta2018
Acosta2018Acosta2018
Acosta2018
 
0c9605211e66c2f5be000000
0c9605211e66c2f5be0000000c9605211e66c2f5be000000
0c9605211e66c2f5be000000
 
Management of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationManagement of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptation
 
Marine Fertilization and Carbon Sequestration
Marine Fertilization and Carbon SequestrationMarine Fertilization and Carbon Sequestration
Marine Fertilization and Carbon Sequestration
 

En vedette

Ventajas de prezi 123
Ventajas de prezi 123Ventajas de prezi 123
Ventajas de prezi 123Nuria104001
 
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijk
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijkUtrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijk
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijkUtrecht
 
یاران غار حقیقت 2
یاران غار حقیقت 2یاران غار حقیقت 2
یاران غار حقیقت 2Ali Dalili
 
Bloque ii. riñon tema ii pdf
Bloque ii. riñon tema ii pdfBloque ii. riñon tema ii pdf
Bloque ii. riñon tema ii pdfprometeo39
 
Ramona presentacion
Ramona presentacionRamona presentacion
Ramona presentacionramona reyes
 
Informe a 2
Informe a 2Informe a 2
Informe a 2sidokar
 
Petrov Nikolay Nikolayevich
Petrov Nikolay NikolayevichPetrov Nikolay Nikolayevich
Petrov Nikolay Nikolayevichprosvsports
 
Principles of management_notes
Principles of management_notesPrinciples of management_notes
Principles of management_notesJoel XBasxious
 

En vedette (13)

Ladrogas
LadrogasLadrogas
Ladrogas
 
Ventajas de prezi 123
Ventajas de prezi 123Ventajas de prezi 123
Ventajas de prezi 123
 
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijk
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijkUtrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijk
Utrecht/Kenniscongres2016/20.1/A. Hagen/Vies is niet gevaarlijk
 
Top 6-Security-Threats-on-iOS
Top 6-Security-Threats-on-iOSTop 6-Security-Threats-on-iOS
Top 6-Security-Threats-on-iOS
 
یاران غار حقیقت 2
یاران غار حقیقت 2یاران غار حقیقت 2
یاران غار حقیقت 2
 
Bloque ii. riñon tema ii pdf
Bloque ii. riñon tema ii pdfBloque ii. riñon tema ii pdf
Bloque ii. riñon tema ii pdf
 
Software en la educcion
Software en la educcionSoftware en la educcion
Software en la educcion
 
Ramona presentacion
Ramona presentacionRamona presentacion
Ramona presentacion
 
Paperless guide
Paperless guidePaperless guide
Paperless guide
 
Informe a 2
Informe a 2Informe a 2
Informe a 2
 
Petrov Nikolay Nikolayevich
Petrov Nikolay NikolayevichPetrov Nikolay Nikolayevich
Petrov Nikolay Nikolayevich
 
Principles of management_notes
Principles of management_notesPrinciples of management_notes
Principles of management_notes
 
Ingle
IngleIngle
Ingle
 

Similaire à SSFSaltMarshWriteUp

BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...
BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...
BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...RJSREBCRAN
 
The Degraded Peatland Ecosystem of the Southern Pennines report
The Degraded Peatland Ecosystem of the Southern Pennines reportThe Degraded Peatland Ecosystem of the Southern Pennines report
The Degraded Peatland Ecosystem of the Southern Pennines reportNicola snow
 
Fredrick Wandera CLIFF Workshop
Fredrick Wandera CLIFF WorkshopFredrick Wandera CLIFF Workshop
Fredrick Wandera CLIFF WorkshopMerylRichards
 
Soil Organic Carbon Sequestration: Importance and State of Science
Soil Organic Carbon Sequestration: Importance and State of ScienceSoil Organic Carbon Sequestration: Importance and State of Science
Soil Organic Carbon Sequestration: Importance and State of ScienceExternalEvents
 
Congo basin peatlands_threats_and_conservation_pri
Congo basin peatlands_threats_and_conservation_priCongo basin peatlands_threats_and_conservation_pri
Congo basin peatlands_threats_and_conservation_priaujourlejour1
 
Auwae and Groffman, 2010
Auwae and Groffman, 2010Auwae and Groffman, 2010
Auwae and Groffman, 2010Russell Auwae
 
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ivan Vera Montenegro
 
Soil carbon storage in Mediterranean forest stands: implications in the resto...
Soil carbon storage in Mediterranean forest stands: implications in the resto...Soil carbon storage in Mediterranean forest stands: implications in the resto...
Soil carbon storage in Mediterranean forest stands: implications in the resto...ExternalEvents
 
Project report ammended for PhD application
Project report ammended for PhD applicationProject report ammended for PhD application
Project report ammended for PhD applicationRhiann Mitchell-Holland
 
(240513564) grupo6 2014 suelos (1)
(240513564) grupo6 2014 suelos (1)(240513564) grupo6 2014 suelos (1)
(240513564) grupo6 2014 suelos (1)KäLïsär SA
 
Seagrass under nutrient load and grazing
Seagrass under nutrient load and grazingSeagrass under nutrient load and grazing
Seagrass under nutrient load and grazingguestb538ca
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...sophiabelthome
 
Tropical forests in a changing world: Investigating global change impacts in ...
Tropical forests in a changing world: Investigating global change impacts in ...Tropical forests in a changing world: Investigating global change impacts in ...
Tropical forests in a changing world: Investigating global change impacts in ...Christine O'Connell
 
Litter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamicsLitter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamicsParvati Tamrakar
 
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic CarbonatesMagnus McFarlane
 
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx Final
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx  FinalExecutive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx  Final
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx FinalMichael Maguire
 

Similaire à SSFSaltMarshWriteUp (20)

BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...
BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...
BRIEF ASCEPTS IN CARBON STOCK, CARBON POOLS AND CARBON SEQUESTRATION POTENTIA...
 
The Degraded Peatland Ecosystem of the Southern Pennines report
The Degraded Peatland Ecosystem of the Southern Pennines reportThe Degraded Peatland Ecosystem of the Southern Pennines report
The Degraded Peatland Ecosystem of the Southern Pennines report
 
Soil Carbon Sequestration Potentials of Semi-arid soils at the CCAFS Site in ...
Soil Carbon Sequestration Potentials of Semi-arid soils at the CCAFS Site in ...Soil Carbon Sequestration Potentials of Semi-arid soils at the CCAFS Site in ...
Soil Carbon Sequestration Potentials of Semi-arid soils at the CCAFS Site in ...
 
Fredrick Wandera CLIFF Workshop
Fredrick Wandera CLIFF WorkshopFredrick Wandera CLIFF Workshop
Fredrick Wandera CLIFF Workshop
 
Mine Reclamation
Mine ReclamationMine Reclamation
Mine Reclamation
 
Soil Organic Carbon Sequestration: Importance and State of Science
Soil Organic Carbon Sequestration: Importance and State of ScienceSoil Organic Carbon Sequestration: Importance and State of Science
Soil Organic Carbon Sequestration: Importance and State of Science
 
Soil carbon saturation
Soil carbon saturationSoil carbon saturation
Soil carbon saturation
 
Congo basin peatlands_threats_and_conservation_pri
Congo basin peatlands_threats_and_conservation_priCongo basin peatlands_threats_and_conservation_pri
Congo basin peatlands_threats_and_conservation_pri
 
Carbon pool.pdf
Carbon pool.pdfCarbon pool.pdf
Carbon pool.pdf
 
Auwae and Groffman, 2010
Auwae and Groffman, 2010Auwae and Groffman, 2010
Auwae and Groffman, 2010
 
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
 
Soil carbon storage in Mediterranean forest stands: implications in the resto...
Soil carbon storage in Mediterranean forest stands: implications in the resto...Soil carbon storage in Mediterranean forest stands: implications in the resto...
Soil carbon storage in Mediterranean forest stands: implications in the resto...
 
Project report ammended for PhD application
Project report ammended for PhD applicationProject report ammended for PhD application
Project report ammended for PhD application
 
(240513564) grupo6 2014 suelos (1)
(240513564) grupo6 2014 suelos (1)(240513564) grupo6 2014 suelos (1)
(240513564) grupo6 2014 suelos (1)
 
Seagrass under nutrient load and grazing
Seagrass under nutrient load and grazingSeagrass under nutrient load and grazing
Seagrass under nutrient load and grazing
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
Tropical forests in a changing world: Investigating global change impacts in ...
Tropical forests in a changing world: Investigating global change impacts in ...Tropical forests in a changing world: Investigating global change impacts in ...
Tropical forests in a changing world: Investigating global change impacts in ...
 
Litter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamicsLitter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamics
 
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates
2198456m Will Atmospheric CO2 Affect Deposition of Marine Biogenic Carbonates
 
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx Final
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx  FinalExecutive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx  Final
Executive Summary of Biochar Research 1.12.2016 (version 1.0) (2).docx Final
 

SSFSaltMarshWriteUp

  • 1. ARE SALTMARSHES SUSCEPTIBLE TO CARBON LOSS FOLLOWING N  LOADING?    Ulrich Kakou, Sanderman J.  Abstract    There has been a growing interest in salt marsh protection and restoration for its economical,                              recreational and, more recently, its value as a carbon sink. Salt marshes and many other coastal                                wetlands have the capacity to store large amounts of carbon in the soil but that carbon may be in                                      danger of being lost to eutrophication. This project focuses on evaluating soil quality and microbial                              activity following eutrophication using diffuse reflectance Fourier­transform infrared spectroscopy                  (DRIFTS) and bioavailability assay. Using DRIFTS revealed that the litter quality has improved as the                              fertilized plots (XF) show more decomposition than the control plots (C). The amount of decomposition                              can also be demonstrated using C:N ratio where a low ratio correlated with higher decomposition ratios                                (index I values). Comparing C­plots bulk samples to XF indicated that XF plots were more decomposed                                than the C­plots which is a testament to an overall change in OM composition following eutrophication.                                The bioavailability assay revealed that the XF soil was on average less decomposable than soil from                                the C­plots and that additional nitrogen loading feedbacks positively in soils deeper than 10 cm.                              However, top soils did not respond favorably to additional nitrogen loading. The data provides some                              important insights that suggest belowground carbon cycle has been substantially altered.         
  • 2. INTRODUCTION    Salt marshes are among the most productive and most important vegetated coastland ecosystems on                            the planet. Their most notable roles include quenching storm surges, keeping up with sea level rise                                (SLR), sequestering carbon (​McLeod et al. 2011​ ), and because of their incredible ability to retain                              nitrogen (N) and other nutrients (​Valiela I 2015​ ), efficiently filter excess nutrient which prevents                            eutrophication and pollution of other marine ecosystems. In the past few years, there has been an                                increasing interest in salt marsh protection and restoration because of its economical and recreational                            value (​McLeod et al. 2011, Chmura et al. 2012​ ). Despite their relatively low greenhouse gas emission                                (​Chmura et al. 2003), there is new evidence that suggests that salt marshes are susceptible to emitting                                  greenhouse gases, such as methane, nitrous oxide, and carbon dioxide, at a higher rate following                              eutrophication (​Moseman­Valtierra et al. 2011​ ). This potential for increased greenhouse gas                      emissions with high N loading may result in salt marshes switching from being carbon sinks to carbon                                  sources. Unfortunately, pertinent data on eutrophication effects on the carbon balance of salt marshes                            is lacking thus this project’s goal is to provide a more conclusive insight on this relationship based on a                                      40+ year study of artificial eutrophication via fertilization on the Great Sippewissett salt marsh (GSM) in                                Falmouth, Massachusetts.    Most natural ecosystems’ biomass are nutrient limited which prevents optimal growth for some species.                            This limitation is not inherently detrimental to the ecosystem. However, for the salt marsh ecosystems                              alleviating this limitation can potentially destabilize the natural balance between plant species, microbial                          activity, and carbon sequestration (​Deegan et al. 2007, Morris & Bradley 1999​ ). Salt marshes can                              succumb to nitrogen enrichment via agricultural, urban and suburban runoff because pollution                        anywhere in the upstream catchment can reach the marsh (​Moseman­Valtierra et al. 2011​ ). To further                              understand this balance, parts of the Great Sippewissett marsh has been nitrogen, phosphorus, and                            potassium enriched since 1971 (​Valiela I 2015). As expected, the control (C) plots have continued to                                grow at the same rate maintaining the same plant species. However, the plots fertilized at an extra­high                                  (XF) rate have seen a significant increase in aboveground biomass and a species shift. In contrast, the                                  belowground biomass in the XF­plots has experienced a dramatic decrease compared to C­plots                          (​Valiela I 2015). This has many implications for carbon storage and accumulation because one of the                                greatest sources of the carbon for the marsh is from the root material that plants develop to forage for                                      necessary nutrients. Following nutrient enrichment, plants may spend less resources building their                        roots deeper in the soil as nutrients are more readily available (​Levine et al. 1998​ ). Additionally, plants                                  may invest fewer resources into building defence structures resulting in litter that can be more easily                                decomposed. Based on these observations, we believe that salt marshes might be at risk of becoming                                carbon sources rather than carbon sinks under eutrophication    We hypothesize that under eutrophication:    (1) The quality of the litter will increase with chronic fertilization.   (2) The increased litter quality (H1) in conjunction with greater nutrient availability to the microbial                              community will feedback positively on decay rates.    
  • 3. Under the anoxic conditions of the marsh (​Young and Frazer 1987, Morris & Bradley 1999​ ), lignin is                                  much less decomposable (​Benner et al. 1984) than other organic matter such as proteins and                              carbohydrates. If fertilization results in the root litter having less lignin and more protein, then this would                                  result in more decomposable organic matter for microbes. Additionally, in the fertilized plots there are                              more nutrients available to the microbial community itself which will likely stimulate decay rates. These                              greater losses of organic matter coupled with the observed decreases in root biomass (i.e. Valiela I                                2015) can the act together to reduce or even reverse carbon accumulation in marshes receiving high N                                  loads.    We tested these hypotheses by evaluating soil quality and microbial activity following eutrophication                          using diffuse reflectance infrared spectroscopy (DRIFTS), elemental (C and N) analysis and a                          bioavailability assay. Using DRIFTS will allow testing of hypothesis I by detecting any shift in overall soil                                  organic matter composition that usually occurs in the mid­range (4000­400 cm­1) infrared region of soil                              samples. The bioavailability assay will help elucidate the effect that nitrogen has on the decay rates by                                  capturing, quantifying, and comparing CO2 emissions (H2).      METHODS    Site description    The GSM has many sites (habitats) that have been sectionalized by plots which received various                              fertilizer treatments. The plots are 10 m in radius and each plot is separated by a creek. Some plots                                      have received high fertilizer treatment (HF), some extra fertilizer (XF), and some no treatment (C). The                                plots have been chosen to represent the main habitats on the marsh and their height from mean sea                                    level (MSL), i.e., low marsh (LM, 50­70 cm above MSL), high marsh (HM, >70 cm above MSL), and                                    creek bank (CB, 30­50 cm above MSL), which may have different vegetative species. Each habitat,                              divided in plots, received the various fertilizer treatments of a mixed fertilizer (10% N, 6% P2O4, 4%                                  K2O), i.e., 2.52 for HF, 7.56 g N m​­2 week​­1 for XF. These treatments are 30 and 90 times the US                                          Department of Agriculture recommended annual dosage for oats (​Valiela et al. 1973, Fox et al. 2012,​ ).                                Each core sampled was 30 cm deep and split by 2 cm increments. For this project, we focused on the                                        low marsh habitat C, HF, and XF whose dominant vegetative species is ​Spartina alterniflora because                              this is the most common vegetative assemblage found in salt marshes of southern New England.    Preparing samples    Core segments were oven dried and half of each increment had live and dead root/rhizome material                                separated from the bulk sediments. Bulk density had already been determined by measuring the                            volume and weighing the half of each core segment that was not used for root biomass. Prior to                                    analysis, all samples were first broken down using a coffee grinder then ground to a fine powder using                                    the ​D8000 Mixer/Mill grinder. Upon completion, each sample was placed in small vials and labelled to                                be prepared for the FTIR run, which consisted of filling each sample cup with finely ground GSM                                  samples and carefully place them on the FTIR tray.  
  • 4.   DRIFTS (FTIR)    The bioavailability assay soil samples and soil samples cored from the various plots on GSM were ran                                  on a Bruker Vertex 70 FTIR spectrometer with a Pike Autodiff diffuse reflectance accessory. For each                                sample, 60 scans were collected at a 2 cm­1 resolution. Background subtracted spectra were then                              baseline corrected and peaks attributed to major functional groups were identified as laid out in the                                Margenot et al. (2015). Amines show up around 3400 cm­1, amides closer to 1575 cm­1, phenols at                                  1270 cm­1, polysaccharides at 1110 and 1080 cm­1, aromatics at 920 and 840 cm­1, and aliphatic                                groups (most abundant) at 2924, 2850, 1470, 1405, and 1390 cm­1 (​Margenot et al. 2015). To                                determine the relative amount of decomposition, the ratio of aromatic to aliphatic functional groups was                              calculated as Index I. Index II ratio is the ratio of C to O­functional groups which determines relative                                    recalcitrance of soil organic matter (​Veum et al. 2014). These shifts in organic matter composition                              detected by DRIFTS are attributed to the dipole moments of the aforementioned functional groups                            (​Margenot et al. 2015).    LECO    The LECO employs a ​high temperature oxidative combustion followed by infrared detection to                          determine the carbon and nitrogen content of organic matter. Each sample was weighed, placed in an                                aluminum foil, and combusted to determine its elemental composition. A series of certified standards                            were used to produce calibration curves that spanned the C and N concentrations in our unknown                                samples.     BIOAVAILABILITY ASSAY    To test whether microbial activity, or carbon decay rates may increase following eutrophication, an                            incubation experiment was designed. Core samples from 3 plots (C­plot, high fertilizer­HF, extra high                            fertilizer­XF) on the GSM of various depths and treatments, were grounded, weighed, and placed in 50                                mL vials. After a 10 day preincubation period to restore microbial activity to the previously dried                                samples, soil respiration rates were measured over a 3 week period. Accumulated CO2 was measured                              in the headspace of the incubation vials using an infrared gas analyser (LICOR Li­820) at 5 time                                  points over the 3 week period. About ~2L of creek water was sampled from GSM and used as                                    inoculum. For the incubation, the low marsh (LM) habitat alone had samples from 3 depths,                              categorized as top, mid, and deep. Each depth had 6 repetitions: 3 of which were treated with only the                                      inoculum and the remaining 3 were treated with the inoculum and urea applied at a rate of                                  approximately 200 kg N ha­1. To isolate the CO2 produced by microbes in the soil, 6 vials that                                    contained no soil received the same amount of inoculum and inoculum+nutrient treatment to serve as                              control. Along with 3 empty vials to account for the CO2 already present in the air, making a total of 63                                          vials.        RESULTS AND DISCUSSION   
  • 5. Have carbon accumulation rates changed?    We compiled some data on depth to amount of carbon which shows that the XF­plots have a lower %C                                      but greater bulk density, resulting in greater overall carbon content in XF plots (F​igure 1​). While the                                  lower C concentration is suggestive of a shift in belowground carbon cycling, to test whether                              eutrophication has curtailed or increased the amount of carbon that is coming into the marsh, it would                                  be advantageous to know the carbon accumulation rate on the various plots. But because we lack data                                  to accurately age the soil, the accumulation rates cannot be determined for the span of this project.      Figure 1: downcore profile of C to XF plots. %C is lower in XF but XF bulk density is higher thus higher  C density  Has litter quality increased?    Looking at the results from the FTIR and C:N ratio data we see that there is in fact an increase in litter                                            quality. Because of the protein and carbohydrate content, we expect to see the C:N ratio of live roots to                                      be greater than both the dead roots and bulk material. If the C:N ratio is 22 then for every unit of N                                            there are 22 units of C. Higher index I values are consistent with a more decomposed organic matter                                    and higher index II values are consistent with more recalcitrant organic matter (​Veum et al. 2014). The                                  data supports our initial expectation that C­plots would demonstrate less decomposition than                        XF­plots.The lower index I data in conjunction with the higher C:N data of C­plots live and dead roots                                    suggest that there is more protein in the litter. The XF plots, however, show a great shift in overall                                      composition and lower C:N ratio (see ​Figure 2&3​). These findings support our hypothesis that nitrogen                              loading will make more labile organic matter available to microbes to be decomposed. 
  • 7.   Figure 4: Bulk samples index I and C:N ratio. Higher index I values indicate more decomposition.  Higher C:N ratio indicate less decomposition    The data shows that the bulk material in XF are more decomposed than the C plots (see ​Figure 4​).                                      This trend can be explained when we consider that the bulk material in C­plots have more recalcitrant                                  OM, specifically lignin with the pronounced root system observed in C­plots, compared to XF (​Valiela                              2015). The lower bulk C:N ratio results typically indicate more decomposed material since this ratio will                                decrease towards the C:N ratio of microbial biomass (6­8) as decomposition of plant litter progresses.                              In addition, coupling this data with the increased CO2 emission related to microbial decay (see next                                section) offers a solid perspective for the difference in decomposition. With this evidence, we can                              conclude that bulk OM composition has shifted following eutrophication.    Have decomposition rates changed in response to chronic loading and short term nutrient addition?    CO2 accumulation is expected to be greater in N(urea) treated vials in both C­plots and XF­plots. The                                  data shows that the amount of CO2 that accumulated in the ambient treated incubation vials is greater                                  in the C­plots (Figure 5) likely due to the lower observed decomposition state in the C­plots relative to                                    the HF and XF plots (Figure 4). The natural log of the ratio of CO2 accumulated in vials treated with                                        urea versus vials that received no urea treatment helps us evaluate the response to nitrogen loading,                                where a positive number indicates that more CO2 was formed in response to urea and vice versa. The                                    data shows that deeper soils (10­30 cm) responded positively to the urea treatment but the top 10 cm                                    responded negatively (see ​Figure 6)​. The positive response to the urea treatment indicates that                            decomposition rates were nutrient limited and this limitation has been alleviated and consequently                          increased microbial activity. The negative response to urea treatment in both C­plots and XF­plots in                              the top soils is not expected because top soils show less decomposition than deeper soils (see ​Figure                                  5​). Further testing is required to validate or refute this response and identify the possible causes.   
  • 8.   Figure 5: CO2 accumulated per gC against treatment in ambient treated incubation vials    Figure 6: Response to the urea treatment in incubation vials. Top soils produced less CO2 than mid to  deep.    IMPACT    The data gathered for this project highlights some of the effects of eutrophication on soil quality and the                                    microbial activity. Our data suggests that carbon concentrations have decreased but because bulk                          density has increased, the carbon storage in the XF­plots is greater than the C­plots. This difference                                may be closely linked to the increase in aboveground biomass following nutrient loading. However, we                              don’t know whether the accumulation rates are similar in C­plots and XF­plots. Learning about the rates                                will safely answer the question about salt marshes ability to store carbon under eutrophication.     The FTIR and C:N data suggest that litter quality is better. This means that there is in fact more labile                                        carbon and less recalcitrant carbon, which predicts more microbial activity. When coupling litter quality                           
  • 9. results to the bioavailability assay results, we find that the data is consistent with hypothesis II, i.e.,                                  microbial activity will deplete labile organic matter faster and produce more CO2. However, this trend is                                only observed in mid to deep soils as the top soils respond negatively to the urea treatment. This                                    seems to suggest that microbial activity might actually be stifled in top soils. While not consistent with                                  soil quality data, further testing will prove advantageous in that we will learn of other factors that may                                    prevent or promote microbial decay.    Given the size of the data on this project, we cannot draw definite conclusions or make generalized                                  statements about the fate of salt marshes at large. But the data does provide some important insights                                  that suggest belowground carbon cycle has been substantially altered.     ACKNOWLEDGEMENTS    I’d like to thank Jonathan Sanderman for helping make this project an absolute success by providing a                                  means of transport to and from work, for teaching all the necessary lab techniques, and skills, and                                  assisting with presenting my mid summer report and final poster, and writing this paper. Elizabeth                              Elmstrom and Ivan Valiela for providing the dried, segments cores for this project as well as bulk                                  density data and giving an onsite detailed tour of the Great Sippewissett marsh. Michael Ernst for                                helping me print my poster. SSF for organizing this entire internship program. Kama Thieler for her                                support and being our main resource for everyday things, including providing a bike helmet, free rides,                                and safekeeping mail. The WHRC for letting me use its facility to accomplish this project. NSF for                                  providing the funding, and WHOI for providing the housing.         
  • 10. REFERENCES    Benner, R., Maccubbin, A. E., & Hodson, R. E. (1984). Anaerobic biodegradation of the lignin and polysaccharide                                  components of lignocellulose and synthetic lignin by sediment microflora. ​Applied and Environmental Microbiology,                          47(5), 998­1004.    Margenot, Andrew J., et al. "Soil organic matter functional group composition in relation to organic carbon, nitrogen,                                  and phosphorus fractions in organically managed tomato fields." ​Soil Science Society of America Journal 79.3                              (2015): 772­782.    Chmura, G. L., Burdick, D. M., & Moore, G. E. (2012). Recovering salt marsh ecosystem services through tidal                                    restoration. In ​Tidal Marsh Restoration (pp. 233­251). Island Press/Center for Resource Economics.    Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch (2003), Global carbon sequestration in tidal, saline wetland soils,                                            Global Biogeochem. Cycles, 17, 1111, doi:10.1029/2002GB001917, 4.    Deegan, L. A., Bowen, J. L., Drake, D., Fleeger, J. W., Friedrichs, C. T., Galván, K. A., Hobbie, J. E., Hopkinson, C., Johnson,                                              D. S., Johnson, J. M., LeMay, L. E., Miller, E., Peterson, B. J., Picard, C., Sheldon, S., Sutherland, M., Vallino, J. and Warren,                                              R. S. (2007), SUSCEPTIBILITY OF SALT MARSHES TO NUTRIENT ENRICHMENT AND PREDATOR REMOVAL.                          Ecological Applications, 17: S42–S63. doi:10.1890/06­0452.1    Levine, J. M., Brewer, J. S., & Bertness, M. D. (1998). Nutrients, competition and plant zonation in a New England                                        salt marsh. ​Journal of Ecology, ​86(2), 285­292.    Fox, L., Valiela, I., & Kinney, E. L. (2012). Vegetation cover and elevation in long­term experimental                                nutrient­enrichment plots in Great Sippewissett Salt Marsh, Cape Cod, Massachusetts: implications for                        eutrophication and sea level rise. ​Estuaries and Coasts, ​35(2), 445­458.    Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H. and Silliman, B.                                              R. (2011), A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in                                      sequestering CO2. Frontiers in Ecology and the E, 9: 552–560. doi: 10.1890/110004    Morris, J. T., & Bradley, P. M. (1999). Effects of nutrient loading on the carbon balance of coastal wetland sediments.                                        Limnology and Oceanography,​44(3), 699­702.    Moseman­Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C., Crusius, J., ... & Shelton, J. (2011).                                      Short­term nitrogen additions can shift a coastal wetland from a sink to a source of N 2 O. ​Atmospheric                                      Environment,​45(26), 4390­4397.    Valiela, I., J.M. Teal, and W.J. Sass. 1973. Production and dynamics of salt marsh vegetation and the effects of                                      experimental treatment with sewage sludge: Biomass, production and species composition. Journal of Applied                          Ecology 12: 973–981    Valiela, I. (2015). The Great Sippewissett salt marsh plots—some history, highlights, and contrails from a long­term                                study. ​Estuaries and Coasts, ​38(4), 1099­1120.    Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological indicators of soil quality                                            and soil organic matter characteristics in an agricultural management continuum. ​Biogeochemistry,​117(1), 81­99.   
  • 11. Young, L. Y., & Frazer, A. C. (1987). The fate of lignin and lignin‐derived compounds in anaerobic environments.                                    Geomicrobiology journal, ​5(3­4), 261­293.