SlideShare une entreprise Scribd logo
1  sur  10
aCentro de enseñanza técnica industrialAplicaciones a las Ecuaciones Diferenciales de primer ordenVariables separables, Homogéneas, Exactas por factor integrante, Lineales y de BernoulliLuis A. León González07/03/2011Contiene aplicaciones de cada una de las ecuaciones diferenciales de primer orden como son: Variables separables, Homogéneas, Exactas, Exactas por factor integrante, Lineales y de Bernoulli.<br />Ecuación Diferencial por variables separables<br />Crecimiento y descomposición<br />Existen en el mundo físico, en biología, medicina, demografía, economía,<br />etc. cantidades cuya rapidez de crecimiento o descomposición varía en forma proporcional a la cantidad presente, es decir,  dxdt=kx    con   xt0=x0 , o sea que<br />dxdt-kx=0<br />Que es una ED de variables separables o lineal en x de primer orden y cuya solución es x=Cekt<br />Como xt0=x0=Cekt0->C=x0e-kto<br />Por lo tanto la solución particular es x=x0e-ktoekt=x0ekt-to<br />En particular cuando t=0, entonces x=x0ekt<br />Ecuación Diferencial Lineal<br />Caída con resistencia del aire<br />Por la segunda ley de Newton (ver textos de Física), se llega a qué:<br />md2xdt2=mg-kv<br />Dividiendo entre m<br />d2xdt2=g-kmv<br />dvdt=g-kmv<br />Obtenemos la Ecuación Diferencial Lineal en v<br />dvdt+kmv=g<br />Hallemos el factor integrante<br />μ=ekmdt=ektm<br />Resolviéndola<br />vektm=ektmgdt+C<br />vektm=mkgektmdt+C<br />v=mkg+Ce-kmt<br />Supongamos que las condiciones iniciales son t=0, v=0 (es decir, parte del reposo), entonces<br />0=mgk+C     ⇒                   C=-mgk<br />v=mgk-mgk(e-kmt= mgk1-e-kmt;<br />Obsérvese que cuandot->∞,v ->  mgk<br />Resolviendo para x y teniendo como condiciones iniciales t=0 y x=0 se llega a que<br />x=mgkt-m2gk21-e-kmt<br />Ecuación Diferencial Exactas<br />Trayectorias octogonales<br />En ingeniería se presentan a menudo el problema geométrico de encontrar una familia de curvas (trayectorias octogonales) que interceptan octogonalmente en cada punto de una familia dada de curvas.<br />Por ejemplo, es posible que se den las líneas de fuerza y se pida obtener la ecuación de las líneas equipotenciales. Consideremos la familia de curvas descrita por la ecuación F(x,y) = K donde K es un parámetro real.<br />I)Usando diferenciación implícita, demostrar que, para cada curva de la familia, la pendiente está dada por<br />dydx=-∂F∂x∂F∂y<br />II)Usando que la pendiente de una curva octogonal (perpendicular) a una curva es la inversa de la pendiente de la curva dada, demuestra que las curvas octogonales a la familia F(x,y) = K satisfacen la ecuación diferencial<br />∂F∂yx,ydx-∂F∂xx,ydy=0<br />III)Utilizando la ecuación diferencial procedente, demuestra que las trayectorias octogonales de la familia de circunferencias x2+y2=K son rectas que pasan por el origen<br />Ecuación Diferencial Lineal<br />Modelado de Concentración/Desleimiento de Soluciones<br />Otro de los problemas típicos donde se aplican exitosamente las ecuaciones diferenciales son los problemas de manejo de concentración de sustancias en soluciones líquidas. El principal objetivo, consiste en plantear el problema en término del problema de valores iniciales que gobierna el fenómeno (ecuación diferencial + condiciones iniciales). Para ello, en este tipo de problemas, siempre utilizaremos la regla intuitiva de<br />Tasa de Cambio de la Concentración = Tasa de Ingreso - Tasa de Egreso<br />Así, tendremos que para un problema típico en el cual inicialmente se encuentran diluidos en un recipiente (un tanque) y0 gr de una sustancia en V0 litros de un líquido. A este tanque le cae otro líquido con una concentración distinta de la misma sustancia a ventrada lit/min, mientras que vsalida lit/min salen del tanque. Si suponemos que dentro del tanque sucede algún proceso de homogenización de la solución, la pregunta típica es que queremos saber la cantidad de sustancia que se encuentra en el tanque en un tiempo t: A la concentración de la sustancia en el líquido de entrada (gr/lit), en un tiempo t; la denotaremos como C (t) gr/lit. La figura (3) ilustra este proceso.<br />Para empezar notemos que, en esta situación el volumen no es constante. Por lo tanto, con el mismo espíritu de la ey de balanceoquot;
 que hemos propuesto, si las velocidades de ingreso y egreso son constantes, nos queda que la variación del volumen inicial viene dada por la diferencia de estas velocidades, esto es<br />V't=Ventrada-Vsalida<br />Vt=V0(Ventrada-Vsalida)t<br />Con lo cual también hemos integrado una ecuación diferencial para encontrar como variará el volumen con el tiempo.<br />Para la construcción de la ecuación diferencial, procedemos de manera similar y si describimos la cantidad de sustancia en el tanque como y (t) ; nos queda que la tasa de cambio de la cantidad de sustancia en el tanque será<br />y't=VentradaLitminCtgrLit-VsalidaLitminy(t)V0+(Ventrada-Vsalida)tgrLit<br />                                       Tasa de ingreso                                                Tasa de egreso<br />Por lo tanto la ecuación diferencial tomará la forma típica de una ecuación diferencial lineal de primer orden no homogénea<br />y't+ytVsalidaV0+Ventrada-Vsalidat=VentradaCt<br />Figura 3: Soluciones y tanques<br />que tendrá por solución<br />yt=y0-V0-VsalidaVentrada-VsalidaVentrada+Vsalidat-V0VsalidaVentrada-Vsalida—((-Ventrada+Vsalida)t-V0)-Ventrada+Vsalida0tVentradaCuuVentrada-Vsalida+V0VsalidaVentrada-Vsalidadu<br />Respuesta a las condiciones iniciales<br />Respuesta a la excitación externa<br />Nótese lo genérico de esta solución. Por un lado, la concentración de la sustancia, C (t); en la solución que entra al sistema es distinta a la concentración de la sustancia presente en el tanque, más aún, puede ser variable con el tiempo. Por otro lado esta solución presenta una singularidad (un infinito) cuando la velocidad de ingreso es igual a la velocidad de egreso. Para este caso en el cual el volumen del tanque permanece constante tendremos que resolver la ecuación diferencial<br />y't+ytVsalidaV0=VentradaCt<br />yt=(0tC(u)VentradaeVsalidauVdu+y0)e-VsalidatV<br />Tal y como hemos mencionado varias veces (y seguiremos mencionando) la solución general para una ecuación diferencial no homogénea se compone de dos soluciones, la solución de la ecuación diferencial homogénea más la solución de la no homogénea.<br />ygeneralx=yhomogéneax+yno homogéneax<br />Este ejemplo nos permite constatar el sentido cada una de estas soluciones, vale decir<br />yt=y0e-vsalidatv+e-vsalidatv0tC(u)VentradaeVsalidauVdu<br />Respuesta a las condiciones inicialesRespuesta a la Excitación externa<br />En esta es una visión que debemos conservar, en general para todas las ecuaciones lineales no homogéneas independientes del orden de la ecuación diferencial, así recordando, dada una ecuación diferencial y su solución tal que se cumple la condición inicial y (0) = y0 entonces siempre es posible<br />ddxyx+pxyx=gx<br />yx=y0e0x-pudu+e0x-pudu0xg(u)epududu<br />    <br />                                                       Solución homogénea           Solución no homogénea<br />donde ahora vemos claramente que la solución de la homogénea da cuenta a las condiciones iniciales del proceso y la solución de la no homogénea provee la respuesta a la excitación externa al sistema.<br />Este comportamiento de las soluciones es útil si nos planteamos que al tratar de impiarquot;
 una piscina, a la cual le hemos añadido el doble de la cantidad de sulfatos permitida, y queremos saber cuánto tiempo tenemos que mantener abierta una entrada de 120 lits/min de agua sin sulfatos y la salida de la piscina que responde a 60 lits/min. La piscina en cuestión tiene 20 m de longitud, 10 m de ancho y 2 m de profundidad. Siguiendo los pasos anteriormente planteados, tendremos que<br />y't+ytVsalidaV0+Ventrada-Vsalidat=0<br />y't+yt60Litmin4x105Lit+60Litmint=0<br />yt=2000(y03t+2000)<br />Donde el volumen es V = 400m3 = 400 (100cm)3 = 4 x 108cm3 = 4 x 108 (10-3lit) = 4 x 105lit. Con lo cual el tiempo para que la cantidad final decaiga a la mitad de la inicial surge de<br />y0=20002y03t+2000<br />t≈6,666.66 minutos ‼!<br />Ecuación Diferencial de Bernoulli<br />Dinámica de fluidos<br />La dinámica de los líquidos, está regida por el mismo principio de la conservación de la energía, el cual fue aplicado a ellos por el físico suizo Daniel Bernoulli (1700−1782), obteniendo como resultado una ecuación muy útil en este estudio, que se conoce con su nombre.<br />Para ello se puede considerar los puntos 1 y 2, de un fluido en movimiento, determinando la energía mecánica de una porción de éste, a lo largo del filete de fluido en movimiento que los une.<br />Si m es la porción de masa considerada,  su rapidez,  la altura sobre el nivel tomado como base,  la presión y  la densidad en cada uno de los puntos, se puede escribir utilizando el teorema trabajo−energía cinética:<br />Si ahora se divide a todos los términos de los dos miembros, entre la masa considerada, se obtendrá la ecuación de Bernoulli, que corresponde a la ley de la conservación de la energía por unidad de masa. Si el fluido es incompresible, como supondremos en lo sucesivo, donde <br /> , la ecuación de Bernoulli adopta la forma: <br /> <br />Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de fluidos. Por lo tanto, la ecuación (6.10) debe contener a la ecuación (6.5) para la ley de la variación de presión con la altura para un fluido en reposo. En efecto, considerando un fluido en reposo, y reemplazando <br /> <br />En la ecuación de Bernoulli, se obtiene:<br /> <br /> Que es precisamente la ecuación fundamental de la estática de fluidos. <br />Ejemplo:<br />La presión del agua que entra a un edificio es 3 atmósfera, siendo el diámetro de la tubería 2[cm] y su rapidez de <br />Si el baño de un departamento del 4º piso está a 6[m] de la entrada y la tubería tiene un diámetro de 4[cm], calcule:<br />La presión y rapidez del agua en el baño,<br />La presión en el baño si se corta el agua a la entrada.<br />Solución.<br />a. Usando la ecuación de Bernoulli a la entrada (región 1) y en el baño del 4º piso (región):<br />y la ecuación de continuidad,<br />Donde:<br /> <br />Encontramos:<br />b. Si el agua se corta en la entrada, donde<br /> <br />
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden

Contenu connexe

Tendances

Ejercicios unidad 5
Ejercicios unidad 5Ejercicios unidad 5
Ejercicios unidad 5thomasbustos
 
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaAplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaNancy Garcia Guzman
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Laura Cortes
 
Clase 06 aplicaciones de ecuaciones diferenciales
Clase 06  aplicaciones de ecuaciones diferencialesClase 06  aplicaciones de ecuaciones diferenciales
Clase 06 aplicaciones de ecuaciones diferencialesJimena Rodriguez
 
Metodo del anulador
Metodo del anuladorMetodo del anulador
Metodo del anuladorMakabronero
 
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONES
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONESTEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONES
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONESedvinogo
 
Aplicaciones de las ecuaciones diferenciales lineales de orden
Aplicaciones de las ecuaciones diferenciales lineales de ordenAplicaciones de las ecuaciones diferenciales lineales de orden
Aplicaciones de las ecuaciones diferenciales lineales de ordenluis beltran gomez
 
Soluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliSoluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliGabriel Requelme
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesRubens Diaz Pulli
 
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...JAVIER SOLIS NOYOLA
 
Balance de energía con pérdidas de fricción
Balance de energía con pérdidas de fricciónBalance de energía con pérdidas de fricción
Balance de energía con pérdidas de fricciónAlex Genez
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2ERICK CONDE
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuacionesMiguel Doria
 
Ecuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorEcuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorSabena29
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactasfernandamendozadt
 
Ecuaciones homogeneas
Ecuaciones homogeneasEcuaciones homogeneas
Ecuaciones homogeneasKire_ceti
 

Tendances (20)

Trayectorias ortogonales monografia
Trayectorias ortogonales monografiaTrayectorias ortogonales monografia
Trayectorias ortogonales monografia
 
Ejercicios unidad 5
Ejercicios unidad 5Ejercicios unidad 5
Ejercicios unidad 5
 
Ecuaciones Diferenciales
Ecuaciones Diferenciales Ecuaciones Diferenciales
Ecuaciones Diferenciales
 
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaAplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
 
Clase 06 aplicaciones de ecuaciones diferenciales
Clase 06  aplicaciones de ecuaciones diferencialesClase 06  aplicaciones de ecuaciones diferenciales
Clase 06 aplicaciones de ecuaciones diferenciales
 
Metodo del anulador
Metodo del anuladorMetodo del anulador
Metodo del anulador
 
Problema 2 de hidrostática
Problema 2 de hidrostáticaProblema 2 de hidrostática
Problema 2 de hidrostática
 
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONES
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONESTEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONES
TEOREMAS DE EXISTENCIA Y UNICIDAD DE LAS ECUACIONES
 
Aplicaciones de las ecuaciones diferenciales lineales de orden
Aplicaciones de las ecuaciones diferenciales lineales de ordenAplicaciones de las ecuaciones diferenciales lineales de orden
Aplicaciones de las ecuaciones diferenciales lineales de orden
 
Soluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliSoluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de Bernoulli
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
 
Balance de energía con pérdidas de fricción
Balance de energía con pérdidas de fricciónBalance de energía con pérdidas de fricción
Balance de energía con pérdidas de fricción
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
 
Ecuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorEcuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superior
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Ecuaciones homogeneas
Ecuaciones homogeneasEcuaciones homogeneas
Ecuaciones homogeneas
 

Similaire à Aplicaciones a las ED primer orden

UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENUNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENedvinogo
 
Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007Demetrio Ccesa Rayme
 
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...Yeina Pedroza
 
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Martín Vinces Alava
 
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007Demetrio Ccesa Rayme
 
Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticosJuan Plaza
 
Modelado de sistemas dinámicos
Modelado de sistemas dinámicosModelado de sistemas dinámicos
Modelado de sistemas dinámicosJolman Mera
 
modelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfmodelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfPeterValladaresCaote
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Joe Arroyo Suárez
 
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)Raul Noguera Morillo
 
Ecuacion diferencial lineal
Ecuacion diferencial linealEcuacion diferencial lineal
Ecuacion diferencial linealLuis Diaz
 
Modelos ecuaciones diferenciales
Modelos ecuaciones diferencialesModelos ecuaciones diferenciales
Modelos ecuaciones diferencialesAlejandro Ocaña
 
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosEcuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosJoe Arroyo Suárez
 

Similaire à Aplicaciones a las ED primer orden (20)

UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENUNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
 
Ecuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinariasEcuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinarias
 
Ecuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinariasEcuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinarias
 
Aplicaciones de las edo 2015
Aplicaciones de las edo 2015Aplicaciones de las edo 2015
Aplicaciones de las edo 2015
 
Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007
 
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
 
Equipo.no.1
Equipo.no.1Equipo.no.1
Equipo.no.1
 
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
 
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
 
Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticos
 
Modelado de sistemas dinámicos
Modelado de sistemas dinámicosModelado de sistemas dinámicos
Modelado de sistemas dinámicos
 
modelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfmodelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdf
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II
 
Apuntes cap5
Apuntes cap5Apuntes cap5
Apuntes cap5
 
Guía1: Ecuaciones Diferenciales
Guía1: Ecuaciones DiferencialesGuía1: Ecuaciones Diferenciales
Guía1: Ecuaciones Diferenciales
 
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
 
Ecuacion diferencial lineal
Ecuacion diferencial linealEcuacion diferencial lineal
Ecuacion diferencial lineal
 
Modelos ecuaciones diferenciales
Modelos ecuaciones diferencialesModelos ecuaciones diferenciales
Modelos ecuaciones diferenciales
 
Practica_edooo.pdf
Practica_edooo.pdfPractica_edooo.pdf
Practica_edooo.pdf
 
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosEcuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
 

Dernier

Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)JonathanCovena1
 
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptxDESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptxMARCOSMARTINALACAYOP1
 
Lecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanzaLecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanzaAlejandrino Halire Ccahuana
 
Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024sergeycrastz06
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
Comunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptxComunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptxJunkotantik
 
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docxcuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docxANDREAGRACEDURANSALA
 
el poder del estado en el siglo XXI.pptx
el poder del estado en el siglo XXI.pptxel poder del estado en el siglo XXI.pptx
el poder del estado en el siglo XXI.pptxsubfabian
 
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptxLA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptxJhordanBenitesSanche2
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfNELLYKATTY
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docxpily R.T.
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Análisis de los factores internos en una Organización
Análisis de los factores internos en una OrganizaciónAnálisis de los factores internos en una Organización
Análisis de los factores internos en una OrganizaciónJonathanCovena1
 

Dernier (20)

Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptxDESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
 
Lecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanzaLecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanza
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
Comunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptxComunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptx
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docxcuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
 
el poder del estado en el siglo XXI.pptx
el poder del estado en el siglo XXI.pptxel poder del estado en el siglo XXI.pptx
el poder del estado en el siglo XXI.pptx
 
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptxLA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Sesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdfSesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdf
 
Análisis de los factores internos en una Organización
Análisis de los factores internos en una OrganizaciónAnálisis de los factores internos en una Organización
Análisis de los factores internos en una Organización
 

Aplicaciones a las ED primer orden

  • 1. aCentro de enseñanza técnica industrialAplicaciones a las Ecuaciones Diferenciales de primer ordenVariables separables, Homogéneas, Exactas por factor integrante, Lineales y de BernoulliLuis A. León González07/03/2011Contiene aplicaciones de cada una de las ecuaciones diferenciales de primer orden como son: Variables separables, Homogéneas, Exactas, Exactas por factor integrante, Lineales y de Bernoulli.<br />Ecuación Diferencial por variables separables<br />Crecimiento y descomposición<br />Existen en el mundo físico, en biología, medicina, demografía, economía,<br />etc. cantidades cuya rapidez de crecimiento o descomposición varía en forma proporcional a la cantidad presente, es decir, dxdt=kx con xt0=x0 , o sea que<br />dxdt-kx=0<br />Que es una ED de variables separables o lineal en x de primer orden y cuya solución es x=Cekt<br />Como xt0=x0=Cekt0->C=x0e-kto<br />Por lo tanto la solución particular es x=x0e-ktoekt=x0ekt-to<br />En particular cuando t=0, entonces x=x0ekt<br />Ecuación Diferencial Lineal<br />Caída con resistencia del aire<br />Por la segunda ley de Newton (ver textos de Física), se llega a qué:<br />md2xdt2=mg-kv<br />Dividiendo entre m<br />d2xdt2=g-kmv<br />dvdt=g-kmv<br />Obtenemos la Ecuación Diferencial Lineal en v<br />dvdt+kmv=g<br />Hallemos el factor integrante<br />μ=ekmdt=ektm<br />Resolviéndola<br />vektm=ektmgdt+C<br />vektm=mkgektmdt+C<br />v=mkg+Ce-kmt<br />Supongamos que las condiciones iniciales son t=0, v=0 (es decir, parte del reposo), entonces<br />0=mgk+C ⇒ C=-mgk<br />v=mgk-mgk(e-kmt= mgk1-e-kmt;<br />Obsérvese que cuandot->∞,v -> mgk<br />Resolviendo para x y teniendo como condiciones iniciales t=0 y x=0 se llega a que<br />x=mgkt-m2gk21-e-kmt<br />Ecuación Diferencial Exactas<br />Trayectorias octogonales<br />En ingeniería se presentan a menudo el problema geométrico de encontrar una familia de curvas (trayectorias octogonales) que interceptan octogonalmente en cada punto de una familia dada de curvas.<br />Por ejemplo, es posible que se den las líneas de fuerza y se pida obtener la ecuación de las líneas equipotenciales. Consideremos la familia de curvas descrita por la ecuación F(x,y) = K donde K es un parámetro real.<br />I)Usando diferenciación implícita, demostrar que, para cada curva de la familia, la pendiente está dada por<br />dydx=-∂F∂x∂F∂y<br />II)Usando que la pendiente de una curva octogonal (perpendicular) a una curva es la inversa de la pendiente de la curva dada, demuestra que las curvas octogonales a la familia F(x,y) = K satisfacen la ecuación diferencial<br />∂F∂yx,ydx-∂F∂xx,ydy=0<br />III)Utilizando la ecuación diferencial procedente, demuestra que las trayectorias octogonales de la familia de circunferencias x2+y2=K son rectas que pasan por el origen<br />Ecuación Diferencial Lineal<br />Modelado de Concentración/Desleimiento de Soluciones<br />Otro de los problemas típicos donde se aplican exitosamente las ecuaciones diferenciales son los problemas de manejo de concentración de sustancias en soluciones líquidas. El principal objetivo, consiste en plantear el problema en término del problema de valores iniciales que gobierna el fenómeno (ecuación diferencial + condiciones iniciales). Para ello, en este tipo de problemas, siempre utilizaremos la regla intuitiva de<br />Tasa de Cambio de la Concentración = Tasa de Ingreso - Tasa de Egreso<br />Así, tendremos que para un problema típico en el cual inicialmente se encuentran diluidos en un recipiente (un tanque) y0 gr de una sustancia en V0 litros de un líquido. A este tanque le cae otro líquido con una concentración distinta de la misma sustancia a ventrada lit/min, mientras que vsalida lit/min salen del tanque. Si suponemos que dentro del tanque sucede algún proceso de homogenización de la solución, la pregunta típica es que queremos saber la cantidad de sustancia que se encuentra en el tanque en un tiempo t: A la concentración de la sustancia en el líquido de entrada (gr/lit), en un tiempo t; la denotaremos como C (t) gr/lit. La figura (3) ilustra este proceso.<br />Para empezar notemos que, en esta situación el volumen no es constante. Por lo tanto, con el mismo espíritu de la ey de balanceoquot; que hemos propuesto, si las velocidades de ingreso y egreso son constantes, nos queda que la variación del volumen inicial viene dada por la diferencia de estas velocidades, esto es<br />V't=Ventrada-Vsalida<br />Vt=V0(Ventrada-Vsalida)t<br />Con lo cual también hemos integrado una ecuación diferencial para encontrar como variará el volumen con el tiempo.<br />Para la construcción de la ecuación diferencial, procedemos de manera similar y si describimos la cantidad de sustancia en el tanque como y (t) ; nos queda que la tasa de cambio de la cantidad de sustancia en el tanque será<br />y't=VentradaLitminCtgrLit-VsalidaLitminy(t)V0+(Ventrada-Vsalida)tgrLit<br /> Tasa de ingreso Tasa de egreso<br />Por lo tanto la ecuación diferencial tomará la forma típica de una ecuación diferencial lineal de primer orden no homogénea<br />y't+ytVsalidaV0+Ventrada-Vsalidat=VentradaCt<br />Figura 3: Soluciones y tanques<br />que tendrá por solución<br />yt=y0-V0-VsalidaVentrada-VsalidaVentrada+Vsalidat-V0VsalidaVentrada-Vsalida—((-Ventrada+Vsalida)t-V0)-Ventrada+Vsalida0tVentradaCuuVentrada-Vsalida+V0VsalidaVentrada-Vsalidadu<br />Respuesta a las condiciones iniciales<br />Respuesta a la excitación externa<br />Nótese lo genérico de esta solución. Por un lado, la concentración de la sustancia, C (t); en la solución que entra al sistema es distinta a la concentración de la sustancia presente en el tanque, más aún, puede ser variable con el tiempo. Por otro lado esta solución presenta una singularidad (un infinito) cuando la velocidad de ingreso es igual a la velocidad de egreso. Para este caso en el cual el volumen del tanque permanece constante tendremos que resolver la ecuación diferencial<br />y't+ytVsalidaV0=VentradaCt<br />yt=(0tC(u)VentradaeVsalidauVdu+y0)e-VsalidatV<br />Tal y como hemos mencionado varias veces (y seguiremos mencionando) la solución general para una ecuación diferencial no homogénea se compone de dos soluciones, la solución de la ecuación diferencial homogénea más la solución de la no homogénea.<br />ygeneralx=yhomogéneax+yno homogéneax<br />Este ejemplo nos permite constatar el sentido cada una de estas soluciones, vale decir<br />yt=y0e-vsalidatv+e-vsalidatv0tC(u)VentradaeVsalidauVdu<br />Respuesta a las condiciones inicialesRespuesta a la Excitación externa<br />En esta es una visión que debemos conservar, en general para todas las ecuaciones lineales no homogéneas independientes del orden de la ecuación diferencial, así recordando, dada una ecuación diferencial y su solución tal que se cumple la condición inicial y (0) = y0 entonces siempre es posible<br />ddxyx+pxyx=gx<br />yx=y0e0x-pudu+e0x-pudu0xg(u)epududu<br /> <br /> Solución homogénea Solución no homogénea<br />donde ahora vemos claramente que la solución de la homogénea da cuenta a las condiciones iniciales del proceso y la solución de la no homogénea provee la respuesta a la excitación externa al sistema.<br />Este comportamiento de las soluciones es útil si nos planteamos que al tratar de impiarquot; una piscina, a la cual le hemos añadido el doble de la cantidad de sulfatos permitida, y queremos saber cuánto tiempo tenemos que mantener abierta una entrada de 120 lits/min de agua sin sulfatos y la salida de la piscina que responde a 60 lits/min. La piscina en cuestión tiene 20 m de longitud, 10 m de ancho y 2 m de profundidad. Siguiendo los pasos anteriormente planteados, tendremos que<br />y't+ytVsalidaV0+Ventrada-Vsalidat=0<br />y't+yt60Litmin4x105Lit+60Litmint=0<br />yt=2000(y03t+2000)<br />Donde el volumen es V = 400m3 = 400 (100cm)3 = 4 x 108cm3 = 4 x 108 (10-3lit) = 4 x 105lit. Con lo cual el tiempo para que la cantidad final decaiga a la mitad de la inicial surge de<br />y0=20002y03t+2000<br />t≈6,666.66 minutos ‼!<br />Ecuación Diferencial de Bernoulli<br />Dinámica de fluidos<br />La dinámica de los líquidos, está regida por el mismo principio de la conservación de la energía, el cual fue aplicado a ellos por el físico suizo Daniel Bernoulli (1700−1782), obteniendo como resultado una ecuación muy útil en este estudio, que se conoce con su nombre.<br />Para ello se puede considerar los puntos 1 y 2, de un fluido en movimiento, determinando la energía mecánica de una porción de éste, a lo largo del filete de fluido en movimiento que los une.<br />Si m es la porción de masa considerada, su rapidez, la altura sobre el nivel tomado como base, la presión y la densidad en cada uno de los puntos, se puede escribir utilizando el teorema trabajo−energía cinética:<br />Si ahora se divide a todos los términos de los dos miembros, entre la masa considerada, se obtendrá la ecuación de Bernoulli, que corresponde a la ley de la conservación de la energía por unidad de masa. Si el fluido es incompresible, como supondremos en lo sucesivo, donde <br /> , la ecuación de Bernoulli adopta la forma: <br /> <br />Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de fluidos. Por lo tanto, la ecuación (6.10) debe contener a la ecuación (6.5) para la ley de la variación de presión con la altura para un fluido en reposo. En efecto, considerando un fluido en reposo, y reemplazando <br /> <br />En la ecuación de Bernoulli, se obtiene:<br /> <br /> Que es precisamente la ecuación fundamental de la estática de fluidos. <br />Ejemplo:<br />La presión del agua que entra a un edificio es 3 atmósfera, siendo el diámetro de la tubería 2[cm] y su rapidez de <br />Si el baño de un departamento del 4º piso está a 6[m] de la entrada y la tubería tiene un diámetro de 4[cm], calcule:<br />La presión y rapidez del agua en el baño,<br />La presión en el baño si se corta el agua a la entrada.<br />Solución.<br />a. Usando la ecuación de Bernoulli a la entrada (región 1) y en el baño del 4º piso (región):<br />y la ecuación de continuidad,<br />Donde:<br /> <br />Encontramos:<br />b. Si el agua se corta en la entrada, donde<br /> <br />