SlideShare une entreprise Scribd logo
1  sur  87
Télécharger pour lire hors ligne
Redox titrations
  Pharma.analytical chemistry II


Dr.Jehad M Diab, faculty of pharmacy
       Damascus University
REDOX titrations
A volumetric method of analysis which
relies on oxidation or reduction of the
analyte using redox indicators or
potentiometry.
This unit covers:
 changes in solution potential during a
titration
basic calculations
methods of sample preparation and
common titrants
Example applications             Dr.Jehad diab
Dr.Jehad diab
Determination of equivalence point potential:
Fe2+ Ce4+ = Fe3+ Ce3+
E0Fe3+= 0.771 v , E0Ce4+=1.70 v
Eeq = E0Fe3+ - 0.0592/1 log [Fe2+] / [Fe3+] (1)
Eeq = E0Ce4+ - 0.0592/1 log [Ce3+] / [Ce4+] (2)
1+2:
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Fe2+][Ce3+] / [Fe3+] [Ce4+]
At the equivalence point:
[Fe3+] =[Ce3+ ]
[Fe2+]=[Ce4+ ]
Rearrangement:
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Ce4+][Ce3+] / [Ce3+] [Ce4+]
Eeq = (E0Ce4+ + E0Fe3+) /2= 1.70+0.771/2= 1.24 volt

                                                  Dr.Jehad diab
draft
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Fe2/ [Fe3+]-0.0592/1
log [Ce3+] / [Ce4+]
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1(log [Fe2]/ [Fe3+]+ log
[Ce3+] / [Ce4+]
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1( (log [Fe2]-log [Fe3+]+
log[Ce3+]-log[Ce4+]
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1(log [Fe2]+log[Ce3+]-log
[Fe3+]-log[Ce4+]
2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log ([Fe2+][Ce3+] / [Fe3+] [Ce4+])




                                                Dr.Jehad diab
E eq =(n1e0ox+n2e0red) / n1+n2




                                 Dr.Jehad diab
Dr.Jehad diab

  A more complex example
 Determine of Eeq for the following reaction:

 Mno4- +5 Fe2+ 8H+ = Mn2+ + 5Fe3++ 4H2O

     e eq= 0.77+0.059/1 × log [Fe3+] / [Fe2+]             (1)
     e eq=1.51+0.059/5     ×   log [Mno4-][H+]8/[Mn2+] (2) × 5
  1+2:
6eeq= 0.77+5 × 1.51+0.059 × log [Fe3+][MnO4- ][H+]8/[Fe2+][Mn2+]

         [Fe2+]=5[MnO4-] , [Fe3+]=5[Mn2+] ,
          [Fe3+]/[Fe2+]= [Mn2+] / [MnO4-]
6eeq = 0.77+5×1.51+.059 log [Mn2+][MnO4-][H+]8/[MnO4-][Mn2+]
6eeq = 0.77+5×1.51+.059 log [Mn2+][MnO4-][H+]8/[MnO4-][Mn2+]

6eeq=0.77+5×1.51+0.059 log[H+]8
eeq=(0.77+5×1.51)/6 + 0.059/6 log[H+]8
eeq=(0.77+5×1.51)/6 - 0.079 pH
If [H+]=1M (pH= 0):
eeq=(0.77+5×1.51)/6 + 0.059/6 log[1]8 =1.39 v
So, the potential at equivalence point is dependent
on [H+]. If [H+]=1M we can calculate from the
following equation:

     eeq=(n1e0ox + n2e0Red ) / n1+n2             Dr.J.Diab
Dr.Jehad diab


E,volt




         E,volt




                  Volume of reagent,ml
Complete titration curve




                            Dr.Jehad diab
   (or volume of titrant)
 100 ml 0.1 M Fe2+ with 0.1 M Ce4+ solution
   Ce4+   +   Fe2+    Ce3++   Fe3+             Dr.Jehad diab
Dr.Jehad diab
Ce4+ + Fe2+   Ce3++ Fe3+




                           Dr.Jehad diab
Ce4+ (0.1 M) + Fe2+ (100 ml 0.1 M)          Ce3++ Fe3+

 Addition of 20 ml of Ce4+:

                          100 0.1  20  0.1
                0.059         100  20
   EFe  0.771       log                      0.735v
                  1            20  0.1
                              100  20
  Addition of 50 ml of Ce4+:

                         100  0.1  50  0.1
               0.059          100  50
  EFe  0.771       log                       0.771v
                 1            50  0.1
                              100  50                   Dr.Jehad diab
Dr.Jehad diab
Dr.Jehad diab
Fe2+ Ce4+ = Fe3+ Ce3+ , e0Fe3+/Fe2+= 0.771 v , e0Ce4+/Ce3+=1.70 v


  E eq =n1e0ox+n2e0red / n1+n2




                                              Dr.Jehad diab
Dr.Jehad diab
Ce4+ + Fe2+   Ce3++ Fe3+




                           Dr.Jehad diab
Dr.Jehad diab
Ce4+ + Fe2+   Ce3++ Fe3+




                           200 x0.05= 210 x[Ce3+]
                           10ml x0.1M=210ml x [Ce4+]

                                              Dr.Jehad diab
Ce4+ + Fe2+   Ce3++ Fe3+




                 E = e0 – 0.059 log [Ce3+]/ [Ce4+]
                              (200 x0.05/ 210)
  1.70 -
                              (10ml x0.1M/210ml)
    1.64 v
         volt
Or E =1.70-0.059log 100%/10%=1.64 v
                               1.66 V

                                                 Dr.Jehad diab
Homework

You are titrating 50 ml 0.1M of Co2+ solution
wuth0.1 M Ce4+ titrant.E0Co=0.85 v ,E0Ce=1.70.
What is the potential for the titration
system after addition of:
a. 0 ml of Ce4+
b. 25 ml of Ce4+
c. 50 ml of Ce4+
d. 75 ml of Ce4+
                                       Dr.Jehad diab
Ce4+ + Co2+      Ce3++ Co3+
Equivalent point volume:
CCe4+ VCe4+ = CCo2+ V Co2+
0.1 x VCe4+ = 50 x0.1 ==> VCe4+ = 50 ml
a) Addition of 0 ml of Ce4+ ,absence of Co3+ ,E can
   not be calculated
b) Addition of 25 ml of Ce4+ before the equivalent
   point; excess of Co2+
E= 0.85+0.059/1xlog([25x0.1)/75/(50 x0.1-25x0.1)/75=0.85v
c)Addition of 50 ml of Ce4+;at the equivalent point:
E= (e0Co+ e0Ce)/2= (0.85 +1.70)/2= 1.275 v

                                                 Dr.Jehad diab
c)Addition of 75 ml of Ce4+;after the equivalent point
excess of Ce4+
E= e0Ce+0.059/1xlog[Ce4+]/[Ce3+]
 E =1.70+0.059/1xlog(75x0.1-50x0.1)/125 /(50x0.1)/125= 1.682 v




                                                       Dr.Jehad diab
Dr.Jehad diab




          (True)




Self indicators: KMnO4 (purple) → Mn2+ (colorless)
                 I2 (yellow)    → 2I- (colorless)
                 Ce4+(yellow) → Ce3+(colorless)
Redox indicators
Specific indicators:
Starch:
Starch +I2 <--> blue complex
It is an easy to detect and rapid indicator. This
explains why iodine is a common titrant even
though it is a weak oxidant.
KSCN:
Fe3++ SCN- ( Indicator) → FeSCN2+(red complex)
Determination of Fe3+ with Ti3+ in presence of
SCN-
Fe3+ with Ti3+ --> Fe2+ with Ti4+
when [Fe3+] decreases then color of red complex
disappears which indicates the end point.
Dr.Jehad diab
____
                                   1




E=E0ind - 0.059/n (color of reducing form)
E=E0ind + 0.059/n (color of oxidizing form)   Dr.Jehad diab
Dr.Jehad diab
general


          (Ferroin)




               1.150v



                        Dr.Jehad diab
Dr.Jehad diab
Dr.Jehad diab




                                           Ox



Potential range for color change is:
e0-0.059/n - e0+0.59/n:
From 0.80-0.59/1 to 0.80 +0.59/1=(0.741→ 0.859 v)
√
√
√


√




    Dr.Jehad diab
Potential Indicator
End point is determined by measuring the potential of
indicator electrode against reference electrode and plotting
the potential against the volume of titrant.




                                             (Pt for E( mv) and
                                             glass electrode for
                                             pH)




                                                      Dr.Jehad diab
Potentiometric titration ‫اﻟﻣﻌﺎﯾرة اﻟﻛﻣوﻧﯾﺔ‬
It is possible to monitor
the course of a titration
using potentiometric
measurements. The Pt
electrode, for example,
is appropriate for
monitoring an redox
titration and determining
an end point in lieu
of an indicator. The
procedure has been
called a potentiometric
 titration. The end point
occurs when the easured
potential undergoes a
sharp change—when all
the oxd. or red. in the
titration vessel is reacted                    Dr.Jehad diab
The potential scale is calibrated in pH units (59.16 mV/pH at 25o C).
        A temperature adjustment feature changes the slope by 2.303RT/F.




                                                       Fig. 13.10. Typical pH meter.
©Gary Christian, Analytical Chemistry,   6th Ed. (Wiley)
Dr.Jehad diab
Dr.Jehad diab
‫اﻟﻌوﻣل اﻟﻣؤﻛﺳدة واﻟﻣرﺟﻌﺔ اﻟﻣﺳﺎﻋدة‬




                                    ‫‪Dr.Jehad diab‬‬
Dr.Jehad diab
‫اﻟﻌواﻣل اﻟﻣرﺟﻌﺔ اﻟﻣﺳﺎﻋدة‬




                           ‫‪Dr.Jehad diab‬‬
Dr.Jehad diab   Reducing column
Dr.Jehad diab




Auxiliary reducing agent




  Fe2++ Fe3+ (reductor ) → Fe2+ , Cr3+ +e →Cr2+




    Fe2++ Fe3+ (reductor ) → Fe2+ , Cr3+ not reduced
                              Than that of Walden
                                n
Dr.Jehad diab
Auxiliary oxidizing agents

 Sodium bismuthate-NaBiO3    ‫ﺑﯾزﻣوﺗﺎت اﻟﺻودﯾوم‬




                                             Dr.Jehad diab
ammonium persulfate, ‫ﻓوق ﻛﺑرﯾﺗﺎت اﻷﻣوﻧﯾوم‬
Ammonium peroxydisulphate- (NH4)2S2O8




                                          Dr.Jehad diab
H2O2,Na2O2




Oxidizes Co2+, Fe2+, Mn2+


                            Dr.Jehad diab
Some common oxidants
                                                                            Dr.Jehad diab




                                                        indicator‫٭‬
Oxidizing       Reduction                                            stability
 agent          product     eo volt   standardization
                                                                       ‫٭٭‬

                                      AS2O3 ,
  KMnO4          Mn2+        1.51     Na2C2O4           Mno4-          (b)
 Potassium
 permanganate
                                        , Fe

  KBrO3
Potassium         Br-        1.44      KBrO3               (1)         (a)
bromate


                              1.44
                                    Na2C2O4
                            (H2SO4)
     Ce4+        Ce3+               , AS2O3 ,              (2)         (a)
                              1.70
 Cerium(iv)                            Fe
                            (HClO4)
Some common oxidants


K2Cr2O7             Cr3+    1.33    K2Cr2O7    (3)         (a)
Potassium
dichromate




 H5IO6              IO3-    1.60    AS2O3     starch       (b)
  Periodic acid




  KIO3              ICl2-   1.24     KIO3      (4)         (a)
Potassium iodate



                                    BaS2O3.
     I2              I-     0.536    H2O ,    starch       (c)
Iodine
                                     AS2O3
                                                       Dr.Jehad diab
*(1) α- Naphthoflavone; (2) Ferroin;(3)
 diphenyl amine sulfonicacid;(4)
 disapperance of I2 from chlorofom.

 **(a) stable ;(b) moderately stable ;(c)
 unstable




Dr.Jehad diab
Dr.Jehad diab




  E0 =1.33 v

Cr2O7-2 +14H+ +6e- 2Cr3++ 7H2O
Dr.Jehad diab



Primary applications of Cr2O7-2
 - Determination Fe2+
 - Indirect determination of oxidizing agents;
A known excess of fe2+ is added to the
sample which is oxidant such as MnO4- and
the excess of fe2+ is back titrated with
Cr2O7-2
- Ethanol (C2H5OH)
Reactions:
6Fe2+ + Cr2O72- + 14H+ → 6Fe3+ + 2Cr3+ + 7H2O

3C2H5OH + 2Cr2O72- + 16H+ → 4Cr3+ + 3CH3COOH + 11H2O
of titrant




Moles of Fe2+ = 6 moles of Cr2O7-2
W Fe/ Mw Fe = 6 CCr2O7-2 x VCr2O7-2 (L)
0.2464/56 = 6 CCr2O7-2 x 39.31/1000
CCr2O7-2 = 0.01871 M

                                              Dr.Jehad diab
Dr.Jehad diab
Dr.Jehad diab
MnO4- at pH < 1(H2SO4 is used ,HCl can not be used
because MnO4- oxidize 2Cl- to Cl2)
MnO4- + 8H+ + 5 e- → Mn2+ + 4 H2O
                                (E0 = 1.51 V strong acidic med)
MnO4- + 2H2O +3e- →MnO2 +4OH- (E0=0.59 v weak basic med)
MnO4- + 4H+ +3e- →MnO2 +2H2O (E0=1.69 v weak acidic to neutral )
MnO4- + e- →MnO4-2           (Eo=0.56 v strong basic med)


 Standardization of MnO4-




                                                       Dr.Jehad diab
Application of KMnO4 in Redox               -
              Titrations
          MnO4- + 8 H+ + 5 e-  Mn2+ + 4 H2O




Mo3+                Mo3+ +4H2O →MoO42- + 8H+ +3e
H2O2                H2O2 → O2 +2H+ + 2e-
Ti3+                Ti3+ +H2O→ TiO2 +2H+ + e




H3AsO3              H3AsO3 + H2O →H3AsO4+ 2H++ 2e
                                                    Dr.Jehad diab
Common titrants
Oxidizing titrants
    Cerium (IV) (Ce4+),E0=1.44 v and 1.70 v in 1M
    H2SO4 and 1M HClO4 respectively
      - Commonly used in place of KMnO4
      - Works best in acidic solution
      - Can be used in most applications in
         previous table
      - Used to analyze some organic compounds
      - Color change not distinct to be its own
         indicator ,Ferroin indicator is used
              Yellow           colorless




                                            Dr.Jehad diab
Common titrants                 Dr.Jehad diab



Oxidizing titrants
I2 (Iodimetry)
I2 + 2e- →2I-
I2 + I- → I3- (I- added to increase solubility of I2)
I3- + 2 e- ------> 3 I- , E0 =0.536 V
Week oxidizing agents
Unstable
 Needed to be re-standardized
             2- →starch
I2 + 2S2O3              S4O62- + 2I-
( end point: disappearance of blue color)

 Less popular than Ce4+, MnO4- ,Cr2O72-
 used for the determination of strong reductants
Applications of Iodine in Redox
                Titrations(Iodimetry) ‫اﻟﻣﻘﯾﺎس اﻟﯾودي‬
     I3- + 2 e- → 3 I- , I2 + 2e- →2I-
Iodimetric titrations carried out in weak acidic to weak basic
medium because in strong basic I2 + OH- → OI-+H+
And 3OI-disproportionate to IO3- +2I- this resulted in error by
disturbing the stoichiometry of the reaction. In strong acidic
medium starch decomposes.
H2S + I2 → S + 2I- + 2H+
H3AsO3 +I2+ H2O →H3AsO4 +2I- +2H++ 2e
SO32- + I2+H2O →SO42- + 2I- + 2H+
Sn2+ + I2 → Sn4+ + 2 I-
AsO33- + I2 + H2O →AsO43- +2 I- +3H+
N2H4 + 2I2 → N2 +4H+ +4I-                          Dr.Jehad diab
Iodimetric determination of hydroquinone by
                back titration




Excess of standard II2 is added and excess is back
                     2
titrated with Na2S2O3

            I2 + 2S2O32- → S4O62- + 2I-

                                             Dr.Jehad diab
Dr.Jehad diab
→                  +2H+ + 2e




C6H8O6 + I3-  C6H6O6 + 3I- + 2H+

                                     Dr.Jehad diab
Oxidizing titrants
Potassium iodate:KIO3            ‫ﯾودات اﻟﺑوﺗﺎﺳﯾوم‬

IO3- + 5I- (excess) + 6H+(0.1-1M) → 3I2 + 3H2O
IO3- + 2I2 + 10Cl- + 6H+(3M) → 5ICl2- + 3H2O
IO3- + 2I- + 6Cl- + 6H+(3M) → 3ICl2- + 3H2O
In intermediate step iodate is converted to I2
;I2 In presence of CHCl3 resulted in violet
color. in final step iodine converted to ICl2-
and violet color disappear which match the
end point.
                                                    Dr.Jehad diab
Application:
   Determination of iodine(I2) and iodide(I-) in an
                 aqueous mixture
the iodine in an aliquot of a mixture is determined
by standard sodium thiosulfate solution in
presence of starch as indicator . the concentration
of iodine plus iodide is then determined with
standard potassium iodate solution in strong HCl
in presence of chloroform as indicator.
I2 + 2S2O32- → S4O62- + 2I-
IO3- + 2I2 + 10Cl- + 6H+(3M) → 5ICl2- + 3H2O
IO3- + 2I- + 6Cl- + 6H+(3M) → 3ICl2- + 3H2O
                                           Dr.Jehad diab
Bromometry
BrO3- (standard soln.) + 5Br- (excess) + 6H+ →3Br2 + 3H2O
                       (BrO3 ≡3Br2 ≡6e-)



Determination of phenol (back and substitute
titration):


C6H5OH + 3Br2 (Excess) →C6H2Br3OH
3Br2 + 6I-→ 3I2 +6Br- , 3 I2 + 6S2O32- → 3S4O62- + 6I-
     3Br2 ≡ 3I2 ≡ 6S2O32-
    C6H5OH ≡3Br2 ≡6e-                              Dr.Jehad diab
(Iodometry) ‫اﻟﻣﻘﯾﺎس اﻟﯾودوي‬

         I2
O2




                       Dr.Jehad diab
Iodometry




            Dr.Jehad diab
S4O62-



         S4O62- is
          4




                     Dr.Jehad diab
Application of Iodide in Redox Titrations that
        Produce I3- ,triiodide (Iodometry)

Iodometric titrations carried out in strong acidic medium

2Cu2+ + 4I- → 2CuI + I2
2Ce4+ + 2I- →2 Ce3+ +I2
2MnO4- + 10I- + 2H+ →5 I2+ 2 Mn2+ 8H2O
H2O2 +2I- +2H+ → I2 +2H2O
IO3- + 5I- + 6H+ → 3I2 +3H2O
HNO2 +2I- →I2 + 2NO+H2O
 Fe3+ + 2I- → Fe2++ I2
I2 +        2- starchS O 2-
       2S2O3 → 4 6            + 2I-          Dr.Jehad diab
Reducing titrants Na2S2O3   Dr.Jehad diab
Reactions:




2S2O32- + I3- → S4O62- + 3I-




                               Dr.Jehad diab
0 . 121
    214         1
              
C  0 . 04164   6
C  0 . 08147 M     Dr.Jehad diab
iron(II) ammonium sulfate (Mohr's salt)



Application :determination of strong oxidizing
agents as MnO4- ,Cr2O7 2+, Ce4+ ….
                                             Dr.Jehad diab
I2 + SO2 + H2O → 2HI + SO3
C5H5N.I2 + C5H5N.SO2 + C5NSN+H2O →
                         H5
                       O
2C5H5N.HI +C5H5N.SO3                 Dr.Jehad diab
The titration’s end point is signaled when the solution
changes from the yellow color of the products to the
brown color of the Karl Fisher Reagent.                   Dr.Jehad diab
Example: A 1.0120 g mineral sample was crushed
and dissolved in acid solution. This sample was
passed through a Jones reactor (Fe3+ converted
to Fe2+). Titration of the Fe(II) required 23.29 ml
of 0.01992 M KMnO4. What is the %Fe in the
sample?
                    wFe 2 
             2
 moles of Fe          56          5
                
                               
 moles of MnO4 0.02329  0.01992 1
      2+
 wFe2  0.12990 g
     2+   0.12990 100
 % Fe2                12.8320%
             1.0120                        Dr.Jehad diab
Example:
A 0.1165 g of primary standard Cu was
dissolved and then treated with an excess of
kI. Reaction:
            2Cu2+ + 4I-  CU2I2(s) +I2
Calculate the normality of Na2S2O3 soln. if
36.24 ml were needed titrate the librated I2
I2 + 2S2O32- → S4O62- + 2I-   , 2Cu2+ ≡ I ≡2e-
                                         2


   0.1165
           N  0.03624
   63.54
   N  0.10125                                   Dr.Jehad diab
Dr.Jehad diab
     Example:
The amount of ascorbic acid, C6H8O6, in orange juice was
determined by oxidizing the ascorbic acid to
dehydroascorbic acid, C6H6O6, with a known excess of I3–,
and back titrating the excess I3– with Na2S2O3. A 5.00-mL
sample of filtered orange juice was treated with 50.00 mL
of excess 0.01023 M I3–. After the oxidation was complete,
13.82 mL of 0.07203 M Na2S2O3 was needed to reach the
starch indicator end point. Report the concentration of
ascorbic acid in milligrams per 100 mL.
  C6H8O6 + I3-  C6H6O6 + 3I- + 2H+             (I3- =I2)
  I3- + 2S2O32-  3I- + S4O62-
C6H8O6 + I3- +  C6H6O6 + 3I- + 2H+
 I3- + 2S2O32-  3I- + S4O62-
Moles (I3-)total= moles (I3-)ascorbic acid +(mole I3-)back
titration
MV(I3-) = WmgC6H8O6/Fw + 0.5(MV)S2O32-
50 ×0.01023= W/176.13+ 0.5 × 13.82 × 0.07203
W= (50*0.01023-0.5 × 13.82 × 0.07203) × 176.13=2.43mg
C6H8O6 in 5 ml sample or
 (2.43 ×100) /5 =48.60 mg/100 ml orange juice.
Or:
50 × 0.01023=5×M + 0.5 ×13.82 × 0.07203
M=0.0028
C(g/l)= 0.0028 × 176.13=0.493
C(mg/100ml)= (0.486 × 1000)/10=48.60 mg/100 ml  Dr.Jehad diab
‫ﺗﻣرﯾن:ﺗوزن 02 ﻣﺿﻐوطﺔ وﺗﺳﺣق ،ﺛم ﯾﺣل ﻣن اﻟﻣﺳﺣوق ﻣﺎ ﯾﻛﺎﻓﺊ 051‬
‫ﻣﻎ ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ ﻓﻲ ﻣزﯾﺞ ﻣؤﻟف ﻣن ﺣﻣض اﻟﻛﺑرﯾت واﻟﻣﺎء‬
‫،ﯾﻌﺎﯾر اﻟﻣﺣﻠول ﺑﻣﺣﻠول ‪ 0.1 M‬ﻣن اﻟﺳﯾرﯾوم اﻟرﺑﺎﻋﻲ،ﻓﻛﺎن اﻟﻣﺻروف‬
‫71 ﻣلﻋﻠﻣﺎ ً أن ﻣﺣﺗوى اﻟﻣﺿﻐوطﺔ اﻟواﺣدة ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ ھو‬
                                                       ‫.‬
           ‫005 ﻣﻎ،و اﻟوزن اﻟﺟزﯾﺋﻲ ﻟﺣﻣض اﻷﺳﻛورﺑﻲ 31.671 غ.‬
‫ﻣﺎ ھﻲ اﻟﻧﺳﺑﺔ اﻟﻣﺋوﯾﺔ ﻟﺣﻣض اﻷﺳﻛورﺑﻲ ، وﻣﺎ ھو اﻟﻣﺣﺗوى اﻟﻔﻌﻠﻲ ﻣن‬
                          ‫ﺣﻣض اﻷﺳﻛورﺑﻲ ﻓﻲ اﻟﻣﺻﻐوطﺔ اﻟواﺣدة .‬
‫+‪C6H8O6 + 2Ce4+→ C6H6O6 + 2Ce3+ + 2H‬‬
          ‫1 31 . 671 / 6 ‪moles C 6 H 8 O 6 W C 6 H 8 O‬‬
                           ‫‪‬‬                        ‫‪‬‬
           ‫‪moles Ce 4‬‬             ‫‪MV Ce 4‬‬           ‫2‬
  ‫6 ‪2  W C 6 H 8O‬‬
                   ‫1 . 0 ‪ 17 ‬‬
     ‫31 . 671‬
        ‫31 . 671 ‪17  0 . 1 ‬‬
  ‫‪W ‬‬                           ‫‪ 149 . 7 mg‬‬              ‫‪Dr.Jehad diab‬‬

                   ‫2‬
‫اﻟﻧﺳﺑﺔ اﻟﻣﺋوﯾﺔ:‬
                  ‫001 ‪149 .7 ‬‬
‫‪% Ascorbicac id ‬‬              ‫08. 99 ‪‬‬
                     ‫051‬
       ‫ﻣﺣﺗوى اﻟﻣﺿﻐوطﺔ اﻟﻔﻌﻠﻲ ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ:‬


‫08 . 99 ‪500 ‬‬
              ‫‪ 499 mg‬‬
    ‫001‬
                                        ‫‪Dr.Jehad diab‬‬
Problem: Calculate the normality of the solution
produced by dissolving 2.064 g of primary
standard K2Cr2O7 in sufficient water to give 500
ml.
N=2.064 g / (294/6)=0.421g/0.500L=0.0842 N
Problem: calculate the molarity of the I2 solution
that is 0.04N with respect to the following reaction:
I2 + H2S →2I- +2H++S
M=0.04/2=0.02 M
Problem: calculate the molarity of the
KIO3solution that is 0.04 N with respect to the
following reaction:
IO3-+2I-+6H++6Cl- →3ICl2-+3H2O
M=0.04/4=0.01 M                              Dr.Jehad diab
The End

Contenu connexe

Tendances

Types of Redox Titration & Principles and Applications.pdf
Types of Redox Titration &  Principles and Applications.pdfTypes of Redox Titration &  Principles and Applications.pdf
Types of Redox Titration & Principles and Applications.pdfGeeta Prasad Kashyap
 
Precipitation Titration
Precipitation TitrationPrecipitation Titration
Precipitation TitrationAshikur Rahman
 
Permanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIPermanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIP.K. Mani
 
Potassium permanganate titrations
Potassium permanganate titrationsPotassium permanganate titrations
Potassium permanganate titrationsHardeep Kaur
 
Iodimetry &amp; iodometry
Iodimetry &amp; iodometryIodimetry &amp; iodometry
Iodimetry &amp; iodometryApusi Chowdhury
 
Oxidation reduction titration
Oxidation reduction  titrationOxidation reduction  titration
Oxidation reduction titrationRajendra Patil
 
Complexometric titration 2019-20
Complexometric titration 2019-20Complexometric titration 2019-20
Complexometric titration 2019-20saurabh11102000
 
Redox titration.pptx
Redox titration.pptxRedox titration.pptx
Redox titration.pptxpooja shinde
 
Complexometric titration
Complexometric titration  Complexometric titration
Complexometric titration Dr. HN Singh
 
Types of complexometric titration
Types of complexometric titrationTypes of complexometric titration
Types of complexometric titrationRenjithaJR1
 
Precipitation titration
Precipitation titrationPrecipitation titration
Precipitation titrationlamrin33
 
Redox titrations in pharmaceutical analysis
Redox titrations in pharmaceutical analysisRedox titrations in pharmaceutical analysis
Redox titrations in pharmaceutical analysisArchana Mandava
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titrationDeepakBasyal2
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titrationkencha swathi
 

Tendances (20)

Redox titration
Redox titration Redox titration
Redox titration
 
Types of Redox Titration & Principles and Applications.pdf
Types of Redox Titration &  Principles and Applications.pdfTypes of Redox Titration &  Principles and Applications.pdf
Types of Redox Titration & Principles and Applications.pdf
 
4. redox titrations
4. redox titrations4. redox titrations
4. redox titrations
 
Precipitation Titration
Precipitation TitrationPrecipitation Titration
Precipitation Titration
 
Permanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIPermanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANI
 
Precipitation titration
Precipitation titrationPrecipitation titration
Precipitation titration
 
Potassium permanganate titrations
Potassium permanganate titrationsPotassium permanganate titrations
Potassium permanganate titrations
 
Iodimetry &amp; iodometry
Iodimetry &amp; iodometryIodimetry &amp; iodometry
Iodimetry &amp; iodometry
 
Oxidation reduction titration
Oxidation reduction  titrationOxidation reduction  titration
Oxidation reduction titration
 
Complexometric titration 2019-20
Complexometric titration 2019-20Complexometric titration 2019-20
Complexometric titration 2019-20
 
Redox titration.pptx
Redox titration.pptxRedox titration.pptx
Redox titration.pptx
 
Types of titrations
Types of titrationsTypes of titrations
Types of titrations
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
 
Complexometric titration
Complexometric titration  Complexometric titration
Complexometric titration
 
Types of complexometric titration
Types of complexometric titrationTypes of complexometric titration
Types of complexometric titration
 
polarography
polarographypolarography
polarography
 
Precipitation titration
Precipitation titrationPrecipitation titration
Precipitation titration
 
Redox titrations in pharmaceutical analysis
Redox titrations in pharmaceutical analysisRedox titrations in pharmaceutical analysis
Redox titrations in pharmaceutical analysis
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 

En vedette

2 Redox Titrations
2 Redox Titrations2 Redox Titrations
2 Redox Titrationsjanetra
 
Conductometry titration
Conductometry titrationConductometry titration
Conductometry titrationKrishna Kumar
 
1 Titrations
1  Titrations1  Titrations
1 Titrationsjanetra
 
Use 0f Potassium Permanganate on Denim Jeans
Use 0f Potassium Permanganate on Denim JeansUse 0f Potassium Permanganate on Denim Jeans
Use 0f Potassium Permanganate on Denim JeansKaramat Ali Saif
 
Redox Reactions
Redox ReactionsRedox Reactions
Redox ReactionsArrehome
 
Potassium permanganate, potassium dichromate – one of the excellent tools of ...
Potassium permanganate, potassium dichromate – one of the excellent tools of ...Potassium permanganate, potassium dichromate – one of the excellent tools of ...
Potassium permanganate, potassium dichromate – one of the excellent tools of ...Istiqur Rahman
 
Oxidation reduction titrations
Oxidation reduction titrationsOxidation reduction titrations
Oxidation reduction titrationsvanessawhitehawk
 
Unit 6 Water Content Determination and Moisture analysis
Unit 6   Water Content Determination and Moisture analysisUnit 6   Water Content Determination and Moisture analysis
Unit 6 Water Content Determination and Moisture analysisMalou Mojares
 

En vedette (14)

2 Redox Titrations
2 Redox Titrations2 Redox Titrations
2 Redox Titrations
 
Conductometry titration
Conductometry titrationConductometry titration
Conductometry titration
 
Redox reactions
Redox reactionsRedox reactions
Redox reactions
 
1 Titrations
1  Titrations1  Titrations
1 Titrations
 
K2Cr2O7 & KMnO4
K2Cr2O7 & KMnO4K2Cr2O7 & KMnO4
K2Cr2O7 & KMnO4
 
Use 0f Potassium Permanganate on Denim Jeans
Use 0f Potassium Permanganate on Denim JeansUse 0f Potassium Permanganate on Denim Jeans
Use 0f Potassium Permanganate on Denim Jeans
 
Redox Reactions
Redox ReactionsRedox Reactions
Redox Reactions
 
Potassium permanganate, potassium dichromate – one of the excellent tools of ...
Potassium permanganate, potassium dichromate – one of the excellent tools of ...Potassium permanganate, potassium dichromate – one of the excellent tools of ...
Potassium permanganate, potassium dichromate – one of the excellent tools of ...
 
Diabetes pathology
Diabetes pathologyDiabetes pathology
Diabetes pathology
 
Oxidation reduction titrations
Oxidation reduction titrationsOxidation reduction titrations
Oxidation reduction titrations
 
Unit 6 Water Content Determination and Moisture analysis
Unit 6   Water Content Determination and Moisture analysisUnit 6   Water Content Determination and Moisture analysis
Unit 6 Water Content Determination and Moisture analysis
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
potentiometry
potentiometrypotentiometry
potentiometry
 
Cohort Study
Cohort StudyCohort Study
Cohort Study
 

Similaire à Redox titrations [compatibility mode]

Complexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptComplexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptAhmadHashlamon
 
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Nathan Nogales
 
Gravimetric methods of analysis [compatibility mode]
Gravimetric methods of analysis [compatibility mode]Gravimetric methods of analysis [compatibility mode]
Gravimetric methods of analysis [compatibility mode]Lujain AL-Ashqar
 
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...Lawrence kok
 
Reduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptReduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptAbdelrhman abooda
 
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxide
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxideHydrolysis of model hemicellulose extracts catalyzed by sulfur dioxide
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxideroryjara
 
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...Lawrence kok
 
Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Cleophas Rwemera
 
Assay of calcium gluconate
Assay of calcium gluconateAssay of calcium gluconate
Assay of calcium gluconatesmita shelke
 
To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...Mithil Fal Desai
 
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...IA on effect of different inhibitor on enzyme catalase (potato extract) on th...
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...Lawrence kok
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redoxRawat DA Greatt
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTAMithil Fal Desai
 
Complexometric Titration, EDTA Titration
Complexometric Titration, EDTA TitrationComplexometric Titration, EDTA Titration
Complexometric Titration, EDTA TitrationAsif - A - Khuda Pappu
 

Similaire à Redox titrations [compatibility mode] (20)

Complexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptComplexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.ppt
 
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
 
Gravimetric methods of analysis [compatibility mode]
Gravimetric methods of analysis [compatibility mode]Gravimetric methods of analysis [compatibility mode]
Gravimetric methods of analysis [compatibility mode]
 
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...
IA on effect of inhibitor concentration lead on enzyme catalase (yeast extrac...
 
Matter2
Matter2Matter2
Matter2
 
Reduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptReduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.ppt
 
Titrasi redoks 2
Titrasi redoks 2Titrasi redoks 2
Titrasi redoks 2
 
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxide
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxideHydrolysis of model hemicellulose extracts catalyzed by sulfur dioxide
Hydrolysis of model hemicellulose extracts catalyzed by sulfur dioxide
 
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...
IA on effect of inhibitor concentration copper on enzyme catalase (yeast extr...
 
Edta
EdtaEdta
Edta
 
Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Edta 140623121042-phpapp01
Edta 140623121042-phpapp01
 
Assay of calcium gluconate
Assay of calcium gluconateAssay of calcium gluconate
Assay of calcium gluconate
 
10redox jntu pharmacy
10redox jntu pharmacy10redox jntu pharmacy
10redox jntu pharmacy
 
To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...
 
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...IA on effect of different inhibitor on enzyme catalase (potato extract) on th...
IA on effect of different inhibitor on enzyme catalase (potato extract) on th...
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redox
 
Chemicals.pdf
Chemicals.pdfChemicals.pdf
Chemicals.pdf
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTA
 
Redox Reaction.ppt
Redox Reaction.pptRedox Reaction.ppt
Redox Reaction.ppt
 
Complexometric Titration, EDTA Titration
Complexometric Titration, EDTA TitrationComplexometric Titration, EDTA Titration
Complexometric Titration, EDTA Titration
 

Redox titrations [compatibility mode]

  • 1. Redox titrations Pharma.analytical chemistry II Dr.Jehad M Diab, faculty of pharmacy Damascus University
  • 2. REDOX titrations A volumetric method of analysis which relies on oxidation or reduction of the analyte using redox indicators or potentiometry. This unit covers: changes in solution potential during a titration basic calculations methods of sample preparation and common titrants Example applications Dr.Jehad diab
  • 4. Determination of equivalence point potential: Fe2+ Ce4+ = Fe3+ Ce3+ E0Fe3+= 0.771 v , E0Ce4+=1.70 v Eeq = E0Fe3+ - 0.0592/1 log [Fe2+] / [Fe3+] (1) Eeq = E0Ce4+ - 0.0592/1 log [Ce3+] / [Ce4+] (2) 1+2: 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Fe2+][Ce3+] / [Fe3+] [Ce4+] At the equivalence point: [Fe3+] =[Ce3+ ] [Fe2+]=[Ce4+ ] Rearrangement: 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Ce4+][Ce3+] / [Ce3+] [Ce4+] Eeq = (E0Ce4+ + E0Fe3+) /2= 1.70+0.771/2= 1.24 volt Dr.Jehad diab
  • 5. draft 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log [Fe2/ [Fe3+]-0.0592/1 log [Ce3+] / [Ce4+] 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1(log [Fe2]/ [Fe3+]+ log [Ce3+] / [Ce4+] 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1( (log [Fe2]-log [Fe3+]+ log[Ce3+]-log[Ce4+] 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1(log [Fe2]+log[Ce3+]-log [Fe3+]-log[Ce4+] 2Eeq = E0Ce4+ + E0Fe3+ - 0.0592/1 log ([Fe2+][Ce3+] / [Fe3+] [Ce4+]) Dr.Jehad diab
  • 6. E eq =(n1e0ox+n2e0red) / n1+n2 Dr.Jehad diab
  • 7. Dr.Jehad diab A more complex example Determine of Eeq for the following reaction: Mno4- +5 Fe2+ 8H+ = Mn2+ + 5Fe3++ 4H2O e eq= 0.77+0.059/1 × log [Fe3+] / [Fe2+] (1) e eq=1.51+0.059/5 × log [Mno4-][H+]8/[Mn2+] (2) × 5 1+2: 6eeq= 0.77+5 × 1.51+0.059 × log [Fe3+][MnO4- ][H+]8/[Fe2+][Mn2+] [Fe2+]=5[MnO4-] , [Fe3+]=5[Mn2+] , [Fe3+]/[Fe2+]= [Mn2+] / [MnO4-] 6eeq = 0.77+5×1.51+.059 log [Mn2+][MnO4-][H+]8/[MnO4-][Mn2+]
  • 8. 6eeq = 0.77+5×1.51+.059 log [Mn2+][MnO4-][H+]8/[MnO4-][Mn2+] 6eeq=0.77+5×1.51+0.059 log[H+]8 eeq=(0.77+5×1.51)/6 + 0.059/6 log[H+]8 eeq=(0.77+5×1.51)/6 - 0.079 pH If [H+]=1M (pH= 0): eeq=(0.77+5×1.51)/6 + 0.059/6 log[1]8 =1.39 v So, the potential at equivalence point is dependent on [H+]. If [H+]=1M we can calculate from the following equation: eeq=(n1e0ox + n2e0Red ) / n1+n2 Dr.J.Diab
  • 9. Dr.Jehad diab E,volt E,volt Volume of reagent,ml
  • 10. Complete titration curve Dr.Jehad diab (or volume of titrant)
  • 11.  100 ml 0.1 M Fe2+ with 0.1 M Ce4+ solution Ce4+ + Fe2+ Ce3++ Fe3+ Dr.Jehad diab
  • 13. Ce4+ + Fe2+ Ce3++ Fe3+ Dr.Jehad diab
  • 14. Ce4+ (0.1 M) + Fe2+ (100 ml 0.1 M) Ce3++ Fe3+  Addition of 20 ml of Ce4+: 100 0.1  20  0.1 0.059 100  20 EFe  0.771 log  0.735v 1 20  0.1 100  20  Addition of 50 ml of Ce4+: 100  0.1  50  0.1 0.059 100  50 EFe  0.771 log  0.771v 1 50  0.1 100  50 Dr.Jehad diab
  • 17. Fe2+ Ce4+ = Fe3+ Ce3+ , e0Fe3+/Fe2+= 0.771 v , e0Ce4+/Ce3+=1.70 v E eq =n1e0ox+n2e0red / n1+n2 Dr.Jehad diab
  • 19. Ce4+ + Fe2+ Ce3++ Fe3+ Dr.Jehad diab
  • 21. Ce4+ + Fe2+ Ce3++ Fe3+ 200 x0.05= 210 x[Ce3+] 10ml x0.1M=210ml x [Ce4+] Dr.Jehad diab
  • 22. Ce4+ + Fe2+ Ce3++ Fe3+ E = e0 – 0.059 log [Ce3+]/ [Ce4+] (200 x0.05/ 210) 1.70 - (10ml x0.1M/210ml) 1.64 v volt Or E =1.70-0.059log 100%/10%=1.64 v 1.66 V Dr.Jehad diab
  • 23.
  • 24. Homework You are titrating 50 ml 0.1M of Co2+ solution wuth0.1 M Ce4+ titrant.E0Co=0.85 v ,E0Ce=1.70. What is the potential for the titration system after addition of: a. 0 ml of Ce4+ b. 25 ml of Ce4+ c. 50 ml of Ce4+ d. 75 ml of Ce4+ Dr.Jehad diab
  • 25. Ce4+ + Co2+ Ce3++ Co3+ Equivalent point volume: CCe4+ VCe4+ = CCo2+ V Co2+ 0.1 x VCe4+ = 50 x0.1 ==> VCe4+ = 50 ml a) Addition of 0 ml of Ce4+ ,absence of Co3+ ,E can not be calculated b) Addition of 25 ml of Ce4+ before the equivalent point; excess of Co2+ E= 0.85+0.059/1xlog([25x0.1)/75/(50 x0.1-25x0.1)/75=0.85v c)Addition of 50 ml of Ce4+;at the equivalent point: E= (e0Co+ e0Ce)/2= (0.85 +1.70)/2= 1.275 v Dr.Jehad diab
  • 26. c)Addition of 75 ml of Ce4+;after the equivalent point excess of Ce4+ E= e0Ce+0.059/1xlog[Ce4+]/[Ce3+] E =1.70+0.059/1xlog(75x0.1-50x0.1)/125 /(50x0.1)/125= 1.682 v Dr.Jehad diab
  • 27.
  • 28. Dr.Jehad diab (True) Self indicators: KMnO4 (purple) → Mn2+ (colorless) I2 (yellow) → 2I- (colorless) Ce4+(yellow) → Ce3+(colorless)
  • 29. Redox indicators Specific indicators: Starch: Starch +I2 <--> blue complex It is an easy to detect and rapid indicator. This explains why iodine is a common titrant even though it is a weak oxidant. KSCN: Fe3++ SCN- ( Indicator) → FeSCN2+(red complex) Determination of Fe3+ with Ti3+ in presence of SCN- Fe3+ with Ti3+ --> Fe2+ with Ti4+ when [Fe3+] decreases then color of red complex disappears which indicates the end point.
  • 31. ____ 1 E=E0ind - 0.059/n (color of reducing form) E=E0ind + 0.059/n (color of oxidizing form) Dr.Jehad diab
  • 33. general (Ferroin) 1.150v Dr.Jehad diab
  • 35. Dr.Jehad diab Ox Potential range for color change is: e0-0.059/n - e0+0.59/n: From 0.80-0.59/1 to 0.80 +0.59/1=(0.741→ 0.859 v)
  • 36. √ √ √ √ Dr.Jehad diab
  • 37. Potential Indicator End point is determined by measuring the potential of indicator electrode against reference electrode and plotting the potential against the volume of titrant. (Pt for E( mv) and glass electrode for pH) Dr.Jehad diab
  • 38. Potentiometric titration ‫اﻟﻣﻌﺎﯾرة اﻟﻛﻣوﻧﯾﺔ‬ It is possible to monitor the course of a titration using potentiometric measurements. The Pt electrode, for example, is appropriate for monitoring an redox titration and determining an end point in lieu of an indicator. The procedure has been called a potentiometric titration. The end point occurs when the easured potential undergoes a sharp change—when all the oxd. or red. in the titration vessel is reacted Dr.Jehad diab
  • 39. The potential scale is calibrated in pH units (59.16 mV/pH at 25o C). A temperature adjustment feature changes the slope by 2.303RT/F. Fig. 13.10. Typical pH meter. ©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)
  • 42. ‫اﻟﻌوﻣل اﻟﻣؤﻛﺳدة واﻟﻣرﺟﻌﺔ اﻟﻣﺳﺎﻋدة‬ ‫‪Dr.Jehad diab‬‬
  • 45. Dr.Jehad diab Reducing column
  • 46. Dr.Jehad diab Auxiliary reducing agent Fe2++ Fe3+ (reductor ) → Fe2+ , Cr3+ +e →Cr2+ Fe2++ Fe3+ (reductor ) → Fe2+ , Cr3+ not reduced Than that of Walden n
  • 48. Auxiliary oxidizing agents Sodium bismuthate-NaBiO3 ‫ﺑﯾزﻣوﺗﺎت اﻟﺻودﯾوم‬ Dr.Jehad diab
  • 49. ammonium persulfate, ‫ﻓوق ﻛﺑرﯾﺗﺎت اﻷﻣوﻧﯾوم‬ Ammonium peroxydisulphate- (NH4)2S2O8 Dr.Jehad diab
  • 50. H2O2,Na2O2 Oxidizes Co2+, Fe2+, Mn2+ Dr.Jehad diab
  • 51. Some common oxidants Dr.Jehad diab indicator‫٭‬ Oxidizing Reduction stability agent product eo volt standardization ‫٭٭‬ AS2O3 , KMnO4 Mn2+ 1.51 Na2C2O4 Mno4- (b) Potassium permanganate , Fe KBrO3 Potassium Br- 1.44 KBrO3 (1) (a) bromate 1.44 Na2C2O4 (H2SO4) Ce4+ Ce3+ , AS2O3 , (2) (a) 1.70 Cerium(iv) Fe (HClO4)
  • 52. Some common oxidants K2Cr2O7 Cr3+ 1.33 K2Cr2O7 (3) (a) Potassium dichromate H5IO6 IO3- 1.60 AS2O3 starch (b) Periodic acid KIO3 ICl2- 1.24 KIO3 (4) (a) Potassium iodate BaS2O3. I2 I- 0.536 H2O , starch (c) Iodine AS2O3 Dr.Jehad diab
  • 53. *(1) α- Naphthoflavone; (2) Ferroin;(3) diphenyl amine sulfonicacid;(4) disapperance of I2 from chlorofom. **(a) stable ;(b) moderately stable ;(c) unstable Dr.Jehad diab
  • 54. Dr.Jehad diab E0 =1.33 v Cr2O7-2 +14H+ +6e- 2Cr3++ 7H2O
  • 55. Dr.Jehad diab Primary applications of Cr2O7-2 - Determination Fe2+ - Indirect determination of oxidizing agents; A known excess of fe2+ is added to the sample which is oxidant such as MnO4- and the excess of fe2+ is back titrated with Cr2O7-2 - Ethanol (C2H5OH) Reactions: 6Fe2+ + Cr2O72- + 14H+ → 6Fe3+ + 2Cr3+ + 7H2O 3C2H5OH + 2Cr2O72- + 16H+ → 4Cr3+ + 3CH3COOH + 11H2O
  • 56. of titrant Moles of Fe2+ = 6 moles of Cr2O7-2 W Fe/ Mw Fe = 6 CCr2O7-2 x VCr2O7-2 (L) 0.2464/56 = 6 CCr2O7-2 x 39.31/1000 CCr2O7-2 = 0.01871 M Dr.Jehad diab
  • 59. MnO4- at pH < 1(H2SO4 is used ,HCl can not be used because MnO4- oxidize 2Cl- to Cl2) MnO4- + 8H+ + 5 e- → Mn2+ + 4 H2O (E0 = 1.51 V strong acidic med) MnO4- + 2H2O +3e- →MnO2 +4OH- (E0=0.59 v weak basic med) MnO4- + 4H+ +3e- →MnO2 +2H2O (E0=1.69 v weak acidic to neutral ) MnO4- + e- →MnO4-2 (Eo=0.56 v strong basic med) Standardization of MnO4- Dr.Jehad diab
  • 60. Application of KMnO4 in Redox - Titrations MnO4- + 8 H+ + 5 e-  Mn2+ + 4 H2O Mo3+ Mo3+ +4H2O →MoO42- + 8H+ +3e H2O2 H2O2 → O2 +2H+ + 2e- Ti3+ Ti3+ +H2O→ TiO2 +2H+ + e H3AsO3 H3AsO3 + H2O →H3AsO4+ 2H++ 2e Dr.Jehad diab
  • 61. Common titrants Oxidizing titrants Cerium (IV) (Ce4+),E0=1.44 v and 1.70 v in 1M H2SO4 and 1M HClO4 respectively - Commonly used in place of KMnO4 - Works best in acidic solution - Can be used in most applications in previous table - Used to analyze some organic compounds - Color change not distinct to be its own indicator ,Ferroin indicator is used Yellow colorless Dr.Jehad diab
  • 62. Common titrants Dr.Jehad diab Oxidizing titrants I2 (Iodimetry) I2 + 2e- →2I- I2 + I- → I3- (I- added to increase solubility of I2) I3- + 2 e- ------> 3 I- , E0 =0.536 V Week oxidizing agents Unstable  Needed to be re-standardized 2- →starch I2 + 2S2O3 S4O62- + 2I- ( end point: disappearance of blue color)  Less popular than Ce4+, MnO4- ,Cr2O72-  used for the determination of strong reductants
  • 63. Applications of Iodine in Redox Titrations(Iodimetry) ‫اﻟﻣﻘﯾﺎس اﻟﯾودي‬ I3- + 2 e- → 3 I- , I2 + 2e- →2I- Iodimetric titrations carried out in weak acidic to weak basic medium because in strong basic I2 + OH- → OI-+H+ And 3OI-disproportionate to IO3- +2I- this resulted in error by disturbing the stoichiometry of the reaction. In strong acidic medium starch decomposes. H2S + I2 → S + 2I- + 2H+ H3AsO3 +I2+ H2O →H3AsO4 +2I- +2H++ 2e SO32- + I2+H2O →SO42- + 2I- + 2H+ Sn2+ + I2 → Sn4+ + 2 I- AsO33- + I2 + H2O →AsO43- +2 I- +3H+ N2H4 + 2I2 → N2 +4H+ +4I- Dr.Jehad diab
  • 64. Iodimetric determination of hydroquinone by back titration Excess of standard II2 is added and excess is back 2 titrated with Na2S2O3 I2 + 2S2O32- → S4O62- + 2I- Dr.Jehad diab
  • 66. +2H+ + 2e C6H8O6 + I3-  C6H6O6 + 3I- + 2H+ Dr.Jehad diab
  • 67. Oxidizing titrants Potassium iodate:KIO3 ‫ﯾودات اﻟﺑوﺗﺎﺳﯾوم‬ IO3- + 5I- (excess) + 6H+(0.1-1M) → 3I2 + 3H2O IO3- + 2I2 + 10Cl- + 6H+(3M) → 5ICl2- + 3H2O IO3- + 2I- + 6Cl- + 6H+(3M) → 3ICl2- + 3H2O In intermediate step iodate is converted to I2 ;I2 In presence of CHCl3 resulted in violet color. in final step iodine converted to ICl2- and violet color disappear which match the end point. Dr.Jehad diab
  • 68. Application: Determination of iodine(I2) and iodide(I-) in an aqueous mixture the iodine in an aliquot of a mixture is determined by standard sodium thiosulfate solution in presence of starch as indicator . the concentration of iodine plus iodide is then determined with standard potassium iodate solution in strong HCl in presence of chloroform as indicator. I2 + 2S2O32- → S4O62- + 2I- IO3- + 2I2 + 10Cl- + 6H+(3M) → 5ICl2- + 3H2O IO3- + 2I- + 6Cl- + 6H+(3M) → 3ICl2- + 3H2O Dr.Jehad diab
  • 69. Bromometry BrO3- (standard soln.) + 5Br- (excess) + 6H+ →3Br2 + 3H2O (BrO3 ≡3Br2 ≡6e-) Determination of phenol (back and substitute titration): C6H5OH + 3Br2 (Excess) →C6H2Br3OH 3Br2 + 6I-→ 3I2 +6Br- , 3 I2 + 6S2O32- → 3S4O62- + 6I- 3Br2 ≡ 3I2 ≡ 6S2O32- C6H5OH ≡3Br2 ≡6e- Dr.Jehad diab
  • 71. Iodometry Dr.Jehad diab
  • 72. S4O62- S4O62- is 4 Dr.Jehad diab
  • 73. Application of Iodide in Redox Titrations that Produce I3- ,triiodide (Iodometry) Iodometric titrations carried out in strong acidic medium 2Cu2+ + 4I- → 2CuI + I2 2Ce4+ + 2I- →2 Ce3+ +I2 2MnO4- + 10I- + 2H+ →5 I2+ 2 Mn2+ 8H2O H2O2 +2I- +2H+ → I2 +2H2O IO3- + 5I- + 6H+ → 3I2 +3H2O HNO2 +2I- →I2 + 2NO+H2O  Fe3+ + 2I- → Fe2++ I2 I2 + 2- starchS O 2- 2S2O3 → 4 6 + 2I- Dr.Jehad diab
  • 74. Reducing titrants Na2S2O3 Dr.Jehad diab
  • 75. Reactions: 2S2O32- + I3- → S4O62- + 3I- Dr.Jehad diab
  • 76. 0 . 121 214 1  C  0 . 04164 6 C  0 . 08147 M Dr.Jehad diab
  • 77. iron(II) ammonium sulfate (Mohr's salt) Application :determination of strong oxidizing agents as MnO4- ,Cr2O7 2+, Ce4+ …. Dr.Jehad diab
  • 78. I2 + SO2 + H2O → 2HI + SO3 C5H5N.I2 + C5H5N.SO2 + C5NSN+H2O → H5 O 2C5H5N.HI +C5H5N.SO3 Dr.Jehad diab
  • 79. The titration’s end point is signaled when the solution changes from the yellow color of the products to the brown color of the Karl Fisher Reagent. Dr.Jehad diab
  • 80. Example: A 1.0120 g mineral sample was crushed and dissolved in acid solution. This sample was passed through a Jones reactor (Fe3+ converted to Fe2+). Titration of the Fe(II) required 23.29 ml of 0.01992 M KMnO4. What is the %Fe in the sample? wFe 2  2 moles of Fe 56 5    moles of MnO4 0.02329  0.01992 1 2+ wFe2  0.12990 g 2+ 0.12990 100 % Fe2   12.8320% 1.0120 Dr.Jehad diab
  • 81. Example: A 0.1165 g of primary standard Cu was dissolved and then treated with an excess of kI. Reaction: 2Cu2+ + 4I-  CU2I2(s) +I2 Calculate the normality of Na2S2O3 soln. if 36.24 ml were needed titrate the librated I2 I2 + 2S2O32- → S4O62- + 2I- , 2Cu2+ ≡ I ≡2e- 2 0.1165  N  0.03624 63.54 N  0.10125 Dr.Jehad diab
  • 82. Dr.Jehad diab Example: The amount of ascorbic acid, C6H8O6, in orange juice was determined by oxidizing the ascorbic acid to dehydroascorbic acid, C6H6O6, with a known excess of I3–, and back titrating the excess I3– with Na2S2O3. A 5.00-mL sample of filtered orange juice was treated with 50.00 mL of excess 0.01023 M I3–. After the oxidation was complete, 13.82 mL of 0.07203 M Na2S2O3 was needed to reach the starch indicator end point. Report the concentration of ascorbic acid in milligrams per 100 mL. C6H8O6 + I3-  C6H6O6 + 3I- + 2H+ (I3- =I2) I3- + 2S2O32-  3I- + S4O62-
  • 83. C6H8O6 + I3- +  C6H6O6 + 3I- + 2H+ I3- + 2S2O32-  3I- + S4O62- Moles (I3-)total= moles (I3-)ascorbic acid +(mole I3-)back titration MV(I3-) = WmgC6H8O6/Fw + 0.5(MV)S2O32- 50 ×0.01023= W/176.13+ 0.5 × 13.82 × 0.07203 W= (50*0.01023-0.5 × 13.82 × 0.07203) × 176.13=2.43mg C6H8O6 in 5 ml sample or (2.43 ×100) /5 =48.60 mg/100 ml orange juice. Or: 50 × 0.01023=5×M + 0.5 ×13.82 × 0.07203 M=0.0028 C(g/l)= 0.0028 × 176.13=0.493 C(mg/100ml)= (0.486 × 1000)/10=48.60 mg/100 ml Dr.Jehad diab
  • 84. ‫ﺗﻣرﯾن:ﺗوزن 02 ﻣﺿﻐوطﺔ وﺗﺳﺣق ،ﺛم ﯾﺣل ﻣن اﻟﻣﺳﺣوق ﻣﺎ ﯾﻛﺎﻓﺊ 051‬ ‫ﻣﻎ ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ ﻓﻲ ﻣزﯾﺞ ﻣؤﻟف ﻣن ﺣﻣض اﻟﻛﺑرﯾت واﻟﻣﺎء‬ ‫،ﯾﻌﺎﯾر اﻟﻣﺣﻠول ﺑﻣﺣﻠول ‪ 0.1 M‬ﻣن اﻟﺳﯾرﯾوم اﻟرﺑﺎﻋﻲ،ﻓﻛﺎن اﻟﻣﺻروف‬ ‫71 ﻣلﻋﻠﻣﺎ ً أن ﻣﺣﺗوى اﻟﻣﺿﻐوطﺔ اﻟواﺣدة ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ ھو‬ ‫.‬ ‫005 ﻣﻎ،و اﻟوزن اﻟﺟزﯾﺋﻲ ﻟﺣﻣض اﻷﺳﻛورﺑﻲ 31.671 غ.‬ ‫ﻣﺎ ھﻲ اﻟﻧﺳﺑﺔ اﻟﻣﺋوﯾﺔ ﻟﺣﻣض اﻷﺳﻛورﺑﻲ ، وﻣﺎ ھو اﻟﻣﺣﺗوى اﻟﻔﻌﻠﻲ ﻣن‬ ‫ﺣﻣض اﻷﺳﻛورﺑﻲ ﻓﻲ اﻟﻣﺻﻐوطﺔ اﻟواﺣدة .‬ ‫+‪C6H8O6 + 2Ce4+→ C6H6O6 + 2Ce3+ + 2H‬‬ ‫1 31 . 671 / 6 ‪moles C 6 H 8 O 6 W C 6 H 8 O‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪moles Ce 4‬‬ ‫‪MV Ce 4‬‬ ‫2‬ ‫6 ‪2  W C 6 H 8O‬‬ ‫1 . 0 ‪ 17 ‬‬ ‫31 . 671‬ ‫31 . 671 ‪17  0 . 1 ‬‬ ‫‪W ‬‬ ‫‪ 149 . 7 mg‬‬ ‫‪Dr.Jehad diab‬‬ ‫2‬
  • 85. ‫اﻟﻧﺳﺑﺔ اﻟﻣﺋوﯾﺔ:‬ ‫001 ‪149 .7 ‬‬ ‫‪% Ascorbicac id ‬‬ ‫08. 99 ‪‬‬ ‫051‬ ‫ﻣﺣﺗوى اﻟﻣﺿﻐوطﺔ اﻟﻔﻌﻠﻲ ﻣن ﺣﻣض اﻷﺳﻛورﺑﻲ:‬ ‫08 . 99 ‪500 ‬‬ ‫‪ 499 mg‬‬ ‫001‬ ‫‪Dr.Jehad diab‬‬
  • 86. Problem: Calculate the normality of the solution produced by dissolving 2.064 g of primary standard K2Cr2O7 in sufficient water to give 500 ml. N=2.064 g / (294/6)=0.421g/0.500L=0.0842 N Problem: calculate the molarity of the I2 solution that is 0.04N with respect to the following reaction: I2 + H2S →2I- +2H++S M=0.04/2=0.02 M Problem: calculate the molarity of the KIO3solution that is 0.04 N with respect to the following reaction: IO3-+2I-+6H++6Cl- →3ICl2-+3H2O M=0.04/4=0.01 M Dr.Jehad diab