SlideShare une entreprise Scribd logo
1  sur  65
Télécharger pour lire hors ligne
Inference of computational
models of tendon networks via
sparse experimentation
Manish Umesh Kurse
Apr 11, 2012
1
Brain-Body Dynamics Laboratory
Ph.D. committee: Dr. Francisco J.Valero-Cuevas, Dr. Hod Lipson,
Dr. Gerald E. Loeb, Dr. Eva Kanso
2
MSMS:	
  Davoodi	
  et	
  al.,	
  2007
Measurement of internal states Injury, deformity, surgery
h4p://www.ispub.com/
Ergonomics, prosthetic design, etc.
h4p://www.anybodytech.com
Inputs Outputs
femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min),
Muscles cooperate
to exert force
Solutions in muscle activation s
task-specific activation se
2
12
3
LIMB
3
1
Fy
Fx
Muscle 2
Muscle 1
Target x-for
Target y-f
Task-specific activation
Fig. 1. Three muscle ‘‘schematic model’’ conceptually illustrates the nece
region of force space, the feasible force set, is achievable given this mu
y-force. (c) The valid coordination patterns for the x and y targets can a
Kutch andValero-Cuevas, 2011
Computational modeling of musculoskeletal
systems
3
Modeling : Structure based on observation + experimental
measurement of some parameters.
Drawbacks:	
  
•	
  Not	
  possible	
  to	
  measure	
  all	
  parameters.	
  
•	
  Not	
  validated	
  with	
  experimental	
  input-­‐output	
  data.	
  
•	
  Structure	
  assumed	
  need	
  not	
  be	
  funcEonally	
  accurate	
  
representaEon.
R
System
✓
s
R
Structure
assumed,
parameters fit.
1 R2
Infer structure and
parameters from input-
output data
(✓)
4
Develop computational methods to simultaneously infer
structure and parameter values of functionally accurate
models of musculoskeletal systems directly from
experimental input-output data.
Objective
Inputs Outputs
We examined 5 different postures in 3 specimens, and 3 different posture
the final specimen. Each posture was neutral in add-abduction. The exami
postures were chosen to cover the workspace and simulate those found
everyday tasks. After positioning the finger in a specific posture, we determi
the action matrix for the finger: we applied 128 combinations of tendon tensi
representing all possible combinations of 0 and 10 N across the seven tendons,
held each combination for 3 s. The fingertip forces resulting from each coordi
tion pattern was determined by averaging the fingertip load cell readings acr
the hold period. Linear regression was performed on each fingertip fo
component using the tendon tensions as factors. In this way, the fingertip fo
vector generated by 1 N of tendon tension was determined for all muscles.
force vector generated by each muscle was scaled by an estimate for maxim
muscle force (Valero-Cuevas et al., 2000) to generate the columns of the act
matrix for each specimen and posture examined.
2.2. Action matrix for human leg model
We also studied the necessity of muscles for mechanical output fo
simplified, but plausible, sagittal plane model of the human leg (hip, knee,
ankle joints). The model contained 14 muscles/muscle groups (Kuo and Za
1993) (muscle/muscle group abbreviation in parentheses): medial and lat
gastrocnemius (gastroc), soleus (soleus), tibialis posterior (tibpost), peron
brevis (perbrev), tibialis anterior (tibant), semimembranoseus/semitendeno
biceps femoris long head (hamstring), biceps femoris short head (bfsh), rec
femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min), adduc
Muscles cooperate
to exert force
2
12
3
LIMB
3
1
Fy
Fx
Kutch andValero-Cuevas, 2011
Tendon networks of the fingers
5
Lateral bands
Central slip
Terminal slip
Retinacular ligament
Sagittal band
Transverse fibers
Clavero et al. (2003). “Extensor Mechanism of the Fingers: MR Imaging-Anatomic Correlation”, Radiographics
Netter, F. Atlas of Human Anatomy, 3rd edition, pp 447-453
Computational models
6
Analytical models Anatomy-based models
s2 = ✓2
1 + 9e✓2
Significance of research
7
http://www.myefficientassistant.com/
http://www.punchstock.com/
‘Plant’
‘Controller’
Motor control
http://www.ispub.com/
Clinical
Wilkinson et al. 2006
Robotics and prosthetics
?
Computational
models
Experimentation Mathematical
modeling
Inference algorithms
8
Dissertation outline
Experimental actuation of a cadaveric hand.
2
3
4
5
6
New inference approach to
learn functions of tendon
routing.
Application to the human
index finger.
Experimental validation of an existing
model.
Tendon network simulator and
sensitivity analysis.
Inference of anatomy-based models
from experimental data.
1
Analytical models Anatomy-based models
ASME SBC ’10 & IEEETBME ’12
ASB ’11
CSB ’12
ASME SBC ’09
9
Cadaver finger control
10
Load cells
Strings to the tendons
Motion capture markers
6 DOF Load cell
DC motors
Positon encoders
1 2 3 4 5 6
1
Finger tapping
11
1 2 3 4 5 6
Slow finger movements
12
All intact
Radial nerve palsy
Median nerve palsy
Ulnar nerve palsy
fm
Iteratively,
1 2 3 4 5 6
Finger equilibrium
13
⌧ = RFm
0
Neutral
equilibrium
Stable equilibrium
1 2 3 4 5 6
14
NeutralStable
FDP
FDS
EI
EDC
LUM
FDI
FPI
1 2
0
1
2
3
4
Distancefromnullspace(N)
1 2
0
2
4
6
8
Coordination pattern
Tendontensions
i
Distance from null space
1 2 3 4 5 6
Conclusions
• Spring-based (muscle-like) control effective
to control movement.
• Simple tap requires a coordinated set of
tendon excursions.
• Neutral equilibrium in specific postures and
tendon tensions.
15
1 2 3 4 5 6
Computational models
16
Analytical models Anatomy-based models
s2 = ✓2
1 + 9e✓2
1 2 3 4 5 6
Inference of analytical functions
17
Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas
1 2 3 4 5 6
2
• Analytical functions for tendon excursions
s = f(✓)
Deshpande et al. 2009
• State of the art : Polynomial regression
s s
‘Controller’
‘Plant’
• Why? R(✓) =
@s
@✓
⌧(✓) = R(✓)Fm
R
✓
R1
R2
(✓)
• Can we simultaneously learn form and
parameter values from data?
• Compare accuracy with polynomial regression.
Specific Aims
18
1 2 3 4 5 6
s = f(✓)
19
Schmidt and Lipson, 2009
Koza 1992
Symbolic regression
1 2 3 4 5 6
Robotic tendon driven system
20
s1
s2
s3
2
1
3
Position encoders
Motors keeping
tendons taut
Load cells
Motion capture
markers
Motion capture
camera
1 2 3 4 5 6
Landsmeer
model I
Landsmeer
model II
Landsmeer
model III
s = 3.6sin(0.5θ)
s = 0.6θ + 3.2(1 −
θ/2
tan(θ/2)
)
s = 1.8θ
s = f(✓1, ✓2, ✓3)
21
Schmidt and Lipson, 2009
Polynomial regression
Koza 1992
Symbolic regression vs.
Linear
Quadratic
Cubic
Quartic
1 2 3 4 5 6
Comparing symbolic and polynomial regressions
22
2
5
10
20
2
5
10
20
2
5
10
20
Tendon 1
2
5
10
20
Tendon 2
Tendon 3
2
5
10
20
n/256
n/16
n/64
n n
2
n
4
n
8
n
16
n
32
n
64
n
128
n
256
X
X
X
XX
n/256
n/16
n/64
2
5
10
20
n n
2
n
4
n
8
n
16
n
32
n
64
n
128
n
256
n/256
n/16
n/64
n/256
n/16
n/64
n/256
n/16
n/64
n/256
n/16
n/64
Symbolic
Quartic
Linear
Quadratic
Cubic
Dataset size (n =1688) Dataset size (n =1688)
X
X
X
Cross-validation Extrapolation
RMSerror(%)
RMSerror(%)
X Error for all sizes > 5%
Min training set size < n/256
2
5
10
20
Tendon 1
Tendon 2
2
5
10
20
25%
75%
125%
25%
75%
125%
25%
75%
125%
2
5
10
20
Tendon 3
RMSerror(%)
Extrapolation by volume (%)
0 25 15075 10050 125
Symbolic
Quartic
Linear
Quadratic
Cubic
X
X
X All extrapolation errors > 5%
Achievable extrapolation > 150%
Fewer training data
points required
More extrapolatable
2
23
Extrapolation by volume (%)
0
25
50
75
100
125
150
>150
n n
2
n
4
n
8
n
16
n
32
n
64
n
128
Training set size (n =1688)
Extrapolationbyvolume(%)
Symbolic
Quartic
Linear
Quadratic
Cubic
Comparing symbolic and polynomial regressions
Fewer training data
points required
More extrapolatable
Kurse et al. 2012 (in press)
1 2 3 4 5 6
24
Landsmeer
model I
Landsmeer
model II
Landsmeer
model III
s = 3.6sin(0.5θ)
s = 0.6θ + 3.2(1 −
θ/2
tan(θ/2)
)
s = 1.8θ
Simulated musculoskeletal systems
Landsmeer comb. Expressions
I, I, I
Target 1.8✓1 + 1.8✓2 + 1.8✓3
Evolved 1.8✓1 + 1.8✓2 + 1.8✓3
I, II, III
Target
1.8✓1 + 3.6sin(0.5✓2) + 0.6✓3
(1.6✓3)/tan(0.5✓3) + 3.2
Evolved
1.8✓1 + 3.61sin(0.5✓2) + 1.54✓3
0.778sin(✓3)
II, II, I
Target 3.6sin(0.5✓1)+3.6sin(0.5✓2)+1.8✓3
Evolved 3.6sin(0.5✓1)+3.6sin(0.5✓2)+1.8✓3
Table 1: Target and inferred expressions with training, cross-validation and extrap
for some combinations of Landsmeer’s models I, II, III
1 2 3 4 5 6
Error vs. number of parameters
25
RMSerror(%)
Cross-validationExtrapolation
Symbolic
Quartic
Linear
Quadratic
Cubic
Experimental data
With no noise
Number of parameters
Simulated data
With noise added
1
2
3
0 20 40
1
2
3
5
.0001
.01
1
0 20 40
.0001
.01
1
0 20 40
1
2
5
10
1
2
5
10
1 2 3 4 5 6
Conclusions
• Symbolic regression outperforms polynomial
regression
• Number of training data points
• Extrapolatability
• Robustness to noise
• Number of parameters
• Insight on physics
26
1 2 3 4 5 6
Kurse et al. 2012 (in press)
27
Novel method of
inference of
analytical functions
from data
Application to the
human finger
Schmidt and Lipson, 2009
s1 = f(✓1, ✓2, ✓3, ✓4)
1 2 3 4 5 6
Analytical functions: Index finger
28
Constant moment arm
(Linear)
Polynomial regressions
Landsmeer based models
Landsmeer
model I
Landsmeer
model II
Landsmeer
model III
s = 3.6sin(0.5θ)
s = 0.6θ + 3.2(1 −
θ/2
tan(θ/2)
)
s = 1.8θ
Landsmeer, 1961, Brook 1995
3
Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas
1 2 3 4 5 6
Eg.An et al. 1983,Valero-Cuevas et al. 1998
Eg. Franko et al. 2011
Eg. Brook et al. 1995
Specific aims
• Infer analytical functions for the seven tendons of
the index finger.
• Compare against polynomial regression and
Landsmeer based models.
29
1 2 3 4 5 6
Cadaver experimental setup
30
MoEon	
  
capture
Load cells
Position encoders
Servo motors
Markers
1 2 3 4 5 6
s1 = f(✓1, ✓2, ✓3, ✓4)
s7 = f(✓1, ✓2, ✓3, ✓4)
.
.
.
31
Schmidt and Lipson, 2009
Polynomial and
LandsmeerKoza 1992
Symbolic regression vs.
Linear
Quadratic
Cubic
Quartic
Landsmeer
1 2 3 4 5 6
Across trials
32
FDP FDS EIP EDC LUM FDI FPI
2
5
10
20
Symbolic
Landsmeer
Quartic
Linear
Quadratic
Cubic
2 10 50
2
5
10
20
50
FDP
2 10 50
2
5
10
20
50
FDS
2 10 50
2
5
10
20
50
EIP
2 10 50
2
5
10
20
50
EDC
2 10 50
2
5
10
20
50
LUM
2 10 50
2
5
10
20
50
FDI
2 10 50
2
5
10
20
50
FPI
Tendon Number of parameters
NormalizedRMSerror(%)
1 2 3 4 5 6
Across hands
33
FDP FDS EIP EDC LUM FDI FPI
2
5
10
20
2
5
10
20
50
Tendon
NormalizedRMSerror(%)
Symbolic
Landsmeer
Quartic
Linear
Quadratic
Cubic
1 2 3 4 5 6
FDP FDS EIP EDC LUM FDI FPI
2
5
10
20
Symbolic
Landsmeer
Quartic
Linear
Quadratic
Cubic
10
20
50
Tendon
NormalizedRMSerror(%)
Conclusions
• For subject-specific models as well as generalizable
models,
• Symbolic regression more accurate than other models.
• Error bounds on generalizability.
• Models insight on tendon routing.
34
1 2 3 4 5 6
Computational models
35
Analytical models Anatomy-based models
s2 = ✓2
1 + 9e✓2
1 2 3 4 5 6
Anatomy-based modeling
36
Co-author: Dr. FranciscoValero-Cuevas
Netter, F. Atlas of Human Anatomy, 3rd edition, pp 447-453
1 2 3 4 5 6
4
Clavero et al. 2003
Boutonniere deformity
http://www.ispub.com/
Swan-neck deformity
Mallet finger deformity
37
• Widely used representation:
An-Chao normative model
(1978, 79)
TE=RB+UB
RB=0.133 RI+0.167 EDC+0.667 LU
UB=0.313 UI+0.167 EDC
ES=0.133 RI+0.313 UI+0.167 EDC+0.333 LU
Chao et al. 1978,79
1 2 3 4 5 6
Validation of An-Chao model
38
6 DOF loadcell
Load cells measur-
ing tendon tensions
Strings connecting
tendons to motors
Fingertip force vector
1 2 3 4 5 6
Validation of An-Chao normative model
39
• Large magnitude and direction errors in fingertip force
magnitude and direction.
1 2 3 4 5 6
(Sagittal plane)
FDP FDS EIP EDC LUM FDI FPI
0
20
40
60
Direrror(degrees)
FDP FDS EIP EDC LUM FDI FPI
0
200
400
600
800
1000
Magerror%
Magnitude errors Direction errors
Flex
Tap
Extend
40
• Let the physics and mechanics
decide force distribution.
• Existing musculoskeletal
modeling software do not model
tendon networks.
• Environment to understand role
of components in force
transformation.
Valero-Cuevas and Lipson, 2004
1 2 3 4 5 6
Specific aims
• Develop a modeling environment to
represent these tendon networks.
• Study sensitivity of fingertip force output to
properties of the extensor mechanism.
41
1 2 3 4 5 6
Tendon network simulator
and sensitivity analysis
5
Import MRI scan of bones.
Define tendon network.
Tendon network simulator
Solve the nonlinear finite
element problem.
1 2 3 4 5 6
42
Iteratively,
• Node and element penetration testing.
• Apply input Forces in increments
• Solve by Newton-Raphson iteration method the displacements of
nodes, U(i), for system equilibrium :
Finite Element Method
• Assemble the internal force vector and the tangent stiffness
matrix in each element.
43
Tension (N)
44
Differential loading as observed by
Sarrafian, 1970, Micks 1981
45
Validation
46
Motors
Load cells
Hemisphere
Reflective markers
Fixed nodes
Hemisphere
1 2 3 4 5 6
0 1 2 3 4 5
0
1
2
3
4
5
RF Magnitude (Model) in N
RFMagnitude(Data)inN
RF Node 1
RF Node 2
x=y line
Sensitivity analysis of parameters and topology
47
Tessellated
bones
i. Locations
of nodes
ii. Cross-sectional
areas
iii. Resting lengths
iv. Topology
1 2 3 4 5 6
48
Fully flexed
Tap
Fully
extended
Fully flexed Tap Fully extended
Fixed
nodes
Sensitivity of fingertip force output in three postures
1 2 3 4 5 6
Results: Sensitivity analysis
49
0
5
10
15
20
25
30
35
40
Directiondeviation(deg)
−100
−50
0
50
100
150
200
Magnitudedeviation(%)
1 2 3 4 1 2 3 4
Network parameters Topology Network parameters Topology
Fully flexed
Tap
Fully
extended
Fingertip force direction
and magnitude
• Sensitive to:
- Posture
- Resting lengths
- Topology
• Less sensitive to
- Node positions.
- Cross-sectional
areas.
1 2 3 4 5 6
Conclusions
50
• Developed a novel tendon network simulator
to represent these tendon networks.
• Studied what properties the fingertip force
output is most sensitive to.
51
1 2 3 4 5 6
Simultaneous inference of topology and
parameter values
Valero-Cuevas et al. 2007 Saxena et al. (in review)
Inference of anatomy-based models
Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas
6
R
✓
R1
R2
(✓)
52
Specific aims
•Simultaneous inference of 3D tendon networks from
input-output data in simulation.
•Inference of models of the finger’s extensor
mechanism directly from input-output data via sparse
experimentation.
Inference of anatomy-based models
Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas
6
1 2 3 4 5 6
Data
530 5000 10000 15000
0.1
0.5
2
10
50
Fitness error vs iterations
TotalRFerroras%
Num evaluations
CPU 1
CPU 2
CPU N
...
?
Topology and
parameter inference
of 3D models
1 2 3 4 5 6
Inference of tendon networks in simulation
54
6 DOF loadcell
Load cells measur-
ing tendon tensions
Strings connecting
tendons to motors
Fingertip force vector
3 Postures,
3 sets of inputs
1 2 3 4 5 6
Inference parameters
55
Tessellated
bones
i. Locations of
6 nodes
(4 variables)
ii. Resting lengths of
13 elements
(7 variables)
iii. Topology : 8
elements
(4 variables)
1 2 3 4 5 6
Estimation-exploration algorithm
Models Tests
Bongard et al., Science, 2006
1 2 3 4 5 6
56
Inference using EEA
57
Test suite
Converged?
5N 5N
3N
1N1.5N
3N
Start3 Random tests
Measured data
Evolve models
No
End
Two best tests selected
Estimation Exploration
1N
3N3N
Identify most
`intelligent’
tests
(posture +
tendon
tensions)
1 2 3 4 5 6
Inference results
58
0
100
200
300
400
500
600
700
RMSMagerror(%)
An Chao 1979
Optimized (best 5)
Full flex Tap Full Ext
0
5
10
15
20
25
30
35
40
45
50
RMSDirerrordeg
Full flex Tap Full Ext
1 2 3 4 5 6
5
10
15
20
25 N
0
Conclusions
• Demonstrated for the first time the successful inference
of model topology and parameters of a complex
musculoskeletal system from experimental input-output
data.
• Inferred models are more accurate than models in the
literature.
59
1 2 3 4 5 6
60
?
Computational
models
Experimentation Mathematical
modeling
Inference algorithms
61
?
Computational
models
Experimentation Mathematical
modeling
Inference algorithms
http://www.myefficientassistant.com/
http://www.punchstock.com/
‘Plant’
‘Controller’
Motor control
Boutonniere deformity
http://www.ispub.com/
Swan-neck deformity
Mallet finger deformity
Clinical
Computational models
Analytical models Anatomy-based models
s2 = ✓2
1 + 9e✓2
Conclusions and future work
62
•Applies to other systems.
•Step towards subject-specific models inferred from
data.
R
System
✓
s
R
2
Infer structure and
parameters from input-
output data
(✓)
tension in each cord, which was fed back to the motor so that a desired amount of
tension could be maintained on each tendon. The fingertip was rigidly attached to
6 DOF load cell (JR3, Woodland, CA).
We examined 5 different postures in 3 specimens, and 3 different postures in
the final specimen. Each posture was neutral in add-abduction. The examined
postures were chosen to cover the workspace and simulate those found in
everyday tasks. After positioning the finger in a specific posture, we determined
the action matrix for the finger: we applied 128 combinations of tendon tensions
representing all possible combinations of 0 and 10 N across the seven tendons, and
held each combination for 3 s. The fingertip forces resulting from each coordina-
tion pattern was determined by averaging the fingertip load cell readings across
the hold period. Linear regression was performed on each fingertip force
component using the tendon tensions as factors. In this way, the fingertip force
vector generated by 1 N of tendon tension was determined for all muscles. The
force vector generated by each muscle was scaled by an estimate for maximum
muscle force (Valero-Cuevas et al., 2000) to generate the columns of the action
matrix for each specimen and posture examined.
2.2. Action matrix for human leg model
We also studied the necessity of muscles for mechanical output for a
simplified, but plausible, sagittal plane model of the human leg (hip, knee, and
ankle joints). The model contained 14 muscles/muscle groups (Kuo and Zajac,
1993) (muscle/muscle group abbreviation in parentheses): medial and lateral
gastrocnemius (gastroc), soleus (soleus), tibialis posterior (tibpost), peroneus
brevis (perbrev), tibialis anterior (tibant), semimembranoseus/semitendenosis/
biceps femoris long head (hamstring), biceps femoris short head (bfsh), rectus
femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min), adductor
longus (addlong), iliacus (iliacus), tensor fac
(glmax). Moment arms for hip flexion, knee fle
of these muscles were obtained from a compute
et al., 2010). When necessary, multiple muscles
muscle groups. We derived a 3 Â 3 square Jaco
knee, and ankle angle to the foot position in t
orientation of the foot in space. This Jacobian m
combined with the moment arms and maxima
matrix mapping muscle activation to forces
Cuevas, 2005b), although our analysis of muscl
with respect to the endpoint forces.
2.3. Analyzing the action matrix to determine m
We used the action matrix to determine
for a given desired output force using standard
The muscle redundancy problem can be expre
(Chao and An, 1978; Spoor, 1983). These ineq
activation for each muscle lie between 0 and 1,
equal to the desired force. The inequality con
activation space called the task-specific activatio
produce the desired output force (Kuo and Z
Valero-Cuevas et al., 2000, 1998). We comput
specific activation set using a vertex enumera
1992). We then found the task-specific activat
output force for each muscle by projecting a
coordinate axes to determine the minimum and
While previous studies have used similar experi
Muscles cooperate
to exert force
Feasible force set,
one target force vector
Fy
Fx
Target x-force
Target y-f
Feasible force set
Target force vector
2
12
3
LIMB
3
1
Fy
Fx
Muscle 2
J.J. Kutch, F.J. Valero-Cuevas / Journal of Biomechanics 44 (2011) 1264–1270
Kutch andValero-Cuevas, 2011
Acknowledgements
63
Dr. Francisco
Valero-Cuevas
Dr. Hod
Lipson
Dr. Gerald
Loeb
Dr. Eva
Kanso Dr. Jason
Kutch
Josh Inouye
Sudarshan
Dayanidhi
Dr. Heiko
Hoffmann
Dr.Anupam
Saxena
Dr. Jae-Woong
Yi
Kornelius
Rácz
Brendan
Holt
Alex Reyes
Emily
Lawrence
Dr. Srideep
Musuvathy
John
Rocamora
Dr. Marta
Mora
Na-hyeon
Ko
Alison HuDr.	
  Evangelos	
  
Theodorou
Dr. Caroline
LeClercq
Dr.Vincent
Rod Hentz
Dr. Nina
Lightdale
Dr. Isabella
Fasolla
Kari Oki
Dr.	
  Terrance	
  
Sanger
Acknowledgements
64
The	
  NaEonal	
  Science	
  FoundaEon:	
  
CAREER award,
EFRI - COPN to FVC
The National Institutes of Health
NIAMS/NICHD R01-AR050520; R01-AR052345
Thank you!
65

Contenu connexe

En vedette

Declaración del secretario de la Fiscalía, Carlos Vasser
Declaración del secretario de la Fiscalía, Carlos VasserDeclaración del secretario de la Fiscalía, Carlos Vasser
Declaración del secretario de la Fiscalía, Carlos VasserLuis Ernesto Zegarra
 
A Financial Prescription for Doctors and Dentists
A Financial Prescription for Doctors and DentistsA Financial Prescription for Doctors and Dentists
A Financial Prescription for Doctors and DentistsDavid I. Katz
 
Baromètre de lentrepreneuriat en qpv
Baromètre de lentrepreneuriat en qpvBaromètre de lentrepreneuriat en qpv
Baromètre de lentrepreneuriat en qpvYannis Lambourdière
 
La Cámara Federal pone freno al tarifazo del gas
La Cámara Federal pone freno al tarifazo del gasLa Cámara Federal pone freno al tarifazo del gas
La Cámara Federal pone freno al tarifazo del gasLuis Ernesto Zegarra
 
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and Roadmap
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and RoadmapDenodo DataFest 2016: What’s New in Denodo Platform – Demo and Roadmap
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and RoadmapDenodo
 
Building a useful target architecture - Myth or reality2
Building a useful target architecture - Myth or reality2Building a useful target architecture - Myth or reality2
Building a useful target architecture - Myth or reality2Regine Deleu
 
praktikum_solidarnost_Ivaylo Radev
praktikum_solidarnost_Ivaylo Radevpraktikum_solidarnost_Ivaylo Radev
praktikum_solidarnost_Ivaylo RadevIvaylo Radev
 
2016 Data Science Salary Survey
2016 Data Science Salary Survey2016 Data Science Salary Survey
2016 Data Science Salary SurveyTrieu Nguyen
 
Transformative Enterprise Architecture
Transformative Enterprise ArchitectureTransformative Enterprise Architecture
Transformative Enterprise ArchitectureAtul Apte
 

En vedette (11)

Declaración del secretario de la Fiscalía, Carlos Vasser
Declaración del secretario de la Fiscalía, Carlos VasserDeclaración del secretario de la Fiscalía, Carlos Vasser
Declaración del secretario de la Fiscalía, Carlos Vasser
 
A Financial Prescription for Doctors and Dentists
A Financial Prescription for Doctors and DentistsA Financial Prescription for Doctors and Dentists
A Financial Prescription for Doctors and Dentists
 
El informe
El informeEl informe
El informe
 
Baromètre de lentrepreneuriat en qpv
Baromètre de lentrepreneuriat en qpvBaromètre de lentrepreneuriat en qpv
Baromètre de lentrepreneuriat en qpv
 
La Cámara Federal pone freno al tarifazo del gas
La Cámara Federal pone freno al tarifazo del gasLa Cámara Federal pone freno al tarifazo del gas
La Cámara Federal pone freno al tarifazo del gas
 
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and Roadmap
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and RoadmapDenodo DataFest 2016: What’s New in Denodo Platform – Demo and Roadmap
Denodo DataFest 2016: What’s New in Denodo Platform – Demo and Roadmap
 
Building a useful target architecture - Myth or reality2
Building a useful target architecture - Myth or reality2Building a useful target architecture - Myth or reality2
Building a useful target architecture - Myth or reality2
 
praktikum_solidarnost_Ivaylo Radev
praktikum_solidarnost_Ivaylo Radevpraktikum_solidarnost_Ivaylo Radev
praktikum_solidarnost_Ivaylo Radev
 
zeugnis-zsb
zeugnis-zsbzeugnis-zsb
zeugnis-zsb
 
2016 Data Science Salary Survey
2016 Data Science Salary Survey2016 Data Science Salary Survey
2016 Data Science Salary Survey
 
Transformative Enterprise Architecture
Transformative Enterprise ArchitectureTransformative Enterprise Architecture
Transformative Enterprise Architecture
 

Similaire à Manish Kurse PhD research slides

MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Studyhrishishah
 
An emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_eAn emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_esami bennour
 
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...toukaigi
 
ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3Peter Farlow
 
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...Luca Parisi
 
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...sugiuralab
 
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematics
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematicsDoes-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematics
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematicsJack Hebron
 
Rasool_PhD_Final_Presentation
Rasool_PhD_Final_PresentationRasool_PhD_Final_Presentation
Rasool_PhD_Final_PresentationGhulam Rasool
 
ME547 FInal Report
ME547 FInal ReportME547 FInal Report
ME547 FInal ReportJinyi Xie
 
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...ijsrd.com
 
Human action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorHuman action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorSoma Boubou
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...hirokazutanaka
 
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)Christopher Whitney
 
Poster RITS motion_correction
Poster RITS motion_correctionPoster RITS motion_correction
Poster RITS motion_correctionRania BERRADA
 
Recognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor dataRecognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor dataSuhyun Cho
 

Similaire à Manish Kurse PhD research slides (20)

MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Study
 
Besier (2003)
Besier (2003)Besier (2003)
Besier (2003)
 
An emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_eAn emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_e
 
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
 
ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3
 
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Reh...
 
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
 
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematics
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematicsDoes-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematics
Does-tester-experience-affect-the-reliability-of-multi-segment-foot-kinematics
 
Rasool_PhD_Final_Presentation
Rasool_PhD_Final_PresentationRasool_PhD_Final_Presentation
Rasool_PhD_Final_Presentation
 
ME547 FInal Report
ME547 FInal ReportME547 FInal Report
ME547 FInal Report
 
Cavallaro2005
Cavallaro2005Cavallaro2005
Cavallaro2005
 
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
 
Human action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptorHuman action recognition with kinect using a joint motion descriptor
Human action recognition with kinect using a joint motion descriptor
 
Limamali
LimamaliLimamali
Limamali
 
kape_science
kape_sciencekape_science
kape_science
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
 
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)
Predicting Guinea Fowl Muscle Forces During Perturbed Gaits (10:28th)
 
Poster RITS motion_correction
Poster RITS motion_correctionPoster RITS motion_correction
Poster RITS motion_correction
 
Aj03302190225
Aj03302190225Aj03302190225
Aj03302190225
 
Recognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor dataRecognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor data
 

Dernier

FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)AkefAfaneh2
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxrohankumarsinghrore1
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curveAreesha Ahmad
 

Dernier (20)

FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 

Manish Kurse PhD research slides

  • 1. Inference of computational models of tendon networks via sparse experimentation Manish Umesh Kurse Apr 11, 2012 1 Brain-Body Dynamics Laboratory Ph.D. committee: Dr. Francisco J.Valero-Cuevas, Dr. Hod Lipson, Dr. Gerald E. Loeb, Dr. Eva Kanso
  • 2. 2 MSMS:  Davoodi  et  al.,  2007 Measurement of internal states Injury, deformity, surgery h4p://www.ispub.com/ Ergonomics, prosthetic design, etc. h4p://www.anybodytech.com Inputs Outputs femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min), Muscles cooperate to exert force Solutions in muscle activation s task-specific activation se 2 12 3 LIMB 3 1 Fy Fx Muscle 2 Muscle 1 Target x-for Target y-f Task-specific activation Fig. 1. Three muscle ‘‘schematic model’’ conceptually illustrates the nece region of force space, the feasible force set, is achievable given this mu y-force. (c) The valid coordination patterns for the x and y targets can a Kutch andValero-Cuevas, 2011 Computational modeling of musculoskeletal systems
  • 3. 3 Modeling : Structure based on observation + experimental measurement of some parameters. Drawbacks:   •  Not  possible  to  measure  all  parameters.   •  Not  validated  with  experimental  input-­‐output  data.   •  Structure  assumed  need  not  be  funcEonally  accurate   representaEon. R System ✓ s R Structure assumed, parameters fit. 1 R2 Infer structure and parameters from input- output data (✓)
  • 4. 4 Develop computational methods to simultaneously infer structure and parameter values of functionally accurate models of musculoskeletal systems directly from experimental input-output data. Objective Inputs Outputs We examined 5 different postures in 3 specimens, and 3 different posture the final specimen. Each posture was neutral in add-abduction. The exami postures were chosen to cover the workspace and simulate those found everyday tasks. After positioning the finger in a specific posture, we determi the action matrix for the finger: we applied 128 combinations of tendon tensi representing all possible combinations of 0 and 10 N across the seven tendons, held each combination for 3 s. The fingertip forces resulting from each coordi tion pattern was determined by averaging the fingertip load cell readings acr the hold period. Linear regression was performed on each fingertip fo component using the tendon tensions as factors. In this way, the fingertip fo vector generated by 1 N of tendon tension was determined for all muscles. force vector generated by each muscle was scaled by an estimate for maxim muscle force (Valero-Cuevas et al., 2000) to generate the columns of the act matrix for each specimen and posture examined. 2.2. Action matrix for human leg model We also studied the necessity of muscles for mechanical output fo simplified, but plausible, sagittal plane model of the human leg (hip, knee, ankle joints). The model contained 14 muscles/muscle groups (Kuo and Za 1993) (muscle/muscle group abbreviation in parentheses): medial and lat gastrocnemius (gastroc), soleus (soleus), tibialis posterior (tibpost), peron brevis (perbrev), tibialis anterior (tibant), semimembranoseus/semitendeno biceps femoris long head (hamstring), biceps femoris short head (bfsh), rec femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min), adduc Muscles cooperate to exert force 2 12 3 LIMB 3 1 Fy Fx Kutch andValero-Cuevas, 2011
  • 5. Tendon networks of the fingers 5 Lateral bands Central slip Terminal slip Retinacular ligament Sagittal band Transverse fibers Clavero et al. (2003). “Extensor Mechanism of the Fingers: MR Imaging-Anatomic Correlation”, Radiographics Netter, F. Atlas of Human Anatomy, 3rd edition, pp 447-453
  • 6. Computational models 6 Analytical models Anatomy-based models s2 = ✓2 1 + 9e✓2
  • 7. Significance of research 7 http://www.myefficientassistant.com/ http://www.punchstock.com/ ‘Plant’ ‘Controller’ Motor control http://www.ispub.com/ Clinical Wilkinson et al. 2006 Robotics and prosthetics
  • 9. Dissertation outline Experimental actuation of a cadaveric hand. 2 3 4 5 6 New inference approach to learn functions of tendon routing. Application to the human index finger. Experimental validation of an existing model. Tendon network simulator and sensitivity analysis. Inference of anatomy-based models from experimental data. 1 Analytical models Anatomy-based models ASME SBC ’10 & IEEETBME ’12 ASB ’11 CSB ’12 ASME SBC ’09 9
  • 10. Cadaver finger control 10 Load cells Strings to the tendons Motion capture markers 6 DOF Load cell DC motors Positon encoders 1 2 3 4 5 6 1
  • 12. Slow finger movements 12 All intact Radial nerve palsy Median nerve palsy Ulnar nerve palsy fm Iteratively, 1 2 3 4 5 6
  • 13. Finger equilibrium 13 ⌧ = RFm 0 Neutral equilibrium Stable equilibrium 1 2 3 4 5 6
  • 15. Conclusions • Spring-based (muscle-like) control effective to control movement. • Simple tap requires a coordinated set of tendon excursions. • Neutral equilibrium in specific postures and tendon tensions. 15 1 2 3 4 5 6
  • 16. Computational models 16 Analytical models Anatomy-based models s2 = ✓2 1 + 9e✓2 1 2 3 4 5 6
  • 17. Inference of analytical functions 17 Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas 1 2 3 4 5 6 2 • Analytical functions for tendon excursions s = f(✓) Deshpande et al. 2009 • State of the art : Polynomial regression s s ‘Controller’ ‘Plant’ • Why? R(✓) = @s @✓ ⌧(✓) = R(✓)Fm R ✓ R1 R2 (✓)
  • 18. • Can we simultaneously learn form and parameter values from data? • Compare accuracy with polynomial regression. Specific Aims 18 1 2 3 4 5 6 s = f(✓)
  • 19. 19 Schmidt and Lipson, 2009 Koza 1992 Symbolic regression 1 2 3 4 5 6
  • 20. Robotic tendon driven system 20 s1 s2 s3 2 1 3 Position encoders Motors keeping tendons taut Load cells Motion capture markers Motion capture camera 1 2 3 4 5 6 Landsmeer model I Landsmeer model II Landsmeer model III s = 3.6sin(0.5θ) s = 0.6θ + 3.2(1 − θ/2 tan(θ/2) ) s = 1.8θ s = f(✓1, ✓2, ✓3)
  • 21. 21 Schmidt and Lipson, 2009 Polynomial regression Koza 1992 Symbolic regression vs. Linear Quadratic Cubic Quartic 1 2 3 4 5 6
  • 22. Comparing symbolic and polynomial regressions 22 2 5 10 20 2 5 10 20 2 5 10 20 Tendon 1 2 5 10 20 Tendon 2 Tendon 3 2 5 10 20 n/256 n/16 n/64 n n 2 n 4 n 8 n 16 n 32 n 64 n 128 n 256 X X X XX n/256 n/16 n/64 2 5 10 20 n n 2 n 4 n 8 n 16 n 32 n 64 n 128 n 256 n/256 n/16 n/64 n/256 n/16 n/64 n/256 n/16 n/64 n/256 n/16 n/64 Symbolic Quartic Linear Quadratic Cubic Dataset size (n =1688) Dataset size (n =1688) X X X Cross-validation Extrapolation RMSerror(%) RMSerror(%) X Error for all sizes > 5% Min training set size < n/256 2 5 10 20 Tendon 1 Tendon 2 2 5 10 20 25% 75% 125% 25% 75% 125% 25% 75% 125% 2 5 10 20 Tendon 3 RMSerror(%) Extrapolation by volume (%) 0 25 15075 10050 125 Symbolic Quartic Linear Quadratic Cubic X X X All extrapolation errors > 5% Achievable extrapolation > 150% Fewer training data points required More extrapolatable 2
  • 23. 23 Extrapolation by volume (%) 0 25 50 75 100 125 150 >150 n n 2 n 4 n 8 n 16 n 32 n 64 n 128 Training set size (n =1688) Extrapolationbyvolume(%) Symbolic Quartic Linear Quadratic Cubic Comparing symbolic and polynomial regressions Fewer training data points required More extrapolatable Kurse et al. 2012 (in press) 1 2 3 4 5 6
  • 24. 24 Landsmeer model I Landsmeer model II Landsmeer model III s = 3.6sin(0.5θ) s = 0.6θ + 3.2(1 − θ/2 tan(θ/2) ) s = 1.8θ Simulated musculoskeletal systems Landsmeer comb. Expressions I, I, I Target 1.8✓1 + 1.8✓2 + 1.8✓3 Evolved 1.8✓1 + 1.8✓2 + 1.8✓3 I, II, III Target 1.8✓1 + 3.6sin(0.5✓2) + 0.6✓3 (1.6✓3)/tan(0.5✓3) + 3.2 Evolved 1.8✓1 + 3.61sin(0.5✓2) + 1.54✓3 0.778sin(✓3) II, II, I Target 3.6sin(0.5✓1)+3.6sin(0.5✓2)+1.8✓3 Evolved 3.6sin(0.5✓1)+3.6sin(0.5✓2)+1.8✓3 Table 1: Target and inferred expressions with training, cross-validation and extrap for some combinations of Landsmeer’s models I, II, III 1 2 3 4 5 6
  • 25. Error vs. number of parameters 25 RMSerror(%) Cross-validationExtrapolation Symbolic Quartic Linear Quadratic Cubic Experimental data With no noise Number of parameters Simulated data With noise added 1 2 3 0 20 40 1 2 3 5 .0001 .01 1 0 20 40 .0001 .01 1 0 20 40 1 2 5 10 1 2 5 10 1 2 3 4 5 6
  • 26. Conclusions • Symbolic regression outperforms polynomial regression • Number of training data points • Extrapolatability • Robustness to noise • Number of parameters • Insight on physics 26 1 2 3 4 5 6 Kurse et al. 2012 (in press)
  • 27. 27 Novel method of inference of analytical functions from data Application to the human finger Schmidt and Lipson, 2009 s1 = f(✓1, ✓2, ✓3, ✓4) 1 2 3 4 5 6
  • 28. Analytical functions: Index finger 28 Constant moment arm (Linear) Polynomial regressions Landsmeer based models Landsmeer model I Landsmeer model II Landsmeer model III s = 3.6sin(0.5θ) s = 0.6θ + 3.2(1 − θ/2 tan(θ/2) ) s = 1.8θ Landsmeer, 1961, Brook 1995 3 Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas 1 2 3 4 5 6 Eg.An et al. 1983,Valero-Cuevas et al. 1998 Eg. Franko et al. 2011 Eg. Brook et al. 1995
  • 29. Specific aims • Infer analytical functions for the seven tendons of the index finger. • Compare against polynomial regression and Landsmeer based models. 29 1 2 3 4 5 6
  • 30. Cadaver experimental setup 30 MoEon   capture Load cells Position encoders Servo motors Markers 1 2 3 4 5 6 s1 = f(✓1, ✓2, ✓3, ✓4) s7 = f(✓1, ✓2, ✓3, ✓4) . . .
  • 31. 31 Schmidt and Lipson, 2009 Polynomial and LandsmeerKoza 1992 Symbolic regression vs. Linear Quadratic Cubic Quartic Landsmeer 1 2 3 4 5 6
  • 32. Across trials 32 FDP FDS EIP EDC LUM FDI FPI 2 5 10 20 Symbolic Landsmeer Quartic Linear Quadratic Cubic 2 10 50 2 5 10 20 50 FDP 2 10 50 2 5 10 20 50 FDS 2 10 50 2 5 10 20 50 EIP 2 10 50 2 5 10 20 50 EDC 2 10 50 2 5 10 20 50 LUM 2 10 50 2 5 10 20 50 FDI 2 10 50 2 5 10 20 50 FPI Tendon Number of parameters NormalizedRMSerror(%) 1 2 3 4 5 6
  • 33. Across hands 33 FDP FDS EIP EDC LUM FDI FPI 2 5 10 20 2 5 10 20 50 Tendon NormalizedRMSerror(%) Symbolic Landsmeer Quartic Linear Quadratic Cubic 1 2 3 4 5 6 FDP FDS EIP EDC LUM FDI FPI 2 5 10 20 Symbolic Landsmeer Quartic Linear Quadratic Cubic 10 20 50 Tendon NormalizedRMSerror(%)
  • 34. Conclusions • For subject-specific models as well as generalizable models, • Symbolic regression more accurate than other models. • Error bounds on generalizability. • Models insight on tendon routing. 34 1 2 3 4 5 6
  • 35. Computational models 35 Analytical models Anatomy-based models s2 = ✓2 1 + 9e✓2 1 2 3 4 5 6
  • 36. Anatomy-based modeling 36 Co-author: Dr. FranciscoValero-Cuevas Netter, F. Atlas of Human Anatomy, 3rd edition, pp 447-453 1 2 3 4 5 6 4 Clavero et al. 2003 Boutonniere deformity http://www.ispub.com/ Swan-neck deformity Mallet finger deformity
  • 37. 37 • Widely used representation: An-Chao normative model (1978, 79) TE=RB+UB RB=0.133 RI+0.167 EDC+0.667 LU UB=0.313 UI+0.167 EDC ES=0.133 RI+0.313 UI+0.167 EDC+0.333 LU Chao et al. 1978,79 1 2 3 4 5 6
  • 38. Validation of An-Chao model 38 6 DOF loadcell Load cells measur- ing tendon tensions Strings connecting tendons to motors Fingertip force vector 1 2 3 4 5 6
  • 39. Validation of An-Chao normative model 39 • Large magnitude and direction errors in fingertip force magnitude and direction. 1 2 3 4 5 6 (Sagittal plane) FDP FDS EIP EDC LUM FDI FPI 0 20 40 60 Direrror(degrees) FDP FDS EIP EDC LUM FDI FPI 0 200 400 600 800 1000 Magerror% Magnitude errors Direction errors Flex Tap Extend
  • 40. 40 • Let the physics and mechanics decide force distribution. • Existing musculoskeletal modeling software do not model tendon networks. • Environment to understand role of components in force transformation. Valero-Cuevas and Lipson, 2004 1 2 3 4 5 6
  • 41. Specific aims • Develop a modeling environment to represent these tendon networks. • Study sensitivity of fingertip force output to properties of the extensor mechanism. 41 1 2 3 4 5 6 Tendon network simulator and sensitivity analysis 5
  • 42. Import MRI scan of bones. Define tendon network. Tendon network simulator Solve the nonlinear finite element problem. 1 2 3 4 5 6 42
  • 43. Iteratively, • Node and element penetration testing. • Apply input Forces in increments • Solve by Newton-Raphson iteration method the displacements of nodes, U(i), for system equilibrium : Finite Element Method • Assemble the internal force vector and the tangent stiffness matrix in each element. 43
  • 44. Tension (N) 44 Differential loading as observed by Sarrafian, 1970, Micks 1981
  • 45. 45
  • 46. Validation 46 Motors Load cells Hemisphere Reflective markers Fixed nodes Hemisphere 1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 RF Magnitude (Model) in N RFMagnitude(Data)inN RF Node 1 RF Node 2 x=y line
  • 47. Sensitivity analysis of parameters and topology 47 Tessellated bones i. Locations of nodes ii. Cross-sectional areas iii. Resting lengths iv. Topology 1 2 3 4 5 6
  • 48. 48 Fully flexed Tap Fully extended Fully flexed Tap Fully extended Fixed nodes Sensitivity of fingertip force output in three postures 1 2 3 4 5 6
  • 49. Results: Sensitivity analysis 49 0 5 10 15 20 25 30 35 40 Directiondeviation(deg) −100 −50 0 50 100 150 200 Magnitudedeviation(%) 1 2 3 4 1 2 3 4 Network parameters Topology Network parameters Topology Fully flexed Tap Fully extended Fingertip force direction and magnitude • Sensitive to: - Posture - Resting lengths - Topology • Less sensitive to - Node positions. - Cross-sectional areas. 1 2 3 4 5 6
  • 50. Conclusions 50 • Developed a novel tendon network simulator to represent these tendon networks. • Studied what properties the fingertip force output is most sensitive to.
  • 51. 51 1 2 3 4 5 6 Simultaneous inference of topology and parameter values Valero-Cuevas et al. 2007 Saxena et al. (in review) Inference of anatomy-based models Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas 6 R ✓ R1 R2 (✓)
  • 52. 52 Specific aims •Simultaneous inference of 3D tendon networks from input-output data in simulation. •Inference of models of the finger’s extensor mechanism directly from input-output data via sparse experimentation. Inference of anatomy-based models Co-authors: Dr. Hod Lipson, Dr. FranciscoValero-Cuevas 6 1 2 3 4 5 6
  • 53. Data 530 5000 10000 15000 0.1 0.5 2 10 50 Fitness error vs iterations TotalRFerroras% Num evaluations CPU 1 CPU 2 CPU N ... ? Topology and parameter inference of 3D models 1 2 3 4 5 6
  • 54. Inference of tendon networks in simulation 54 6 DOF loadcell Load cells measur- ing tendon tensions Strings connecting tendons to motors Fingertip force vector 3 Postures, 3 sets of inputs 1 2 3 4 5 6
  • 55. Inference parameters 55 Tessellated bones i. Locations of 6 nodes (4 variables) ii. Resting lengths of 13 elements (7 variables) iii. Topology : 8 elements (4 variables) 1 2 3 4 5 6
  • 56. Estimation-exploration algorithm Models Tests Bongard et al., Science, 2006 1 2 3 4 5 6 56
  • 57. Inference using EEA 57 Test suite Converged? 5N 5N 3N 1N1.5N 3N Start3 Random tests Measured data Evolve models No End Two best tests selected Estimation Exploration 1N 3N3N Identify most `intelligent’ tests (posture + tendon tensions) 1 2 3 4 5 6
  • 58. Inference results 58 0 100 200 300 400 500 600 700 RMSMagerror(%) An Chao 1979 Optimized (best 5) Full flex Tap Full Ext 0 5 10 15 20 25 30 35 40 45 50 RMSDirerrordeg Full flex Tap Full Ext 1 2 3 4 5 6 5 10 15 20 25 N 0
  • 59. Conclusions • Demonstrated for the first time the successful inference of model topology and parameters of a complex musculoskeletal system from experimental input-output data. • Inferred models are more accurate than models in the literature. 59 1 2 3 4 5 6
  • 61. 61 ? Computational models Experimentation Mathematical modeling Inference algorithms http://www.myefficientassistant.com/ http://www.punchstock.com/ ‘Plant’ ‘Controller’ Motor control Boutonniere deformity http://www.ispub.com/ Swan-neck deformity Mallet finger deformity Clinical Computational models Analytical models Anatomy-based models s2 = ✓2 1 + 9e✓2
  • 62. Conclusions and future work 62 •Applies to other systems. •Step towards subject-specific models inferred from data. R System ✓ s R 2 Infer structure and parameters from input- output data (✓) tension in each cord, which was fed back to the motor so that a desired amount of tension could be maintained on each tendon. The fingertip was rigidly attached to 6 DOF load cell (JR3, Woodland, CA). We examined 5 different postures in 3 specimens, and 3 different postures in the final specimen. Each posture was neutral in add-abduction. The examined postures were chosen to cover the workspace and simulate those found in everyday tasks. After positioning the finger in a specific posture, we determined the action matrix for the finger: we applied 128 combinations of tendon tensions representing all possible combinations of 0 and 10 N across the seven tendons, and held each combination for 3 s. The fingertip forces resulting from each coordina- tion pattern was determined by averaging the fingertip load cell readings across the hold period. Linear regression was performed on each fingertip force component using the tendon tensions as factors. In this way, the fingertip force vector generated by 1 N of tendon tension was determined for all muscles. The force vector generated by each muscle was scaled by an estimate for maximum muscle force (Valero-Cuevas et al., 2000) to generate the columns of the action matrix for each specimen and posture examined. 2.2. Action matrix for human leg model We also studied the necessity of muscles for mechanical output for a simplified, but plausible, sagittal plane model of the human leg (hip, knee, and ankle joints). The model contained 14 muscles/muscle groups (Kuo and Zajac, 1993) (muscle/muscle group abbreviation in parentheses): medial and lateral gastrocnemius (gastroc), soleus (soleus), tibialis posterior (tibpost), peroneus brevis (perbrev), tibialis anterior (tibant), semimembranoseus/semitendenosis/ biceps femoris long head (hamstring), biceps femoris short head (bfsh), rectus femoris (rectfem), gluteus medialis/glueteus minimus (glmed/min), adductor longus (addlong), iliacus (iliacus), tensor fac (glmax). Moment arms for hip flexion, knee fle of these muscles were obtained from a compute et al., 2010). When necessary, multiple muscles muscle groups. We derived a 3 Â 3 square Jaco knee, and ankle angle to the foot position in t orientation of the foot in space. This Jacobian m combined with the moment arms and maxima matrix mapping muscle activation to forces Cuevas, 2005b), although our analysis of muscl with respect to the endpoint forces. 2.3. Analyzing the action matrix to determine m We used the action matrix to determine for a given desired output force using standard The muscle redundancy problem can be expre (Chao and An, 1978; Spoor, 1983). These ineq activation for each muscle lie between 0 and 1, equal to the desired force. The inequality con activation space called the task-specific activatio produce the desired output force (Kuo and Z Valero-Cuevas et al., 2000, 1998). We comput specific activation set using a vertex enumera 1992). We then found the task-specific activat output force for each muscle by projecting a coordinate axes to determine the minimum and While previous studies have used similar experi Muscles cooperate to exert force Feasible force set, one target force vector Fy Fx Target x-force Target y-f Feasible force set Target force vector 2 12 3 LIMB 3 1 Fy Fx Muscle 2 J.J. Kutch, F.J. Valero-Cuevas / Journal of Biomechanics 44 (2011) 1264–1270 Kutch andValero-Cuevas, 2011
  • 63. Acknowledgements 63 Dr. Francisco Valero-Cuevas Dr. Hod Lipson Dr. Gerald Loeb Dr. Eva Kanso Dr. Jason Kutch Josh Inouye Sudarshan Dayanidhi Dr. Heiko Hoffmann Dr.Anupam Saxena Dr. Jae-Woong Yi Kornelius Rácz Brendan Holt Alex Reyes Emily Lawrence Dr. Srideep Musuvathy John Rocamora Dr. Marta Mora Na-hyeon Ko Alison HuDr.  Evangelos   Theodorou Dr. Caroline LeClercq Dr.Vincent Rod Hentz Dr. Nina Lightdale Dr. Isabella Fasolla Kari Oki Dr.  Terrance   Sanger
  • 64. Acknowledgements 64 The  NaEonal  Science  FoundaEon:   CAREER award, EFRI - COPN to FVC The National Institutes of Health NIAMS/NICHD R01-AR050520; R01-AR052345