SlideShare une entreprise Scribd logo
1  sur  85
Télécharger pour lire hors ligne
DESIGNING USABLE
VR INTERFACES
Mark Billinghurst
University of Auckland
October 3rd 2018
How Can we Design Useful VR?
• Designing VR experiences that meet real needs
Interaction Design
Designing interactive products to
support people in their everyday
and working lives”
Preece, J., (2002). Interaction Design
• Interaction Design is the design of
user experience with technology
• Interaction Design involves answering three questions:
• What do you do? - How do you affect the world?
• What do you feel? – What do you sense of the world?
• What do you know? – What do you learn?
Bill Verplank
The Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Develop alternative prototypes/concepts and compare them
And iterate, iterate, iterate....
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Develop alternative prototypes/concepts and compare them
And iterate, iterate, iterate....
NeedsAnalysis Goals
1. Create a deep understanding of
the user and problem space
2. Understand howVR can help
address the user needs
Methods for Identifying User Needs
Learn from
people
Learn from
analogous
settings
Learn from
Experts
Immersive
yourself in
context
Is VR the Best Solution?
• Not every problem can be solved by VR..
• Problems Ideal for Virtual Reality, have:
• visual elements
• 3D spatial interaction
• physical manipulation
• procedural learning
• Problems Not ideal for VR, have:
• heavy reading, text editing
• many non visual elements
• need for connection with real world
• need for tactile, haptic, olfaction feedback
Suitable for VR or not?
The Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Idea Generation
• Once user need is found, solutions can be proposed
• Idea generation through:
• Brainstorming
• Lateral thinking
• Ideal storming
• Formal problem solving
• Etc..
VR Interface Design Sketches
• Sketch out Design concept(s)
Why is Sketching Useful?
• Early ideation
• Think through ideas
• Force you to visualize how things come together
• Communicate ideas to inspire new designs
• Ideal for active brainstorming
• Beginning of prototyping process
VR Design Considerations
• Use UI Best Practices
• Adapt know UI guidelines to VR
• Use of Interface Metaphors/Affordances
• Decide best metaphor for VR applications
• Design for Humans
• Use Human Information Processing model
• Design for Different User Groups
• Different users may have unique needs
• Design for the Whole User
• Social, cultural, emotional, physical cognitive
VR Human Interface Guidelines
• Interface design website - http://vrhig.com/
• Set of VR interface design best practices
More VR Design Guidelines
• Use real-world cues when appropriate.
• If there is a horizon line, keep it steady
• Be careful about mixing 2D GUI and 3D
• Avoid rapid movement, it makes people sick
• Avoid rapid or abrupt transitions to the world space
• Keep the density of information and objects on screen low
• Do not require the user to move their head or body too much
From https://www.wired.com/2015/04/how-to-design-for-virtual-reality/
Cardboard Design Lab
• Mobile VR App providing examples of best practice VR
designs and user interaction (iOS, Play app stores)
Demo: Cardboard Design Lab
• https://www.youtube.com/watch?v=2Uf-ru2Ndvc
Use Interface Metaphors
• Design interface object to be similar to familiar
physical object that the user knows how to use
• E.g. Desktop metaphor, spreadsheet, calculator
• Benefits
• Makes learning interface easier and more accessible
• Users understand underlying conceptual model
Typical VR Interface Metaphors
• Direct Manipulation
• Reach out and directly grab objects
• Ray Casting
• Select objects through ray from head/hand
• Vehicle Movement
• Move through VR environment through vehicle movement
Simple Virtual Hand Manipulation
https://www.youtube.com/watch?v=_OgfREa4ggw
How are These Used?
Affordances
”… the perceived and actual properties of
the thing, primarily those fundamental
properties that determine just how the thing
could possibly be used. [...]
Affordances provide strong clues to the
operations of things.”
(Norman, The Psychology of Everyday Things 1988, p.9)
Affordances in VR
• Design interface objects to show how they are used
• Use visual cues to show possible affordances
• Perceived affordances should match actual affordances
• Good cognitive model - map object behavior to expected
Familiar objects in Job Simulator Object shape shows how to pick up
Examples of Affordances in VR
Virtual buttons can be pushed Virtual doors can be walked through
Virtual objects can be picked upFlying like a bird in Birdly
Human Information Processing
• High level staged model from Wickens and Carswell (1997)
• Relates perception, cognition, and physical ergonomics
Perception Cognition Ergonomics
Design for Physical Ergonomics
• Design for the human motion range
• Consider human comfort and natural posture
• Design for hand input
• Coarse and fine scale motions, gripping and grasping
• Avoid “Gorilla arm syndrome” from holding arm pose
Consider the Whole User Needs
Would you wear this HMD?
Whole User Needs
• Social
• Don’t make your user look stupid
• Cultural
• Follow local cultural norms
• Physical
• Can the user physically use the interface?
• Cognitive
• Can the user understand how the interface works?
• Emotional
• Make the user feel good and in control
How can we Interact in VR?
• How can VR devices create a natural user experience?
Universal 3D Interaction Tasks in VR
• Object Interaction
• Selection: Picking object(s) from a set
• Manipulation: Modifying object properties
• Navigation
• Travel: motor component of viewpoint motion
• Wayfinding: cognitive component; decision-making
• System control
• Issuing a command to change system state or mode
Interaction: Selection and Manipulation
• Selection:
• specifying one or more objects from a set
• Manipulation:
• modifying object properties
• position, orientation, scale, shape, color, texture, behavior..
Classification of Selection Techniques
• asdf
Simple virtual hand technique
• Process
• One-to-one mapping between physical and virtual hands
• Object can be selected by “touching” with virtual hand
• “Natural” mapping
• Limitation:
• Only select objects in hand reach
Ray-casting technique
• “Laser pointer” attached
to virtual hand
• First object intersected by
ray may be selected
• User only needs to control
2 DOFs
• Proven to perform well
for remote selection
• Variants:
• Cone casting
• Snap-to-object rays
Example Ray Casting
• https://www.youtube.com/watch?v=W1ZUBTPCL3E
Classification of Manipulation Techniques
• asdfa
World-in-miniature (WIM) technique
• “Dollhouse” world held in
user’s hand
• Miniature objects can be
manipulated directly
• Moving miniature objects
affects full-scale objects
• Can also be used for
navigation
Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in
Miniature. Proceedings of CHI: Human Factors in Computing Systems, 265-272, and
Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in
Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM SIGGRAPH, 399-400.
https://www.youtube.com/watch?v=Ytc3ix-He4E
Navigation
• How we move from place to place within an environment
• The combination of travel with wayfinding
• Wayfinding: cognitive component of navigation
• Travel: motor component of navigation
• Travel without wayfinding: "exploring", "wandering”
Movement Process
• Focusing on user control
Taxonomy of Travel Techniques
• Focusing on
sub-task of
travel
Bowman, D. A., Koller, D., &
Hodges, L. F. (1997, March).
Travel in immersive virtual
environments: An evaluation
of viewpoint motion control
techniques. In Virtual Reality
Annual International
Symposium, 1997., IEEE
1997 (pp. 45-52). IEEE.
TelePortation
• Use controller to select end point
• Usable with 3DOF contoller
• Jump to a fixed point in VR
• Discrete motion can be confusing/cause sickness
https://www.youtube.com/watch?v=SbxgNnOeyF8
Redirected Walking
• Address problem of limited
walking space
• Warp VR graphics view of
space
• Create illusion of walking
straight, while walking in circles
Razzaque, S., Kohn, Z., & Whitton, M. C. (2001, September). Redirected walking.
In Proceedings of EUROGRAPHICS (Vol. 9, pp. 105-106).
Redirected Walking
• https://www.youtube.com/watch?v=KVQBRkAq6OY
System Control
• Issuing a command to change system state or mode
• Examples
• Launching application
• Changing system settings
• Opening a file
• Etc.
• Key points
• Make commands visible to user
• Support easy selection
System Control Options
Example: GearVR Interface
• 2D Interface in 3D Environment
• Head pointing and click to select
https://www.youtube.com/watch?v=qMadjF1B3rI
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
How can we quickly
prototype Virtual Reality
experiences with little or
no coding?
Why Prototype?
▪ Quick visual design
▪ Capture key interactions
▪ Focus on user experience
▪ Communicate design ideas
▪ “Learn by doing/experiencing”
VR Prototyping Tools
• Low Fidelity
• Sketched Paper Interfaces – pen/paper, non-interactive
• Onride Photoshop tool – digital, non-interactive
• InstaVR - 360 web based tool, simple interactivity
• SketchBox – create VR interface inside VR
• High Fidelity
• Entiti – template based VR with visual programming
• A-Frame – web based VR tool using HTML
• EditorVR – Unity wrapper inside VR
• Unity/Unreal Game Engine – programming needed
Sketching VR Interfaces
• Download 360 panorama template grid
• Draw interface ideas into grid
• Scan into 360 photo viewer for VR HMD
See https://virtualrealitypop.com/vr-sketches-56599f99b357
Example Sketched VR Interface
• https://www.youtube.com/watch?v=BmMh6-jPWOc
ONIRIDE - 360° Art Plugin for Photoshop
• Draw 360 panorama’s directly in Photoshop
• Preview in Photoshop, export to VR
• See http://www.oniride.com/360art
OnRide Demo
• https://www.youtube.com/watch?v=1P1EfGizal0
InstaVR
•http://www.instavr.co/
•Free, fast panorama VR, deploy to multi platforms
Demo - Using InstaVR
• https://www.youtube.com/watch?v=M2C8vDL0YeA
Sketchbox
• VR design tool - create VR interface inside VR
• Support for HTC Vive, Oculus Rift
• Easy to use VR sketching tool
• Available from SteamVR
• See https://www.sketchboxvr.com/
Sketchbox Demo
• https://www.youtube.com/watch?v=gWfgewGzaEI
A-Frame
• See https://aframe.io/
• Web based VR framework
• Make WebVR with HTML and Entity-Component
• Works on Vive, Rift, Daydream, GearVR, desktop
A-Frame Demo
• https://www.youtube.com/watch?v=1MskH9uqOyQ
Unity EditorVR
• Edit Unity VR scenes inside VR
• 3D user interface on top of Unity
• 2 handed interface using HTC Vive
• Support for multi-user input
• Available from https://github.com/Unity-Technologies/EditorVR
Demo: Unity EditorVR
• https://www.youtube.com/watch?v=ILe2atyofqM
More Prototyping Tools
• List of 24 prototyping tools
• Tools for prototyping 3D VR experiences
• Tools for prototyping 360 degree experiences
• Web based Tools for 3D prototyping
• 3D modeling tools in VR
See http://bit.ly/2wx3i6H
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
What is Evaluation?
•Evaluation is concerned with
gathering data about the usability
of a design or product by a
specified group of users for a
particular activity within a specified
environment or work context
When to evaluate?
• Once the product has been developed
• pros : rapid development, small evaluation cost
• cons : rectifying problems
• During design and development
• pros : find and rectify problems early
• cons : higher evaluation cost, longer development
design implementation evaluation
redesign &
reimplementation
design implementation
Four Evaluation Paradigms
•‘quick and dirty’
•usability testing (lab studies)
•field studies
•predictive evaluation
EXAMPLE:
CONCEPT TO DEMO
NASA Hololens AR/VR Concept Demo
• Vision: Work on Mars from your office
• Story and sketches based on vision
• Led to working Demo
Chesley Bonestell (1940s)
Hololens Story
HoloLens Concept Sketches
Final NASA HoloLens OnSight Demo
https://www.youtube.com/watch?v=o-GP3Kx6-CE
CONCLUSION
Conclusion
• Interaction Design methods can be used to develop
effective Virtual Realty interfaces
• Needs Analysis
• Several methods available for determining user needs
• Design
• Use metaphors and affordances, good UI guidelines
• Prototyping
• Many rapid prototyping tools available
• Evaluation
• Use multiple methods for best evaluation
Resources
• Excellent book
• 3D User Interfaces: Theory and Practice
• Doug Bowman, Ernst Kruijff, Joseph, LaViola, Ivan Poupyrev
• Great Website
• http://www.uxofvr.com/
• 3D UI research at Virginia Tech.
• research.cs.vt.edu/3di/
UX of VR Website - www.uxofvr.com
• Many examples of great interaction techniques
• Videos, books, articles, slides, code, etc..
www.empathiccomputing.org
@marknb00
mark.billinghurst@auckland.ac.nz

Contenu connexe

Tendances

Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR ApplicationsMark Billinghurst
 
2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XRMark Billinghurst
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR InteractionMark Billinghurst
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRMark Billinghurst
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRMark Billinghurst
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR TechnologyMark Billinghurst
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysMark Billinghurst
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyMark Billinghurst
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsMark Billinghurst
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional InterfacesMark Billinghurst
 
Collaborative Immersive Analytics
Collaborative Immersive AnalyticsCollaborative Immersive Analytics
Collaborative Immersive AnalyticsMark Billinghurst
 
Comp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRComp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRMark Billinghurst
 
Comp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignComp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignMark Billinghurst
 
Create Your Own VR Experience
Create Your Own VR ExperienceCreate Your Own VR Experience
Create Your Own VR ExperienceMark Billinghurst
 

Tendances (20)

Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR Applications
 
2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research Directions
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VR
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VR
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
 
Lecture 4: VR Systems
Lecture 4: VR SystemsLecture 4: VR Systems
Lecture 4: VR Systems
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR Technology
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR Systems
 
ISS2022 Keynote
ISS2022 KeynoteISS2022 Keynote
ISS2022 Keynote
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional Interfaces
 
Collaborative Immersive Analytics
Collaborative Immersive AnalyticsCollaborative Immersive Analytics
Collaborative Immersive Analytics
 
Comp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRComp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XR
 
Comp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignComp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface Design
 
Create Your Own VR Experience
Create Your Own VR ExperienceCreate Your Own VR Experience
Create Your Own VR Experience
 

Similaire à Designing Usable Interface

COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityMark Billinghurst
 
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityCOMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityMark Billinghurst
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityMark Billinghurst
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMark Billinghurst
 
Lecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityMark Billinghurst
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRMark Billinghurst
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityMark Billinghurst
 
virtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdfvirtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdf21107117
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesMark Billinghurst
 
CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2Dr. Ahmed Al Zaidy
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMark Billinghurst
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsMark Billinghurst
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VRMark Billinghurst
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionMark Billinghurst
 

Similaire à Designing Usable Interface (20)

COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
 
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityCOMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
 
ICS2208 lecture7
ICS2208 lecture7ICS2208 lecture7
ICS2208 lecture7
 
ARI2132 lecture 8
ARI2132 lecture 8ARI2132 lecture 8
ARI2132 lecture 8
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface Design
 
Lecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual Reality
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VR
 
Virtual Reality
Virtual RealityVirtual Reality
Virtual Reality
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual Reality
 
virtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdfvirtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User Interfaces
 
ICS2208 lecture6
ICS2208 lecture6ICS2208 lecture6
ICS2208 lecture6
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research Directions
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR Applications
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR Interaction
 

Plus de Mark Billinghurst

IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented RealityMark Billinghurst
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesMark Billinghurst
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsMark Billinghurst
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseMark Billinghurst
 
Comp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsComp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsMark Billinghurst
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARMark Billinghurst
 

Plus de Mark Billinghurst (12)

IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented Reality
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR Experiences
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR Systems
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
 
Metaverse Learning
Metaverse LearningMetaverse Learning
Metaverse Learning
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
 
Comp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsComp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and Systems
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise AR
 

Dernier

Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 

Dernier (20)

Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 

Designing Usable Interface

  • 1. DESIGNING USABLE VR INTERFACES Mark Billinghurst University of Auckland October 3rd 2018
  • 2. How Can we Design Useful VR? • Designing VR experiences that meet real needs
  • 3. Interaction Design Designing interactive products to support people in their everyday and working lives” Preece, J., (2002). Interaction Design • Interaction Design is the design of user experience with technology
  • 4. • Interaction Design involves answering three questions: • What do you do? - How do you affect the world? • What do you feel? – What do you sense of the world? • What do you know? – What do you learn? Bill Verplank
  • 5. The Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product Develop alternative prototypes/concepts and compare them And iterate, iterate, iterate....
  • 6. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product Develop alternative prototypes/concepts and compare them And iterate, iterate, iterate....
  • 7. NeedsAnalysis Goals 1. Create a deep understanding of the user and problem space 2. Understand howVR can help address the user needs
  • 8. Methods for Identifying User Needs Learn from people Learn from analogous settings Learn from Experts Immersive yourself in context
  • 9. Is VR the Best Solution? • Not every problem can be solved by VR.. • Problems Ideal for Virtual Reality, have: • visual elements • 3D spatial interaction • physical manipulation • procedural learning • Problems Not ideal for VR, have: • heavy reading, text editing • many non visual elements • need for connection with real world • need for tactile, haptic, olfaction feedback
  • 10. Suitable for VR or not?
  • 11. The Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 12. Idea Generation • Once user need is found, solutions can be proposed • Idea generation through: • Brainstorming • Lateral thinking • Ideal storming • Formal problem solving • Etc..
  • 13. VR Interface Design Sketches • Sketch out Design concept(s)
  • 14. Why is Sketching Useful? • Early ideation • Think through ideas • Force you to visualize how things come together • Communicate ideas to inspire new designs • Ideal for active brainstorming • Beginning of prototyping process
  • 15. VR Design Considerations • Use UI Best Practices • Adapt know UI guidelines to VR • Use of Interface Metaphors/Affordances • Decide best metaphor for VR applications • Design for Humans • Use Human Information Processing model • Design for Different User Groups • Different users may have unique needs • Design for the Whole User • Social, cultural, emotional, physical cognitive
  • 16. VR Human Interface Guidelines • Interface design website - http://vrhig.com/ • Set of VR interface design best practices
  • 17. More VR Design Guidelines • Use real-world cues when appropriate. • If there is a horizon line, keep it steady • Be careful about mixing 2D GUI and 3D • Avoid rapid movement, it makes people sick • Avoid rapid or abrupt transitions to the world space • Keep the density of information and objects on screen low • Do not require the user to move their head or body too much From https://www.wired.com/2015/04/how-to-design-for-virtual-reality/
  • 18. Cardboard Design Lab • Mobile VR App providing examples of best practice VR designs and user interaction (iOS, Play app stores)
  • 19. Demo: Cardboard Design Lab • https://www.youtube.com/watch?v=2Uf-ru2Ndvc
  • 20. Use Interface Metaphors • Design interface object to be similar to familiar physical object that the user knows how to use • E.g. Desktop metaphor, spreadsheet, calculator • Benefits • Makes learning interface easier and more accessible • Users understand underlying conceptual model
  • 21. Typical VR Interface Metaphors • Direct Manipulation • Reach out and directly grab objects • Ray Casting • Select objects through ray from head/hand • Vehicle Movement • Move through VR environment through vehicle movement
  • 22. Simple Virtual Hand Manipulation https://www.youtube.com/watch?v=_OgfREa4ggw
  • 23. How are These Used?
  • 24. Affordances ”… the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used. [...] Affordances provide strong clues to the operations of things.” (Norman, The Psychology of Everyday Things 1988, p.9)
  • 25. Affordances in VR • Design interface objects to show how they are used • Use visual cues to show possible affordances • Perceived affordances should match actual affordances • Good cognitive model - map object behavior to expected Familiar objects in Job Simulator Object shape shows how to pick up
  • 26. Examples of Affordances in VR Virtual buttons can be pushed Virtual doors can be walked through Virtual objects can be picked upFlying like a bird in Birdly
  • 27. Human Information Processing • High level staged model from Wickens and Carswell (1997) • Relates perception, cognition, and physical ergonomics Perception Cognition Ergonomics
  • 28. Design for Physical Ergonomics • Design for the human motion range • Consider human comfort and natural posture • Design for hand input • Coarse and fine scale motions, gripping and grasping • Avoid “Gorilla arm syndrome” from holding arm pose
  • 29. Consider the Whole User Needs
  • 30. Would you wear this HMD?
  • 31. Whole User Needs • Social • Don’t make your user look stupid • Cultural • Follow local cultural norms • Physical • Can the user physically use the interface? • Cognitive • Can the user understand how the interface works? • Emotional • Make the user feel good and in control
  • 32. How can we Interact in VR? • How can VR devices create a natural user experience?
  • 33.
  • 34. Universal 3D Interaction Tasks in VR • Object Interaction • Selection: Picking object(s) from a set • Manipulation: Modifying object properties • Navigation • Travel: motor component of viewpoint motion • Wayfinding: cognitive component; decision-making • System control • Issuing a command to change system state or mode
  • 35. Interaction: Selection and Manipulation • Selection: • specifying one or more objects from a set • Manipulation: • modifying object properties • position, orientation, scale, shape, color, texture, behavior..
  • 36. Classification of Selection Techniques • asdf
  • 37. Simple virtual hand technique • Process • One-to-one mapping between physical and virtual hands • Object can be selected by “touching” with virtual hand • “Natural” mapping • Limitation: • Only select objects in hand reach
  • 38. Ray-casting technique • “Laser pointer” attached to virtual hand • First object intersected by ray may be selected • User only needs to control 2 DOFs • Proven to perform well for remote selection • Variants: • Cone casting • Snap-to-object rays
  • 39. Example Ray Casting • https://www.youtube.com/watch?v=W1ZUBTPCL3E
  • 40. Classification of Manipulation Techniques • asdfa
  • 41. World-in-miniature (WIM) technique • “Dollhouse” world held in user’s hand • Miniature objects can be manipulated directly • Moving miniature objects affects full-scale objects • Can also be used for navigation Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in Miniature. Proceedings of CHI: Human Factors in Computing Systems, 265-272, and Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM SIGGRAPH, 399-400.
  • 43. Navigation • How we move from place to place within an environment • The combination of travel with wayfinding • Wayfinding: cognitive component of navigation • Travel: motor component of navigation • Travel without wayfinding: "exploring", "wandering”
  • 44. Movement Process • Focusing on user control
  • 45. Taxonomy of Travel Techniques • Focusing on sub-task of travel Bowman, D. A., Koller, D., & Hodges, L. F. (1997, March). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Virtual Reality Annual International Symposium, 1997., IEEE 1997 (pp. 45-52). IEEE.
  • 46. TelePortation • Use controller to select end point • Usable with 3DOF contoller • Jump to a fixed point in VR • Discrete motion can be confusing/cause sickness
  • 48. Redirected Walking • Address problem of limited walking space • Warp VR graphics view of space • Create illusion of walking straight, while walking in circles Razzaque, S., Kohn, Z., & Whitton, M. C. (2001, September). Redirected walking. In Proceedings of EUROGRAPHICS (Vol. 9, pp. 105-106).
  • 50. System Control • Issuing a command to change system state or mode • Examples • Launching application • Changing system settings • Opening a file • Etc. • Key points • Make commands visible to user • Support easy selection
  • 52. Example: GearVR Interface • 2D Interface in 3D Environment • Head pointing and click to select
  • 54. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 55. How can we quickly prototype Virtual Reality experiences with little or no coding?
  • 56. Why Prototype? ▪ Quick visual design ▪ Capture key interactions ▪ Focus on user experience ▪ Communicate design ideas ▪ “Learn by doing/experiencing”
  • 57. VR Prototyping Tools • Low Fidelity • Sketched Paper Interfaces – pen/paper, non-interactive • Onride Photoshop tool – digital, non-interactive • InstaVR - 360 web based tool, simple interactivity • SketchBox – create VR interface inside VR • High Fidelity • Entiti – template based VR with visual programming • A-Frame – web based VR tool using HTML • EditorVR – Unity wrapper inside VR • Unity/Unreal Game Engine – programming needed
  • 58. Sketching VR Interfaces • Download 360 panorama template grid • Draw interface ideas into grid • Scan into 360 photo viewer for VR HMD See https://virtualrealitypop.com/vr-sketches-56599f99b357
  • 59. Example Sketched VR Interface • https://www.youtube.com/watch?v=BmMh6-jPWOc
  • 60. ONIRIDE - 360° Art Plugin for Photoshop • Draw 360 panorama’s directly in Photoshop • Preview in Photoshop, export to VR • See http://www.oniride.com/360art
  • 63. Demo - Using InstaVR • https://www.youtube.com/watch?v=M2C8vDL0YeA
  • 64. Sketchbox • VR design tool - create VR interface inside VR • Support for HTC Vive, Oculus Rift • Easy to use VR sketching tool • Available from SteamVR • See https://www.sketchboxvr.com/
  • 66. A-Frame • See https://aframe.io/ • Web based VR framework • Make WebVR with HTML and Entity-Component • Works on Vive, Rift, Daydream, GearVR, desktop
  • 68. Unity EditorVR • Edit Unity VR scenes inside VR • 3D user interface on top of Unity • 2 handed interface using HTC Vive • Support for multi-user input • Available from https://github.com/Unity-Technologies/EditorVR
  • 69. Demo: Unity EditorVR • https://www.youtube.com/watch?v=ILe2atyofqM
  • 70. More Prototyping Tools • List of 24 prototyping tools • Tools for prototyping 3D VR experiences • Tools for prototyping 360 degree experiences • Web based Tools for 3D prototyping • 3D modeling tools in VR See http://bit.ly/2wx3i6H
  • 71. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 72. What is Evaluation? •Evaluation is concerned with gathering data about the usability of a design or product by a specified group of users for a particular activity within a specified environment or work context
  • 73. When to evaluate? • Once the product has been developed • pros : rapid development, small evaluation cost • cons : rectifying problems • During design and development • pros : find and rectify problems early • cons : higher evaluation cost, longer development design implementation evaluation redesign & reimplementation design implementation
  • 74. Four Evaluation Paradigms •‘quick and dirty’ •usability testing (lab studies) •field studies •predictive evaluation
  • 76. NASA Hololens AR/VR Concept Demo • Vision: Work on Mars from your office • Story and sketches based on vision • Led to working Demo
  • 80. Final NASA HoloLens OnSight Demo https://www.youtube.com/watch?v=o-GP3Kx6-CE
  • 82. Conclusion • Interaction Design methods can be used to develop effective Virtual Realty interfaces • Needs Analysis • Several methods available for determining user needs • Design • Use metaphors and affordances, good UI guidelines • Prototyping • Many rapid prototyping tools available • Evaluation • Use multiple methods for best evaluation
  • 83. Resources • Excellent book • 3D User Interfaces: Theory and Practice • Doug Bowman, Ernst Kruijff, Joseph, LaViola, Ivan Poupyrev • Great Website • http://www.uxofvr.com/ • 3D UI research at Virginia Tech. • research.cs.vt.edu/3di/
  • 84. UX of VR Website - www.uxofvr.com • Many examples of great interaction techniques • Videos, books, articles, slides, code, etc..