SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
 
	
  
CESAR	
  WORKING	
  DOCUMENT	
  SERIES	
  
Project	
  1,	
  working	
  document	
  no.1	
  
	
  	
   	
  
	
   	
  
	
  
Climate	
  change	
  effects	
  on	
  destination	
  choices	
  
for	
  daily	
  activities	
  in	
  the	
  Randstad	
  Holland	
  
	
  
Second	
  climate	
  change	
  analysis	
  on	
  Dutch	
  National	
  Travel	
  Survey	
  (MON)	
  data	
  
	
  
	
  
L.	
  Böcker,	
  J.Prillwitz	
  and	
  M.Dijst	
  	
  
19	
  March	
  2012	
  
	
  
	
  
	
  
	
  
	
  
This	
  working	
  document	
  series	
  is	
  a	
  joint	
  initiative	
  of	
  the	
  University	
  of	
  Amsterdam,	
  	
  Utrecht	
  University,	
  Wageningen	
  University	
  and	
  
Research	
  centre	
  and	
  TNO	
  
	
  
	
  
	
   	
  
	
  
	
  
The	
  research	
  that	
  is	
  presented	
  in	
  this	
  series	
  is	
  financed	
  by	
  the	
  NWO	
  program	
  on	
  Sustainable	
  Accessibility	
  of	
  the	
  Randstad:	
  
http://www.nwo.nl/nwohome.nsf/pages/nwoa_79vlym_eng	
  
	
  
	
  
	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  2	
  
	
  
TABLE	
  OF	
  CONTENT	
  
1.	
   INTRODUCTION................................................................................................................ 3	
  
2.	
   RESEARCH	
  DESIGN........................................................................................................... 3	
  
3.	
   ANALYSIS.......................................................................................................................... 5	
  
4.	
   REFERENCES................................................................................................................... 12	
  
	
  
	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  3	
  
	
  
1. INTRODUCTION	
  
In	
  the	
  light	
  of	
  a	
  growing	
  societal	
  interest	
  for	
  climate	
  change	
  adaptation,	
  various	
  recent	
  studies	
  have	
  
looked	
  into	
  the	
  relationship	
  between	
  climate/weather	
  and	
  a	
  variety	
  of	
  daily	
  travel	
  choices,	
  such	
  as	
  
choices	
   for	
   transport	
   modes,	
   departure	
   times	
   and	
   routes	
   (see	
   for	
   an	
   overview	
   of	
   the	
   literature	
  
Koetse	
  and	
  Rietveld,	
  2009	
  and	
  Böcker,	
  et	
  al,	
  submitted),	
  as	
  well	
  as	
  on	
  long	
  term	
  preferences	
  for	
  
tourism	
  destinations	
  (Nicholls	
  and	
  Amelung,	
  2008;	
  Amelung	
  and	
  Viner,	
  2006;	
  Hamilton	
  et	
  al.,	
  2005;	
  
Bigano	
   et	
   al.,	
   2006;	
   Matzarakis	
   and	
   De	
   Freitas	
   2001).	
   However,	
   the	
   impact	
   on	
   daily	
   destination	
  
choices	
   has	
   largely	
   been	
   neglected	
   by	
   these	
   contributions.	
   This	
   is	
   remarkable,	
   since	
   the	
   role	
   of	
  
changing	
  weather	
  patterns	
  for	
  daily	
  destination	
  choices	
  is	
  highly	
  relevant	
  from	
  a	
  geographical	
  point	
  
of	
   view.	
   One	
   can	
   think	
   of	
   citizens	
   escaping	
   inner-­‐city	
   heat	
   to	
   recreational	
   sites	
   and	
   shopping	
  
complexes	
   outside	
   cities,	
   or	
   a	
   switch	
   from	
   active	
   outdoor	
   to	
   inactive	
   indoor	
   activities	
   with	
  
increasing	
  periods	
  of	
  precipitation.	
  	
  
	
  	
  	
  	
  	
  	
  Consequently,	
  this	
  study	
  analyses	
  the	
  effects	
  of	
  projected	
  climate	
  change	
  on	
  the	
  demand	
  for	
  
different	
   types	
   of	
   activity-­‐destinations	
   (like	
   indoor/outdoor	
   and	
   recreational/maintenance)	
   in	
  
different	
  urban,	
  suburban	
  and	
  rural	
  residential	
  environments	
  in	
  the	
  Dutch	
  Randstad.	
  This	
  working	
  
document	
  presents	
  the	
  research	
  design	
  and	
  preliminary	
  analyses	
  of	
  seasonal	
  climate	
  change	
  effects	
  
on	
   destination	
   choices	
   in	
   the	
   Randstad	
   Holland.	
   First	
   the	
   research	
   design	
   will	
   be	
   outlined.	
  
Thereafter	
  an	
  analysis	
  will	
  be	
  provided	
  of	
  the	
  effects	
  of	
  climate	
  change	
  on:	
  the	
  balance	
  between	
  
leisure	
  and	
  utilitarian	
  activities;	
  the	
  participation	
  into	
  various	
  activities;	
  destination	
  locations;	
  and	
  
travelled	
  distances	
  in	
  the	
  Randstad	
  Holland.
2. RESEARCH	
  DESIGN	
  
This	
  research	
  is	
  located	
  in	
  the	
  Randstad	
  Holland.	
  The	
  densely	
  populated	
  region	
  is	
  located	
  in	
  the	
  west	
  
of	
  the	
  Netherlands,	
  spanning	
  the	
  area	
  around	
  the	
  four	
  largest	
  cities	
  Amsterdam,	
  Rotterdam,	
  The	
  
Hague	
   and	
   Utrecht.	
   This	
   region	
   forms	
   the	
   study	
   area	
   of	
   the	
   CESAR-­‐project	
   (Climate	
   and	
  
Environmental	
   change	
   and	
   Sustainable	
   Accessibility	
   of	
   the	
   Randstad)	
   on	
   sustainable	
   urbanisation	
  
and	
   accessibility	
   in	
   which	
   this	
   study	
   is	
   embedded	
  
(http://www.nwo.nl/nwohome.nsf/pages/NWOP_7YUHV3_Eng).	
  	
  
This	
  study’s	
  research	
  design	
  is	
  similar	
  to	
  an	
  earlier	
  research	
  on	
  climate	
  change	
  effects	
  on	
  
mode	
  choices	
  and	
  travelled	
  distances	
  (Böcker	
  et	
  al.,	
  submitted).	
  Based	
  on	
  Randstad	
  meteorological	
  
records	
   (KNMI,	
   2011)	
   and	
   four	
   regional	
   climate	
   change	
   scenarios	
   reflecting	
   variations	
   in	
   global	
  
temperature	
  rise	
  (+1	
  to	
  +2˚C)	
  and	
  prevailing	
  wind	
  patterns	
  (KNMI,	
  2009),	
  we	
  estimate	
  present	
  as	
  
well	
  as	
  2050	
  seasonal	
  averages.	
  In	
  order	
  to	
  analyse	
  climate	
  change	
  effects	
  we	
  select,	
  from	
  the	
  last	
  
decade,	
  seasons	
  with	
  average	
  weather	
  conditions	
  for	
  the	
  climate	
  at	
  present	
  as	
  well	
  as	
  seasons	
  with	
  
weather	
   conditions	
   projected	
   to	
   be	
   average	
   in	
   2050	
   (KNMI,	
   2009).	
   Selected	
   seasons	
   represent	
  
precipitation	
  and	
  temperature	
  patterns	
  as	
  accurately	
  as	
  possible.	
  To	
  address	
  not	
  only	
  amounts	
  but	
  
also	
  distributions	
  of	
  precipitation,	
  we	
  include	
  seasonal	
  precipitation	
  sums	
  as	
  well	
  as	
  numbers	
  of	
  wet	
  
days	
   (≥0.1mm).	
   With	
   regard	
   to	
   temperature,	
   seasons	
   at	
   the	
   higher	
   end	
   of	
   the	
   projected	
   2050-­‐
bandwidth	
  are	
  preferred,	
  as	
  underlying	
  climate	
  scenarios	
  for	
  these	
  are	
  more	
  likely	
  to	
  occur	
  (KNMI,	
  
2009).	
  If	
  necessary,	
  precipitation	
  is	
  valued	
  over	
  temperature	
  as	
  a	
  selection	
  criterion,	
  because	
  of	
  its	
  
higher	
  significance	
  for	
  travel	
  behaviour	
  in	
  the	
  literature	
  (e.g.	
  Cools	
  and	
  other,	
  2010).	
  
Table	
  1	
  presents	
  shows	
  the	
  selected	
  seasons.	
  At	
  present,	
  the	
  Randstad	
  Holland	
  is	
  subjected	
  
to	
  a	
  maritime	
  climate	
  characterised	
  by	
  warm	
  summers,	
  mild	
  winters	
  with	
  moderate	
  but	
  relatively	
  
stable	
   year-­‐round	
   precipitation.	
   For	
   2050,	
   winters	
   are	
   projected	
   to	
   become	
   much	
   milder	
   and	
  
wetter;	
  springs	
  warmer	
  and	
  wetter;	
  summers	
  hotter	
  with	
  at	
  periods	
  heavier	
  precipitation	
  as	
  well	
  as	
  
more	
   intensive	
   drought;	
   and	
   autumns	
   will	
   become	
   warmer	
   with	
   also	
   at	
   periods	
   intensified	
  
precipitation	
  as	
  well	
  as	
  drought,	
  although	
  less	
  than	
  in	
  summer.	
  
	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  4	
  
	
  
Table 1: Overview of changing climate patterns present-2050 in the Netherlands, for the selected seasons
Temperature Precipitation
Selected season Average in ˚C Seasonal sum in mm # of days ≥0.1mm
Present 2050 Present 2050 Present 2050 Present 2050
Winter 2004/05 2007/08 3.6 5.1 176 218 50 47
Spring 2005 2008 9.8 10.2 152 197 57 49
Summer 2009 2006 17.4 18.5 180 263 43 38
Autumn 2008 2005 10.2 12.0 267 241 50 43
Source: Böcker et al., forthcoming
From	
  2004-­‐2009	
  Dutch	
  National	
  Travel	
  Survey	
  data	
  (Mobiliteitsonderzoek	
  Nederland)	
  we	
  analyse	
  
activity	
  data	
  for	
  the	
  selected	
  seasons.	
  The	
  total	
  annual	
  number	
  of	
  respondents	
  varies	
  from	
  around	
  
66,000	
  in	
  2004	
  to	
  40,000	
  in	
  2009.	
  From	
  a	
  sub-­‐sample	
  of	
  participants	
  living	
  in	
  the	
  Randstad	
  region	
  
with	
   the	
   age	
   of	
   18	
   years	
   and	
   older,	
   we	
   select	
   heads	
   of	
   households	
   and	
   their	
   partners	
   only.	
  For	
  
different	
  activity	
  destinations	
  –	
  work/study,	
  maintenance	
  (including	
  shopping	
  under	
  30	
  minutes),	
  
picking	
  up	
  persons,	
  social	
  visit,	
  leisure-­‐shopping	
  (30	
  minutes	
  or	
  longer),	
  leisure-­‐touring	
  and	
  leisure-­‐
other	
   –	
   we	
   analyse	
   seasonal	
   climate	
   change	
   effects	
   on	
   demand	
   and	
   location	
   choice	
   in	
   terms	
   of	
  
travelled	
  distance	
  and	
  urbanization	
  degree.	
  Unfourtunately,	
  an	
  exact	
  subdivision	
  between	
  indoors	
  
and	
  outdoors	
  leisure	
  activities	
  could	
  not	
  be	
  made	
  from	
  the	
  existing	
  data.	
  Generally,	
  however,	
  the	
  
leisure	
   touring	
   category	
   comprises	
   activities	
   with	
   a	
   more	
   outdoors	
   character	
   (recreational	
   trips,	
  
including	
  walking/cycling	
  tours),	
  whereas	
  the	
  leisure	
  other	
  category	
  includes,	
  in	
  addition	
  to	
  some	
  
activities	
   that	
   could	
   be	
   either	
   indoors	
   or	
   outdoors	
   (hobby,	
   sports),	
   a	
   lot	
   of	
   typically	
   indoors	
  
activities	
  (cultural	
  activities,	
  church,	
  community	
  center,	
  etc).	
  	
  
	
   In	
  the	
  multivariate	
  part	
  we	
  control	
  for	
  various	
  independent	
  individual/household	
  attributes	
  
and	
  spatio-­‐temporal	
  attributes	
  in	
  which	
  trips	
  are	
  situated.	
  As	
  individual	
  attributes	
  we	
  include	
  age,	
  
gender,	
   education	
   level	
   and	
   workweek	
   duration.	
   We	
   include	
   the	
   household	
   attributes	
   car	
  
availability,	
  household	
  income,	
  and	
  household	
  type.	
  The	
  latter	
  is	
  a	
  typology	
  based	
  on	
  household	
  
size,	
  presence	
  of	
  children	
  under	
  the	
  age	
  of	
  12,	
  and	
  the	
  number	
  of	
  adults	
  participating	
  in	
  the	
  labour	
  
market.	
   As	
   spatial	
   attributes	
   we	
   include	
   address	
   densities	
   of	
   the	
   destination	
   and	
   the	
   place	
   of	
  
residence	
  and	
  as	
  temporal	
  attributes	
  we	
  include	
  activity	
  timing	
  in	
  view	
  of	
  day/night,	
  peak/off-­‐peak	
  
and	
  weekday/weekend.	
  Figure	
  1	
  summarizes	
  all	
  variables	
  into	
  a	
  conceptual	
  framework.	
  
	
  
Figure	
  1:	
  Conceptual	
  framework	
  of	
  variables	
  used	
  
	
  
	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  5	
  
	
  
Activity	
  demand	
  is	
  estimated	
  in	
  terms	
  of	
  the	
  number	
  of	
  trips	
  per	
  person	
  per	
  day.	
  Hereby	
  use	
  is	
  
made	
  of	
  negative	
  binomial	
  regression	
  models,	
  which,	
  unlike	
  Poisson	
  regression,	
  can	
  deal	
  with	
  over-­‐
dispersed	
  count-­‐data	
  with	
  excess	
  zeros	
  generated	
  by	
  the	
  large	
  number	
  of	
  people	
  not	
  participating	
  
certain	
  activities	
  on	
  a	
  day.	
  Travelled	
  distance	
  is	
  estimated	
  per	
  trip	
  by	
  regression	
  analyses.	
  Activity	
  
location	
  is	
  estimated	
  with	
  binary	
  logistic	
  regressions	
  in	
  terms	
  of	
  whether	
  or	
  not	
  people	
  on	
  the	
  day	
  
of	
   enquiry	
   made	
   a	
   trip	
   towards	
   locations	
   of	
   varying	
   urbanization	
   degrees	
   subdivided	
   into	
   five	
  
classes.	
  For	
  all	
  analyses	
  separate	
  models	
  are	
  estimated	
  for	
  the	
  different	
  activity	
  types.	
  In	
  order	
  to	
  
address	
   seasonal	
   climate	
   change	
   effects,	
   they	
   are	
   conducted	
   for	
   the	
   full	
   sample	
   and	
   thereafter	
  
repeated	
  for	
  the	
  four	
  separate	
  seasons.	
  	
  
	
  
3. ANALYSIS	
  
3.1 Recreational	
  and	
  utilitarian	
  trip	
  generation	
  
In	
  the	
  literature	
  we	
  have	
  encountered	
  that	
  on	
  a	
  daily	
  level	
  under	
  dry	
  and	
  moderately	
  warm	
  weather	
  
conditions,	
  people	
  generally	
  perform	
  more,	
  or	
  cancel	
  less,	
  recreational	
  trips,	
  than	
  under	
  wet,	
  cold	
  or	
  
very	
  hot	
  weather	
  conditions,	
  whereas	
  utilitarian	
  trips	
  remain	
  more	
  or	
  less	
  unaffected	
  (Aaheim	
  and	
  
Hauge,	
  2005;	
  Sabir,	
  2011;	
  Cools	
  et	
  al,	
  2010).	
  Projected	
  for	
  the	
  Randstad	
  climate	
  change	
  generates	
  
warmer	
   weather	
   in	
   all	
   seasons	
   in	
   2050.	
   Especially	
   in	
   winter	
   the	
   temperature	
   effect	
   may	
   have	
  
positive	
   effects	
   on	
   recreational	
   activities,	
   whereas	
   an	
   extra	
   increase	
   in	
   summer	
   temperature	
   will	
  
not,	
  and	
  may	
  on	
  the	
  contrary	
  at	
  days	
  have	
  a	
  negative	
  effect.	
  However	
  in	
  winter	
  and	
  spring	
  also	
  
precipitation	
  increases,	
  which	
  could	
  counter	
  the	
  positive	
  effect	
  on	
  recreational	
  trips.	
  	
  
In	
  order	
  to	
  address	
  whether	
  people	
  adjust	
  their	
  number	
  of	
  recreational	
  and	
  utilitarian	
  trip	
  
to	
  changing	
  climate	
  conditions,	
  we	
  descriptively	
  analyse	
  the	
  number	
  of	
  recreational	
  and	
  utilitarian	
  
trips.	
  Hereby	
  recreational	
  trips	
  include	
  trips	
  made	
  for	
  social	
  and	
  leisure	
  purposes	
  including	
  shopping	
  
trips	
  longer	
  than	
  half	
  an	
  hour.	
  Utilitarian	
  trips	
  include	
  trips	
  with	
  the	
  purpose	
  of	
  work/study,	
  errands	
  
and	
  the	
  bringing	
  or	
  picking	
  up	
  of	
  people.	
  It	
  appears	
  that	
  in	
  winter,	
  spring	
  and	
  summer,	
  as	
  well	
  as	
  
year-­‐round,	
  people	
  approximately	
  make	
  as	
  many	
  recreational	
  trips	
  as	
  utilitarian	
  trips,	
  and	
  that	
  this	
  
ratio	
   remains	
   relatively	
   stable	
   when	
   we	
   compare	
   2050	
   to	
   present	
   seasons.	
   In	
   autumn	
   a	
   slight	
  
increase	
  in	
  the	
  share	
  of	
  recreational	
  over	
  utilitarian	
  trips	
  can	
  be	
  observed	
  from	
  44%	
  at	
  present	
  to	
  
47%	
   in	
   2050.	
   Although	
   these	
   figures	
   do	
   not	
   point	
   at	
   clear	
   climate	
   change	
   effects,	
   we	
   perform	
   a	
  
multivariate	
   analysis	
   to	
   see	
   whether	
   effects	
   appear	
   when	
   controlled	
   for	
   various	
   background	
  
variables.	
  
The	
   five	
   binary	
   logistic	
   regressions	
   –	
   one	
   for	
   each	
   season	
   and	
   one	
   for	
   the	
   full	
   year	
   –	
  
presented	
   in	
   Table	
   1,	
   show	
   the	
   effects	
   for	
   various	
   independent	
   background	
   variables,	
   including	
  
climate	
  change,	
  on	
  whether	
  a	
  trip	
  is	
  recreational	
  or	
  utilitarian.	
  The	
  impacts	
  of	
  socio-­‐demographic,	
  
household	
  and	
  temporal	
  attributes	
  are	
  as	
  could	
  be	
  expected,	
  with	
  for	
  instance	
  more	
  recreational	
  
trips	
  for	
  elderly,	
  couples	
  and	
  singles,	
  especially	
  those	
  who	
  work	
  less,	
  and	
  for	
  trips	
  off-­‐peak	
  and	
  in	
  
the	
  weekend.	
  	
  
	
  
Table 1: Determinants for the ratio between recreational and utilitarian trips	
  
Binary logistic regression: Recreational trip generation (ref. = utilitarian trips)
Winter Spring Summer Autumn All
B S.E. B S.E. B S.E. B S.E. B S.E.
Constant 1,461*** ,160 1,521 *** ,160 1,394 *** ,168 ,791 *** ,160 1,289 *** ,080
Age (ref.=30-49)
18-29 -,110 ,086 ,068 ,090 ,060 ,090 ,028 ,090 ,007 ,044
50-64 ,107* ,065 -,002 ,065 ,022 ,063 ,155 ** ,063 ,061 * ,032
65-75 ,442*** ,105 ,055 ,104 ,053 ,103 ,539 *** ,108 ,255 *** ,052
75+ ,421*** ,129 ,037 ,128 ,008 ,130 ,502 *** ,129 ,222 *** ,064
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  6	
  
	
  
Gender (ref.=female)
male -,295*** ,052 -,210 *** ,054 -,218 *** ,051 -,214 *** ,053 -,229 *** ,026
Education (ref.= higher)
lower_education -,068 ,059 -,046 ,060 ,033 ,059 -,019 ,059 -,020 ,029
middle_education -,152*** ,054 -,056 ,056 -,046 ,055 -,126 ** ,056 -,096 *** ,027
Work duration (ref. <12h/w)
>30 hours/week -,621*** ,082 -,520 *** ,082 -,564 *** ,082 -,565 *** ,081 -,556 *** ,040
12-30 hours/week -,630*** ,084 -,416 *** ,087 -,307 *** ,088 -,313 *** ,084 -,410 *** ,043
Household type
(ref.= family. 2 workers)
family 1 or no worker -,321*** ,109 -,225 ** ,107 -,094 ,117 -,097 ,113 -,167 *** ,055
couple 1 worker ,250** ,109 ,414 *** ,115 ,409 *** ,115 ,510 *** ,113 ,407 *** ,056
couple 2 workers ,282*** ,081 ,130 ,088 ,373 *** ,085 ,448 *** ,084 ,324 *** ,042
couple no worker ,436*** ,122 ,685 *** ,125 ,559 *** ,125 ,527 *** ,126 ,574 *** ,062
single and worker ,111 ,104 ,254 ** ,104 ,340 *** ,103 ,389 *** ,108 ,303 *** ,052
single no worker ,433*** ,141 ,601 *** ,145 ,561 *** ,143 ,528 *** ,142 ,553 *** ,071
other ,209*** ,080 ,218 *** ,083 ,273 *** ,083 ,252 *** ,081 ,251 *** ,041
Household income
(ref.<15K)
15,000 to 29,999 euros ,141 ,096 -,162 ,099 -,112 ,100 ,302 *** ,097 ,048 ,049
30,000 euros or more ,015 ,098 -,022 ,103 -,085 ,103 ,165 * ,098 ,033 ,050
unknown ,066 ,101 ,055 ,109 -,195 * ,107 ,052 ,103 ,006 ,052
Car ownership (ref.=no car)
2 cars or more ,062 ,093 -,034 ,090 ,096 ,092 ,049 ,095 ,036 ,046
1 car and main driver ,019 ,081 ,044 ,078 ,044 ,080 -,028 ,083 ,018 ,040
1 car. not main driver ,011 ,095 ,111 ,092 ,207 ** ,093 ,146 ,097 ,121 ** ,047
Geographical context
address density residence ,006 ,016 -,023 ,017 -,015 ,017 ,000 ,017 -,009 ,008
address density destination -,014 ,013 -,015 ,014 -,020 ,014 ,006 ,014 -,011 ,007
Temporal context
weekend (ref. = weekday) -1,440*** ,054 -1,286 *** ,055 -1,284 *** ,055 -1,336 *** ,056 -1,329 *** ,027
night (ref. = day) ,545*** ,054 ,224 *** ,085 ,165 ,129 ,416 *** ,061 ,318 *** ,032
peak (ref. = off-peak) -2,570*** ,094 -2,118 *** ,087 -1,917 *** ,082 -2,099 *** ,084 -2,143 *** ,043
2050 Climate change ,019 ,044 -,097 ** ,047 ,047 ,047 ,131 *** ,047 ,012 ,022
Goodness of fit
Pseudo R2 (Nagelkerke) .342 .302 .271 .314 .304
*p<0.10; **p<0.05; ***p<0.01	
  
	
  
When	
  tested	
  multivariately,	
  in	
  spring	
  a	
  significant	
  decrease	
  in	
  recreational	
  trips	
  can	
  be	
  observed,	
  
which	
  may	
  have	
  to	
  do	
  with	
  the	
  fact	
  that	
  in	
  spring	
  2050	
  weather	
  conditions	
  not	
  only	
  got	
  warmer	
  but	
  
also	
  wetter.	
  In	
  line	
  with	
  the	
  descriptives	
  a	
  positive	
  effect	
  can	
  be	
  observed	
  in	
  autumn,	
  which	
  could	
  be	
  
explained	
  by	
  the	
  combination	
  of	
  warmer	
  weather	
  with	
  an	
  increasing	
  number	
  of	
  dry	
  days	
  in	
  the	
  2050	
  
autumn	
   season:	
   conditions	
   under	
   which	
   we	
   expected	
   people	
   to	
   participate	
   more	
   in	
   recreational	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  7	
  
	
  
trips.	
  During	
  the	
  other	
  seasons,	
  temperature	
  also	
  increases	
  but	
  this	
  is	
  accompanied	
  by	
  an	
  increase	
  
in	
  (heavy)	
  precipitation.	
  As	
  with	
  the	
  descriptives,	
  no	
  significant	
  climate	
  change	
  effects	
  have	
  been	
  
found	
  on	
  the	
  ratio	
  between	
  utilitarian	
  and	
  recreational	
  trips	
  in	
  winter	
  and	
  summer	
  as	
  well	
  as	
  year-­‐
round.	
  Overall,	
  therefore,	
  seasonal	
  climate	
  change	
  effects	
  on	
  the	
  ratio	
  between	
  recreational	
  and	
  
utilitarian	
   trips	
   may	
   seem	
   quite	
   marginal.	
   When	
   put	
   in	
   perspective,	
   this	
   is	
   however	
   not	
   entirely	
  
surprising,	
  as	
  it	
  may	
  be	
  questioned	
  whether	
  substitution	
  between	
  leisure	
  and	
  utilitarian	
  activities,	
  as	
  
observed	
  in	
  the	
  literature	
  on	
  a	
  daily	
  level,	
  may	
  actually	
  take	
  place	
  on	
  a	
  seasonal	
  level.	
  
	
  
	
  
3.2 Trip	
  generation	
  and	
  travelled	
  distances	
  for	
  different	
  activity	
  types	
  
In	
  section	
  4.1	
  we	
  observed	
  a	
  relative	
  decrease	
  in	
  leisure	
  over	
  utilitarian	
  activities	
  in	
  spring	
  and	
  a	
  
relative	
  increase	
  in	
  autumn.	
  However	
  from	
  this	
  ratio	
  we	
  cannot	
  conclude	
  which	
  changes	
  in	
  absolute	
  
terms	
   take	
   place.	
   Neither,	
   it	
   becomes	
   clear	
   exactly	
   which	
   different	
   types	
   of	
   utilitarian	
   and	
  
recreational	
  trips	
  are	
  affected	
  by	
  climate	
  change.	
  In	
  this	
  section	
  we	
  will	
  therefore	
  subdivide	
  within	
  
recreational	
  as	
  well	
  as	
  utilitarian	
  trips	
  between	
  different	
  activity	
  types.	
  Based	
  on	
  the	
  literature	
  we	
  
expect	
   that	
   the	
   participation	
   in	
   different	
   types	
   of	
   recreational	
   activities	
   is	
   more	
   subjected	
   to	
  
changing	
  weather	
  conditions	
  than	
  that	
  in	
  utilitarian	
  activities	
  (e.g.	
  Cools	
  et	
  al.,	
  2010;	
  Brandenburg	
  
et	
  al.,	
  2004).	
  In	
  the	
  literature	
  we	
  have	
  also	
  encountered	
  that	
  physical	
  activities	
  (e.g.	
  Chan	
  and	
  Ryan,	
  
2009)	
  outdoor	
  leisure	
  activities	
  (Spinney	
  and	
  Millward,	
  2010)	
  and	
  walking/cycling	
  trips	
  (e.g.	
  Keay,	
  
1992;	
   Aultman-­‐Hall,	
   2010)	
   are	
   positively	
   affected	
   by	
   warm	
   and	
   dry	
   weather	
   conditions	
   and	
  
negatively	
  by	
  wet,	
  cold	
  or	
  very	
  hot	
  weather	
  conditions.	
  Hence	
  our	
  expectation	
  is	
  to	
  observe	
  within	
  
the	
   recreational	
   sphere	
   an	
   increase	
   in	
   leisure-­‐touring	
   activities	
   in	
   the	
   slightly	
   wetter	
   but	
   much	
  
milder	
   2050-­‐winters,	
   and	
   an	
   opposed	
   effect	
   in	
   the	
   hot	
   2050-­‐summers	
   with	
   increased	
   heavy	
  
precipitation	
  and	
  drought.	
  For	
  the	
  generally	
  more	
  indoor	
  and	
  less	
  active	
  leisure-­‐other	
  and	
  leisure	
  
shopping	
  categories,	
  which	
  are	
  competing	
  within	
  the	
  same	
  leisure	
  time	
  budget	
  as	
  leisure-­‐touring	
  
and	
   partially	
   satisfy	
   the	
   same	
   needs	
   (Nijland	
   et	
   al.,	
   2011),	
   we	
   expect	
   reversed	
   effects	
   due	
   to	
  
potential	
  substitution.	
  	
  
Figure	
  2	
  presents	
  the	
  relative	
  impact	
  of	
  seasonal	
  climate	
  change	
  effects	
  on	
  various	
  activity	
  
types	
  expressed	
  in	
  per	
  cent	
  changes.	
  The	
  activities	
  are	
  ordered,	
  based	
  on	
  the	
  size	
  (not	
  direction)	
  of	
  
climate	
  change	
  impact	
  summed	
  up	
  for	
  the	
  different	
  seasons,	
  with	
  maintenance	
  activities	
  on	
  the	
  left	
  
resembling	
  the	
  smallest	
  impact	
  and	
  leisure	
  touring	
  activities	
  showing	
  the	
  highest	
  impact.	
  In	
  line	
  
with	
  the	
  literature	
  and	
  our	
  expectations	
  Figure	
  2	
  clearly	
  demonstrates	
  that	
  the	
  participation	
  into	
  
recreational	
   activities,	
   such	
   as	
   the	
   leisure	
   other	
   and	
   leisure	
   touring	
   categories,	
   is	
   much	
   more	
  
sensitive	
  to	
  climate	
  change	
  than	
  the	
  participation	
  into	
  utilitarian	
  activities	
  such	
  as	
  work/study	
  and	
  
maintenance.	
  	
  
Figure 2: Seasonal climate change effects on per cent changes in number of trips per person per day for
different activity types
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  8	
  
	
  
Two	
   exceptions	
   here	
   are	
   the	
   relatively	
   higher	
   climate	
   change	
   impact	
   on	
   more	
   or	
   less	
   utilitarian	
  
category	
  of	
  bringing	
  and	
  picking	
  up	
  persons,	
  and	
  the	
  relatively	
  lower	
  climate	
  change	
  impact	
  on	
  the	
  
more	
  or	
  less	
  recreational	
  category	
  of	
  social	
  visits.	
  An	
  explanation	
  for	
  the	
  first	
  could	
  be	
  that	
  bringing	
  
or	
   picking	
   up	
   persons	
   may,	
   in	
   some	
   cases,	
   be	
   a	
   more	
   voluntary	
   or	
   even	
   recreational	
   event.	
  
Explanations	
   for	
   the	
   latter	
   could	
   be	
   that	
   social	
   visits	
   cannot	
   easily	
   be	
   substituted	
   for	
   by	
   other	
  
activities	
  (regardless	
  of	
  the	
  weather	
  in	
  a	
  season	
  one	
  wants/needs	
  to	
  meet	
  friends	
  and	
  family),	
  that	
  
social	
  visits	
  may	
  need	
  to	
  be	
  planned	
  far	
  in	
  advance,	
  and	
  that	
  social	
  home	
  visits	
  may	
  often	
  be	
  flexibly	
  
located	
  indoors	
  or	
  outdoors	
  (as	
  they	
  may	
  be	
  situated	
  inside,	
  in	
  the	
  garden	
  or	
  on	
  the	
  terrace),	
  and	
  
for	
  all	
  these	
  potential	
  reasons	
  are	
  less	
  subjected	
  to	
  the	
  weather.	
  Again	
  we	
  will	
  first	
  turn	
  to	
  the	
  
multivariate	
  part	
  before	
  discussing	
  into	
  detail	
  the	
  results	
  in	
  the	
  context	
  of	
  seasonal	
  climate	
  change.	
  
In	
   order	
   to	
   analyse	
   trip	
   generation	
   multivariately,	
   we	
   estimated	
   35	
   negative	
   binomial	
  
regression	
  models:	
  for	
  each	
  activity	
  type	
  one	
  model	
  per	
  season	
  and	
  one	
  for	
  the	
  full	
  year.	
  In	
  these	
  
models,	
   climate	
   change	
   effects	
   are	
   analysed	
   along	
   with	
   the	
   effects	
   of	
   various	
   individual	
   and	
  
household	
  background	
  predictors.	
  Table	
  2	
  summarizes	
  only	
  the	
  effects	
  for	
  climate	
  change;	
  we	
  will	
  
not	
  go	
  into	
  detail	
  into	
  the	
  effects	
  of	
  the	
  other	
  predictors,	
  but	
  upon	
  checking	
  their	
  respective	
  effects	
  
seemed	
  logical.	
  	
  
Table 2: Climate change effects on frequencies for various activities
Negative binomial models: Climate change effects on # trips/person/day
Winter Spring Summer Autumn All seasons
B B B B B
Work/study -,045 -.019 .085 -,056 -,012
Maintenance -.091 -..099 -.019 .000 -.036
Picking up .294 *** .220 ** -.142 ,190 ** ,071 *
Social visit .089 -.019 -.076 .127 * .061 **
Leisure shopping -.032 -.171 *** .188 *** .024 -.018
Leisure touring .475 *** .277 *** -.327 *** -.129 * .097 ***
Leisure other -.321 *** -.243 *** .210 *** .207 *** -.088 ***
All trips .012 -.025 .020 .008 .005
Goodness of fit: Unscaled deviance/df lies between .43 and .63 and unscaled Pearson Chi2
/df between .71
and 1.66. All full models are significant improvement over intercept-only models (Omnibus-test). In most
models the majority of predictors is significant.
*p<0.10; **p<0.05; ***p<0.01	
  
In	
   line	
   with	
   the	
   descriptives	
   utilitarian	
   trips	
   remain	
   largely	
   unaffected	
   by	
   climate	
   change.	
   Work	
  
trips,	
  remain	
  largely	
  unaffected	
  by	
  climate	
  change,	
  and	
  so	
  do	
  errands	
  trips.	
  Climate	
  change	
  does	
  
seem	
  to	
  strongly	
  increase	
  trip	
  for	
  bringing	
  and	
  picking	
  up	
  persons	
  in	
  winter.	
  Additional	
  analysis	
  (not	
  
included	
  in	
  this	
  paper)	
  shows	
  that	
  this	
  is	
  mostly	
  an	
  increase	
  of	
  trips	
  by	
  active	
  transport	
  modes,	
  
indicating	
  that	
  it	
  may	
  often	
  involve	
  people	
  (parents)	
  who,	
  with	
  the	
  milder	
  2050-­‐winter	
  weather,	
  
more	
  often	
  bring	
  or	
  pick	
  up	
  others	
  (their	
  children)	
  by	
  foot	
  or	
  bicycle.	
  Also	
  in	
  spring	
  and	
  autumn	
  this	
  
category	
  increases	
  significantly,	
  whereas	
  in	
  summer	
  a	
  non-­‐significant	
  decrease	
  is	
  observed.	
  	
  
Under	
  recreational	
  trips	
  more	
  significant	
  climate	
  change	
  effects	
  can	
  be	
  found.	
  In	
  line	
  with	
  
the	
  decriptives	
  social	
  visits	
  are	
  an	
  exception.	
  For	
  social	
  visits	
  we	
  observe	
  non-­‐significant	
  effects	
  for	
  
all	
  seasons	
  except	
  for	
  autumn	
  and	
  full	
  year,	
  when	
  significant	
  positive	
  effect	
  can	
  be	
  identified.	
  In	
  line	
  
with	
  the	
  decriptives	
  and	
  our	
  expectations,	
  leisure	
  touring	
  trips	
  increase	
  highly	
  significantly	
  in	
  the	
  
warmer	
  and	
  wetter	
  2050-­‐winter	
  and	
  –spring,	
  whereas	
  highly	
  significant	
  declines	
  are	
  observed	
  in	
  
the	
  hotter/warmer	
  2050-­‐summer	
  and	
  -­‐autumn	
  with	
  intensified	
  precipitation	
  and	
  drought.	
  These	
  
effects	
  on	
  leisure-­‐touring	
  coincide	
  with	
  the	
  higher	
  use	
  of	
  active	
  open-­‐air	
  transport	
  modes	
  in	
  the	
  
Randstad-­‐Holland	
   in	
   2050-­‐winter	
   and	
   spring	
   seasons	
   in	
   contrast	
   to	
   the	
   lower	
   use	
   of	
   these	
   in	
  
summer	
   and	
   autumn,	
   found	
   in	
   an	
   earlier	
   publication	
   (Böcker	
   et	
   al.,	
   submitted).	
   As	
   expected,	
  
leisure-­‐shopping	
   and	
   leisure-­‐other	
   trips	
   are	
   subjected	
   to	
   seasonal	
   climate	
   change	
   in	
   the	
   exact	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  9	
  
	
  
opposite	
  directions.	
  Both	
  decrease	
  in	
  winter	
  (although	
  shopping	
  insignificantly)	
  and	
  spring,	
  while	
  
increasing	
   significantly	
   in	
   summer.	
   In	
   autumn,	
   shopping	
   non-­‐significantly	
   decreases	
   and	
   leisure-­‐
other	
  significantly	
  increases.	
  Although	
  comparison	
  between	
  the	
  activities	
  should	
  be	
  made	
  carefully	
  
(as	
   of	
   the	
   separate	
   models)	
   and	
   substitution	
   effects	
   cannot	
   directly	
   be	
   derived,	
   there	
   seems	
   a	
  
strong	
  indication	
  that	
  people	
  substitute	
  between	
  on	
  the	
  one	
  hand	
  the	
  more	
  active	
  and	
  outdoors	
  
leisure-­‐touring	
   activities	
   and	
   on	
   the	
   other	
   hand	
   the	
   leisure-­‐shopping	
   and	
   leisure-­‐other	
   activities	
  
with	
  a	
  more	
  mixed/indoors	
  character.	
  
For	
   travelled	
   distances	
   our	
   expectations	
   are	
   less	
   clear.	
   Based	
   on	
   one	
   earlier	
   Norwegian	
  
study	
   (Aaheim	
   and	
   Hauge,	
   2005),	
   an	
   increase	
   in	
   leisure	
   trip	
   distance	
   may	
   be	
   expected	
   when	
  
weather	
   conditions	
   get	
   warmer	
   and	
   dryer,	
   whereas	
   decreases	
   may	
   be	
   expected	
   when	
   weather	
  
conditions	
  get	
  colder	
  and	
  wetter.	
  This	
  supports	
  the	
  intuitive	
  way	
  of	
  reasoning	
  that	
  climate	
  change	
  
effects	
   on	
   trip	
   frequencies	
   would	
   be	
   more	
   or	
   less	
   in	
   line	
   with	
   the	
   effects	
   on	
   trip	
   generation.	
  
However,	
  climate	
  change	
  effects	
  could	
  also	
  work	
  their	
  way	
  through	
  on	
  travelled	
  distances	
  indirectly	
  
via	
  the	
  choice	
  for	
  transport	
  modes	
  –	
  a	
  problem	
  recognised	
  but	
  not	
  accounted	
  for	
  by	
  the	
  earlier	
  
Norwegian	
  study	
  (Aaheim	
  and	
  Hauge,	
  2005)	
  –	
  rising	
  uncertainty	
  in	
  our	
  expectations	
  about	
  its	
  net	
  
effects.	
   In	
   order	
   to	
   analyse	
   the	
   seasonal	
   climate	
   change	
   effects	
   on	
   travelled	
   distance,	
   for	
   each	
  
season	
  and	
  the	
  full	
  year	
  we	
  run	
  separate	
  regression	
  models	
  for	
  each	
  of	
  the	
  activity	
  types	
  and	
  all	
  
trips	
  combined.	
  A	
  summary	
  of	
  these	
  models	
  with	
  regard	
  to	
  the	
  effects	
  of	
  climate	
  change	
  is	
  given	
  in	
  
table	
  3	
  and	
  will	
  be	
  compared	
  to	
  the	
  results	
  on	
  trip	
  generation	
  in	
  table	
  2.	
  
	
  
Table 3: Summary of seasonal climate change effects on trip distance for different leisure activities
OLS regression: Climate change effects on travelled distance (in 0.1 km) per trip
Winter Spring Summer Autumn All
B Beta B Beta B Beta B Beta B Beta
Work/study .004 .003 -.030 -.023 .039 .030 .030 .024 .012 .010
Maintenance -.042 -.036 .005 .004 -.049 * -.041 .026 .022 -.021 -.018
Picking up -.001 -.001 -.090 ** -.072 -.029 -.022 .009 .007 -.007 -.006
Social visit .018 .013 -.084 ** -.057 -.033 -.022 .035 .024 -.011 -.007
Leisure shopping -.037 -.035 -.111 *** -.096 .029 .026 .071 *** .065 -.02 -.01
Leisure Touring -.059 * -.049 .112 *** .087 -.058 -.045 -.011 -.008 .012 .010
Leisure Other -.043 -.034 -.067 ** -.052 -.003 -.002 .076 ** .061 -.015 -.013
All trips -.022 * -.016 -.033 ** -.023 -.001 -.001 .049 *** .035 -.001 -.001
Goodness of fit: R2
	
  values lie between .05 and .15	
  
Notes: For travelled distances the log is taken. *p<0.10; **p<0.05; ***p<0.01	
  
In	
  line	
  with	
  the	
  effects	
  on	
  trip	
  generation,	
  travel	
  distances	
  for	
  recreational	
  trips	
  are	
  more	
  strongly	
  
influenced	
   by	
   seasonal	
   climate	
   change	
   those	
   for	
   utilitarian	
   trips.	
   When	
   looked	
   at	
   the	
   shoulder	
  
seasons	
  Tables	
  2	
  and	
  3	
  show	
  many	
  similarities.	
  Trip	
  distances	
  seem	
  to	
  be	
  mostly	
  influenced	
  in	
  the	
  
warmer	
   and	
   wetter	
   2050	
   spring	
   season.	
   Trip	
   distances	
   significantly	
   increase	
   for	
   touring	
   and	
  
significantly	
  decrease	
  for	
  shopping	
  and	
  leisure	
  other,	
  as	
  well	
  as	
  for	
  some	
  of	
  the	
  other	
  activity	
  types	
  
and	
  the	
  average	
  for	
  all	
  trips	
  combined.	
  It	
  seems	
  that	
  with	
  the	
  increase	
  in	
  the	
  participation	
  into	
  the	
  
active	
  and	
  outdoors	
  oriented	
  leisure-­‐touring	
  activities	
  (Table	
  2),	
  people	
  are	
  also	
  willing	
  to	
  travel	
  
further	
  for	
  these	
  (Table	
  3).	
  For	
  autumn	
  we	
  observe,	
  also	
  in	
  line	
  with	
  climate	
  change	
  effects	
  on	
  trip	
  
generation,	
   a	
   decrease	
   in	
   leisure-­‐touring	
   trips	
   (although	
   non-­‐significant)	
   and	
   highly	
   significant	
  
increases	
  in	
  distances	
  for	
  shopping	
  and	
  leisure-­‐other,	
  as	
  well	
  as	
  in	
  the	
  average	
  distance	
  for	
  all	
  trips	
  
combined.	
  
However,	
  when	
  looked	
  at	
  winter	
  and	
  summer,	
  a	
  comparison	
  between	
  Table	
  2	
  and	
  3	
  reveals	
  
much	
   dissimilarity.	
   In	
   contrast	
   to	
   the	
   number	
   of	
   trips,	
   trip	
   distances	
   in	
   warmer	
   2050-­‐winters	
  
significantly	
  decrease	
  for	
  touring	
  trips.	
  At	
  the	
  same	
  time	
  we	
  do	
  not	
  observe	
  a	
  significant	
  decrease	
  in	
  
distances	
  travelled	
  in	
  summer.	
  Above	
  all,	
  climate	
  change	
  effects	
  on	
  travelled	
  distance	
  in	
  winter	
  and	
  
summer	
  seem	
  to	
  be	
  rather	
  limited,	
  rising	
  our	
  expectation	
  of	
  the	
  interference	
  of	
  second	
  process:	
  
mode	
   choice.	
   In	
   a	
   previous	
   study	
   on	
   mode	
   choice	
   in	
   the	
   Randstad	
   Holland,	
   we	
   found	
   that	
   the	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  10	
  
	
  
choices	
   for	
   active	
   transport	
   modes	
   increase	
   slightly	
   in	
   spring	
   and	
   largely	
   in	
   winter	
   conditions	
  
whereas	
  they	
  decrease	
  slightly	
  in	
  autumn	
  and	
  largely	
  in	
  2050-­‐summer	
  weather	
  conditions	
  (Böcker	
  
et	
   al.,	
   submitted).	
   Consequently,	
   for	
   instance	
   warmer	
   winter	
   weather	
   may	
   on	
   the	
   one	
   hand	
  
enhance	
   further	
   travelling	
   for	
   leisure	
   touring,	
   but	
   on	
   the	
   other	
   hand	
   increase	
   the	
   use	
   of	
   active	
  
transport	
   modes	
   –	
   typically	
   used	
   for	
   shorter	
   distances	
   –counteracting	
   the	
   former	
   effect.	
  
Interference	
   of	
   the	
   indirect	
   effect	
   via	
   mode	
   choices	
   could	
   explain	
   why	
   in	
   contrast	
   to	
   the	
   clear	
  
climate	
  change	
  effects	
  on	
  trip	
  generation,	
  its	
  effects	
  on	
  trip	
  distance	
  are	
  less	
  clear,	
  especially	
  in	
  
winter	
   and	
   summer	
   when	
   climate	
   change	
   effects	
   on	
   mode	
   choice	
   are	
   strongest	
   (Böcker	
   et	
   al.,	
  
submitted).	
  
	
  
	
  
3.3 Degree	
  of	
  urbanization	
  of	
  selected	
  destinations	
  for	
  leisure	
  activities	
  
For	
  our	
  analysis	
  of	
  activity	
  destination	
  locations	
  in	
  terms	
  of	
  urbanization	
  degree,	
  we	
  will	
  
focus	
  our	
  analysis	
  on	
  the	
  recreational	
  activities	
  shopping,	
  leisure-­‐touring	
  and	
  leisure-­‐other	
  
(excluding	
   social	
   visits)	
   for	
   two	
   reasons.	
   First,	
   in	
   contrast	
   to	
   the	
   other	
   activities,	
   these	
  
leisure	
   activities	
   are	
   generally	
   more	
   voluntary,	
   flexible	
   and	
   occassional,	
   and	
   as	
   such	
   are	
  
expected	
   to	
   be	
   less	
   fixed	
   in	
   time	
   and	
   space	
   and	
   more	
   strongly	
   subjected	
   to	
   weather	
  
conditions,	
  for	
  which	
  evidence	
  has	
  been	
  found	
  throughout	
  the	
  literature	
  (e.g.	
  Cools	
  et	
  al.,	
  
2010;	
   Brandenburg	
   et	
   al.,	
   2004)	
   and	
   which	
   we	
   have	
   seen	
   in	
   section	
   4.2.	
   Second	
   these	
  
leisure	
   activities	
   are	
   directly	
   competing	
   with	
   each	
   other	
   within	
   the	
   same	
   leisure	
   time	
  
budget	
  as	
  found	
  in	
  the	
  literature	
  (Nijland	
  et	
  al	
  2011)	
  and	
  encountered	
  in	
  section	
  4.2.	
  Based	
  
on	
   the	
   literature	
   (e.g.	
   Nikopoulou	
   and	
   Lykoudis,	
   2007)	
   and	
   intuitive	
   reasoning,	
   our	
  
expectation	
  is	
  that	
  people	
  stick	
  to	
  more	
  sheltered	
  inner-­‐city	
  locations	
  for	
  leisure	
  activities	
  
when	
  the	
  weather	
  conditions	
  are	
  colder	
  or	
  wetter,	
  to	
  benefit	
  from	
  the	
  urban	
  heat	
  island	
  
(against	
   cold)	
   or	
   to	
   be	
   less	
   exposed	
   to	
   precipitation	
   or	
   heavy	
   wind.	
   In	
   contrast,	
   with	
  
warmer	
   and	
   dryer	
   weather	
   conditions	
   we	
   may	
   expect	
   people	
   to	
   enjoy	
   more	
   weather-­‐
exposed	
  destinations	
  outside	
  the	
  city.	
  During	
  very	
  hot	
  weather	
  conditions,	
  such	
  as	
  in	
  the	
  
selected	
  2050-­‐summer,	
  we	
  may	
  –	
  as	
  a	
  result	
  of	
  an	
  escape	
  of	
  inner-­‐city	
  heat	
  –	
  also	
  expect	
  
people	
   to	
   select	
   destinations	
   outside	
   cities,	
   although	
   we	
   doubt	
   whether	
   this	
   effect	
   will	
  
show	
   on	
   the	
   aggregated	
   seasonal	
   level.	
   A	
   descriptive	
   overview	
   of	
   the	
   seasonal	
   climate	
  
change	
  effects	
  on	
  selected	
  destination	
  locations	
  of	
  various	
  degrees	
  of	
  urbanization	
  for	
  the	
  
different	
  leisure	
  activities	
  is	
  presented	
  in	
  figure	
  3.	
  	
  
Figure 3: Seasonal climate change effects on attendances of destinations of different density for leisure
activities, in per cent changes of the number of trips per person per day.
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  11	
  
	
  
Figure	
  3	
  in	
  broad	
  lines	
  echoes	
  the	
  climate	
  change	
  effects	
  on	
  activity	
  participation	
  found	
  
earlier	
   in	
   Figure	
   2,	
   with	
   clear	
   increases	
   in	
   touring	
   destinations	
   in	
   winter/spring	
   and	
  
decreases	
  in	
  summer	
  and	
  to	
  a	
  lesser	
  extent	
  autumn,	
  against	
  opposed	
  effects	
  for	
  leisure-­‐
other	
  and	
  shopping.	
  But	
  when	
  looked	
  into	
  more	
  detail	
  it	
  appears	
  that	
  for	
  these	
  different	
  
leisure	
  activities	
  under	
  changing	
  weather	
  conditions	
  different	
  locations	
  are	
  preferred.	
  For	
  
instance	
   in	
   winter,	
   very	
   clearly	
   it	
   appears	
   that	
   the	
   increases	
   in	
   touring	
   (found	
   earlier	
   in	
  
Figure	
  2)	
  are	
  mostly	
  taking	
  place	
  in	
  the	
  more	
  rural/	
  suburban	
  locations	
  and	
  not	
  in	
  inner-­‐city	
  
areas.	
   Before	
   discussing	
   these	
   effects	
   on	
   leisure	
   destination	
   locations	
   in	
   the	
   context	
   of	
  
seasonal	
  climate	
  change,	
  we	
  will	
  first	
  turn	
  to	
  the	
  multivariate	
  analysis.	
  For	
  all	
  seasons,	
  we	
  
modelled	
   the	
   effects	
   of	
   climate	
   change,	
   along	
   with	
   various	
   individual	
   and	
   household	
  
background	
  predictors,	
  on	
  the	
  number	
  of	
  trips	
  per	
  person	
  per	
  day	
  for	
  the	
  different	
  leisure	
  
activities’	
   destinations	
   of	
   varying	
   address	
   density.	
   Table	
   4	
   presents	
   a	
   summary	
   of	
   the	
  
effects	
  of	
  seasonal	
  climate	
  change.	
  
Table 4: Summary of seasonal climate change effects on location in terms of urbanization degree
Binary logistic regression: Climate change effects on #trips/person/day towards different densities
Winter Spring Summer Autumn All
B
Bet
a B
Bet
a B Beta B
Bet
a B
Bet
a
Leisure shopping
<700 -0,277 0,209 -0,731 *** 0,223 0,028 0,216 0,504 ** 0,222 -0,105 0,097
700-1400 0,057 0,131 -0,146 0,139 0,343 ** 0,143 -0,080 0,149 0,022 0,066
1400-2000 -0,079 0,108 -0,054 0,129 0,000 0,127 0,132 0,135 -0,037 0,059
2000-3500 -0,102 0,094 -0,068 0,104 0,367 *** 0,112 -0,151 0,103 -0,028 0,049
>3500 -0,176 0,125 -0,402 *** 0,150 0,263 * 0,149 0,250 * 0,144 -0,040 0,065
Leisure touring
<700 0,346 ** 0,164 0,052 0,173 -0,401 *** 0,140 -0,281 0,174 -0,049 0,078
700-1400 0,640 *** 0,168 0,239 0,173 -0,411 *** 0,142 0,145 0,171 0,170 ** 0,079
1400-2000 0,541 *** 0,174 0,417 ** 0,166 -0,278 * 0,163 0,046 0,189 0,165 * 0,084
2000-3500 -0,029 0,172 0,131 0,164 -0,269 * 0,153 0,156 0,164 0,053 0,078
>3500 -0,047 0,224 0,493 ** 0,206 -0,888 *** 0,192 -0,534 ** 0,211 -0,162 0,101
Leisure other
<700 -0,279 * 0,168 -0,400 ** 0,164 0,397 ** 0,182 0,188 0,174 -0,069 0,079
700-1400 -0,607 *** 0,149 -0,051 0,132 0,295 * 0,164 -0,033 0,144 -0,171 ** 0,068
1400-2000 -0,022 0,142 -0,138 0,150 0,342 ** 0,171 0,061 0,148 0,032 0,072
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  12	
  
	
  
2000-3500 -0,511 *** 0,138 -0,306 ** 0,147 -0,145 0,158 0,581 *** 0,152 -0,105 0,067
>3500 -0,332 ** 0,157 -0,375 ** 0,177 0,153 0,206 0,263 0,186 -0,158 * 0,082
Goodness of fit: Pseudo R2 (Nagelkerke) range from .015 to .232 and average .085
*p<0.10; **p<0.05; ***p<0.01	
  
In	
  the	
  slightly	
  wetter	
  but	
  much	
  milder	
  2050-­‐winters	
  leisure	
  touring	
  trips	
  increase	
  highly	
  significantly	
  
towards	
  locations	
  with	
  lower	
  address	
  densities,	
  whereas	
  towards	
  higher-­‐density	
  destinations	
  this	
  is	
  
not	
   the	
   case	
   (non-­‐significant	
   decreases).	
   According	
   to	
   our	
   expectations	
   and	
   the	
   descriptives	
   it	
  
seems	
  that	
  the	
  milder	
  2050	
  weather	
  conditions	
  favour	
  the	
  visiting	
  of	
  more-­‐exposed	
  lower	
  density	
  
areas,	
  which	
  are	
  less	
  attractive	
  in	
  colder	
  present-­‐day	
  winters.	
  At	
  the	
  same	
  time	
  the	
  more	
  indoors	
  
leisure-­‐other	
   trips	
   towards	
   all	
   urbanization	
   degrees	
   decrease	
   significantly,	
   with	
   the	
   exception	
   of	
  
medium	
   density	
   locations,	
   which	
   remain	
   unaffected.	
   Also	
   shopping	
   trips	
   are	
   not	
   significantly	
  
impacted.	
  
According	
  to	
  the	
  descriptives,	
  in	
  the	
  warmer	
  and	
  wetter	
  2050	
  spring	
  seasons	
  we	
  can	
  see	
  
significant	
   increases	
   in	
   touring	
   trips,	
   towards	
   medium	
   density	
   locations	
   (including	
   many	
   of	
   the	
  
cities’	
  fringes),	
  as	
  well	
  as	
  in	
  inner-­‐city	
  environments	
  (including	
  urban	
  parks).	
  Touring	
  in	
  rural	
  areas	
  
seems	
  to	
  be	
  less	
  affected.	
  Leisure-­‐other	
  and	
  shopping	
  trips	
  are	
  negatively	
  affected,	
  but	
  decreases	
  
are	
  only	
  significant	
  for	
  the	
  higher	
  density	
  locations	
  and	
  the	
  very	
  rural	
  locations.	
  	
  
	
   In	
   hotter	
   2050-­‐summers	
   with	
   increased	
   heavy	
   precipitation	
   and	
   drought,	
   leisure	
   touring	
  
activities	
  significantly	
  decrease	
  for	
  all	
  degrees	
  of	
  urbanization.	
  As	
  in	
  the	
  descriptives,	
  the	
  decrease	
  
in	
  general	
  seems	
  to	
  be	
  stronger	
  for	
  lower	
  density	
  areas,	
  which	
  could	
  be	
  related	
  lack	
  of	
  shelter	
  in	
  
these	
   areas	
   to	
   heavy	
   rain.	
   But	
   the	
   decrease	
   in	
   touring	
   is	
   also	
   exceptionally	
   high,	
   and	
   highly	
  
significant,	
  for	
  the	
  highest	
  density	
  areas,	
  which	
  could	
  be	
  a	
  result	
  of	
  the	
  unattractiveness	
  of	
  these	
  
areas	
   for	
   physical	
   activity	
   during	
   heat.	
   With	
   regard	
   to	
   the	
   more	
   indoors/mixed	
   recreational	
  
alternatives,	
   leisure-­‐other	
   activities	
   increase	
   mostly	
   in	
   lower	
   density	
   areas	
   whereas	
   leisure	
  
shopping	
  increases	
  mostly	
  in	
  higher	
  density	
  areas.	
  	
  
	
   Of	
  all	
  seasons,	
  in	
  autumn	
  location	
  in	
  terms	
  of	
  urbanization	
  degree	
  seems	
  to	
  be	
  least	
  clearly	
  
affected.	
  Leisure	
  touring	
  seems	
  to	
  decrease	
  for	
  the	
  most	
  rural	
  (near-­‐to-­‐significant)	
  and	
  urban	
  areas	
  
(significant),	
  whereas	
  towards	
  locations	
  of	
  more	
  medium	
  density	
  non-­‐significant	
  increases	
  can	
  be	
  
observed.	
   Leisure	
   shopping	
   significantly	
   increases	
   in	
   very	
   urban	
   and	
   very	
   rural	
   areas,	
   whereas	
  
leisure-­‐other	
  increases	
  only	
  significantly	
  in	
  moderately	
  urban	
  areas.	
  
	
   As	
  of	
  opposite	
  seasonal	
  climate	
  change	
  effects,	
  over	
  the	
  whole	
  year	
  the	
  net	
  climate	
  change	
  
effect	
   on	
   destination	
   location	
   for	
   leisure	
   activities	
   is	
   mostly	
   marginal:	
   shopping	
   remains	
   entirely	
  
unaffected;	
   touring	
   seems	
   to	
   increase	
   significantly	
   only	
   for	
   medium	
   density	
   destinations;	
   and	
  
leisure	
  other	
  decreases	
  in	
  moderately	
  rural	
  and	
  very	
  urban	
  areas.	
  In	
  this	
  section	
  it	
  became	
  clear	
  
that	
  climate	
  change	
  highly	
  affects	
  the	
  choices	
  for	
  recreational	
  activities	
  on	
  the	
  seasonal	
  level,	
  but	
  
that	
  in	
  addition	
  to	
  what	
  we	
  have	
  seen	
  in	
  section	
  4.2,	
  considerable	
  differences	
  exist	
  between	
  the	
  
generation	
  of	
  trips	
  in	
  different	
  geographical	
  contexts.	
  	
  
	
  
	
  
References	
  
	
  
Amelung,	
  B.	
  and	
  Viner,	
  D.	
  (2006)	
  Mediterranean	
  tourism:	
  explaining	
  the	
  future	
  with	
  the	
  tourism	
  	
  
climatic	
  index,	
  Journal	
  of	
  Sustainable	
  Tourism	
  14,	
  pp.	
  349–366.	
  
Bigano,	
  A.,	
  Hamilton,	
  J.M.	
  and	
  Tol,	
  R.S.J.	
  (2006)	
  The	
  impact	
  of	
  climate	
  change	
  on	
  holiday	
  destination	
  	
  
choice,	
  Climatic	
  Change	
  76,	
  389–406.	
  
Hamilton,	
  J.M.,	
  Maddison,	
  D.J.	
  and	
  Tol,	
  R.S.J.	
  (2005)	
  Climate	
  change	
  and	
  international	
  tourism:	
  a	
  	
  
simulation	
  study,	
  Global	
  Environmental	
  Change,	
  15,	
  pp.	
  253–266.	
  
Koetse,	
  M.J.	
  and	
  Rietveld,	
  P.	
  (2009)	
  The	
  impact	
  of	
  climate	
  change	
  and	
  weather	
  on	
  transport:	
  An	
  	
  
overview	
  of	
  empirical	
  findings,	
  Transportation	
  Research	
  Part	
  D,	
  14,	
  pp.	
  205-­‐221.	
  
CESAR	
  Project	
  1	
  working	
  document	
  series	
  no.1	
   	
   Climate	
  change	
  and	
  destination	
  choices	
  
Page	
  13	
  
	
  
Matzarakis,	
  A.	
  and	
  De	
  Vreitas,	
  C.	
  (2001)	
  Proceedings	
  of	
  the	
  First	
  International	
  Workshop	
  on	
  	
  
Climate,	
  Tourism,	
  and	
  Recreation.	
  International	
  Society	
  of	
  Biometeorology,	
  Commision	
  on	
  	
  
Climate	
  Tourism	
  and	
  Recreation.	
  
Nicholls,	
  S.	
  and	
  Amelung,	
  B.	
  (2008)	
  Climate	
  change	
  and	
  tourism	
  in	
  Northwestern	
  Europe:	
  impacts	
  	
  
and	
  adaptation,	
  Tourism	
  Analysis,	
  13,	
  pp.	
  21-­‐31.	
  
	
  

Contenu connexe

En vedette (12)

Mouter pelzerzwemlesvoorplanners
Mouter pelzerzwemlesvoorplannersMouter pelzerzwemlesvoorplanners
Mouter pelzerzwemlesvoorplanners
 
CESAR Input Output Model
CESAR Input Output ModelCESAR Input Output Model
CESAR Input Output Model
 
Bivec presentation dijst cesar
Bivec presentation dijst cesarBivec presentation dijst cesar
Bivec presentation dijst cesar
 
Cesar December 2010
Cesar December 2010Cesar December 2010
Cesar December 2010
 
Coursemanual final a4
Coursemanual final a4Coursemanual final a4
Coursemanual final a4
 
Pccams for puma
Pccams for pumaPccams for puma
Pccams for puma
 
R om 10 2013 art geoinformatie op tafel (2)
R om 10 2013 art geoinformatie op tafel (2)R om 10 2013 art geoinformatie op tafel (2)
R om 10 2013 art geoinformatie op tafel (2)
 
Bike train system [eindhoven]
Bike train system [eindhoven]Bike train system [eindhoven]
Bike train system [eindhoven]
 
Beijing 2014 without photos
Beijing 2014 without photosBeijing 2014 without photos
Beijing 2014 without photos
 
RUIMTEVOLK: Expeditie Mobiliteit
RUIMTEVOLK: Expeditie MobiliteitRUIMTEVOLK: Expeditie Mobiliteit
RUIMTEVOLK: Expeditie Mobiliteit
 
Systematic review
Systematic reviewSystematic review
Systematic review
 
Radlhauptstadt Marketing Campaign
Radlhauptstadt Marketing CampaignRadlhauptstadt Marketing Campaign
Radlhauptstadt Marketing Campaign
 

Similaire à Climate change and destination choices

Decision making process regarding climate change regulation in
Decision making process regarding climate change regulation inDecision making process regarding climate change regulation in
Decision making process regarding climate change regulation in
Private
 
Aag 2011 seattle
Aag 2011 seattleAag 2011 seattle
Aag 2011 seattle
Marco
 
Climate change data portal
Climate change data portalClimate change data portal
Climate change data portal
cenafrica
 
Factsheet cesar theeuwes en def
Factsheet cesar theeuwes en defFactsheet cesar theeuwes en def
Factsheet cesar theeuwes en def
Marco
 

Similaire à Climate change and destination choices (20)

Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...
 
environments-06-00082-v2.pdf
environments-06-00082-v2.pdfenvironments-06-00082-v2.pdf
environments-06-00082-v2.pdf
 
Slidedeck complete final
Slidedeck complete finalSlidedeck complete final
Slidedeck complete final
 
Decision making process regarding climate change regulation in
Decision making process regarding climate change regulation inDecision making process regarding climate change regulation in
Decision making process regarding climate change regulation in
 
Impact Of Climate Change Hansen
Impact Of Climate Change  HansenImpact Of Climate Change  Hansen
Impact Of Climate Change Hansen
 
CO2 embodied in international Trade (Peters hertwich2008). Lecturas recomenda...
CO2 embodied in international Trade (Peters hertwich2008). Lecturas recomenda...CO2 embodied in international Trade (Peters hertwich2008). Lecturas recomenda...
CO2 embodied in international Trade (Peters hertwich2008). Lecturas recomenda...
 
Urban climate science and urban planning: a history of missed encounters
Urban climate science and urban planning: a history of missed encountersUrban climate science and urban planning: a history of missed encounters
Urban climate science and urban planning: a history of missed encounters
 
Role Of Tourism Sector In Climate Change - Indicus Analytics
Role Of Tourism Sector In Climate Change - Indicus AnalyticsRole Of Tourism Sector In Climate Change - Indicus Analytics
Role Of Tourism Sector In Climate Change - Indicus Analytics
 
OECD Programme_A territorial approach to climate Action and resilience (TACAR...
OECD Programme_A territorial approach to climate Action and resilience (TACAR...OECD Programme_A territorial approach to climate Action and resilience (TACAR...
OECD Programme_A territorial approach to climate Action and resilience (TACAR...
 
Aag 2011 seattle
Aag 2011 seattleAag 2011 seattle
Aag 2011 seattle
 
IRJET- Impact of Urbanization on Environment
IRJET-  	  Impact of Urbanization on EnvironmentIRJET-  	  Impact of Urbanization on Environment
IRJET- Impact of Urbanization on Environment
 
Temporal Patterns in the Surface Urban Heat Island Effect and Land Cover Chan...
Temporal Patterns in the Surface Urban Heat Island Effect and Land Cover Chan...Temporal Patterns in the Surface Urban Heat Island Effect and Land Cover Chan...
Temporal Patterns in the Surface Urban Heat Island Effect and Land Cover Chan...
 
Adaptation To Climate Change Using Green And Blue Infrastructure - A Database...
Adaptation To Climate Change Using Green And Blue Infrastructure - A Database...Adaptation To Climate Change Using Green And Blue Infrastructure - A Database...
Adaptation To Climate Change Using Green And Blue Infrastructure - A Database...
 
Thermal Comfor modelling presentation
Thermal Comfor modelling presentationThermal Comfor modelling presentation
Thermal Comfor modelling presentation
 
Climate change data portal
Climate change data portalClimate change data portal
Climate change data portal
 
Coleen Vogel - An inconvenient truth - the Hell Niño in south africa
Coleen Vogel - An inconvenient truth - the Hell Niño in south africaColeen Vogel - An inconvenient truth - the Hell Niño in south africa
Coleen Vogel - An inconvenient truth - the Hell Niño in south africa
 
Climate change perception and adaptation practices of gondar city administrat...
Climate change perception and adaptation practices of gondar city administrat...Climate change perception and adaptation practices of gondar city administrat...
Climate change perception and adaptation practices of gondar city administrat...
 
Climate change adaptation and disaster risk reduction – Blaz Kurnik, EEA
Climate change adaptation and disaster risk reduction – Blaz Kurnik, EEAClimate change adaptation and disaster risk reduction – Blaz Kurnik, EEA
Climate change adaptation and disaster risk reduction – Blaz Kurnik, EEA
 
Climate Change and urban tourism in China
Climate Change and urban tourism in ChinaClimate Change and urban tourism in China
Climate Change and urban tourism in China
 
Factsheet cesar theeuwes en def
Factsheet cesar theeuwes en defFactsheet cesar theeuwes en def
Factsheet cesar theeuwes en def
 

Plus de Marco

Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
Marco
 
Np lezing ashish verma
Np lezing ashish vermaNp lezing ashish verma
Np lezing ashish verma
Marco
 
Beijing 2014
Beijing 2014Beijing 2014
Beijing 2014
Marco
 
Tum2014 november
Tum2014 novemberTum2014 november
Tum2014 november
Marco
 
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
Marco
 
Factsheet cesar bocker en def
Factsheet cesar bocker en defFactsheet cesar bocker en def
Factsheet cesar bocker en def
Marco
 
Factsheet cesar bocker nl def
Factsheet cesar bocker nl defFactsheet cesar bocker nl def
Factsheet cesar bocker nl def
Marco
 
Factsheet cesar brommelstroet en def
Factsheet cesar brommelstroet en defFactsheet cesar brommelstroet en def
Factsheet cesar brommelstroet en def
Marco
 
Factsheet cesar brommelstroet nl def
Factsheet cesar brommelstroet nl defFactsheet cesar brommelstroet nl def
Factsheet cesar brommelstroet nl def
Marco
 
Factsheet cesar pelzer en def
Factsheet cesar pelzer en defFactsheet cesar pelzer en def
Factsheet cesar pelzer en def
Marco
 
Factsheet cesar pelzer nl def
Factsheet cesar pelzer nl defFactsheet cesar pelzer nl def
Factsheet cesar pelzer nl def
Marco
 
Factsheet cesar theeuwes nl def
Factsheet cesar theeuwes nl defFactsheet cesar theeuwes nl def
Factsheet cesar theeuwes nl def
Marco
 
Oldenziel and bruheze__eu_bike_lanes
Oldenziel and bruheze__eu_bike_lanesOldenziel and bruheze__eu_bike_lanes
Oldenziel and bruheze__eu_bike_lanes
Marco
 

Plus de Marco (20)

Reizen als vervoering en verwondering
Reizen als vervoering en verwonderingReizen als vervoering en verwondering
Reizen als vervoering en verwondering
 
Safari mini masterclass
Safari mini masterclassSafari mini masterclass
Safari mini masterclass
 
Mobiliteits enquete ons 2020
Mobiliteits enquete ons 2020Mobiliteits enquete ons 2020
Mobiliteits enquete ons 2020
 
Slidedeck Info Avond Buitenruimte Kantinegebouw
Slidedeck Info Avond Buitenruimte KantinegebouwSlidedeck Info Avond Buitenruimte Kantinegebouw
Slidedeck Info Avond Buitenruimte Kantinegebouw
 
12 september
12 september12 september
12 september
 
Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
Onderzoeksvoorstel 'reistijdbeleving van fietsers'[1]
 
Keynote Cycling Scotland (Edinburgh)
Keynote Cycling Scotland (Edinburgh)Keynote Cycling Scotland (Edinburgh)
Keynote Cycling Scotland (Edinburgh)
 
Np lezing ashish verma
Np lezing ashish vermaNp lezing ashish verma
Np lezing ashish verma
 
Jaarlijkse KNAG lezing 2015
Jaarlijkse KNAG lezing 2015Jaarlijkse KNAG lezing 2015
Jaarlijkse KNAG lezing 2015
 
Beijing 2014
Beijing 2014Beijing 2014
Beijing 2014
 
Tum2014 november
Tum2014 novemberTum2014 november
Tum2014 november
 
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
N ss et_al._2014_transport_modelling_in_the_context_of_the_predict_and_provid...
 
Factsheet cesar bocker en def
Factsheet cesar bocker en defFactsheet cesar bocker en def
Factsheet cesar bocker en def
 
Factsheet cesar bocker nl def
Factsheet cesar bocker nl defFactsheet cesar bocker nl def
Factsheet cesar bocker nl def
 
Factsheet cesar brommelstroet en def
Factsheet cesar brommelstroet en defFactsheet cesar brommelstroet en def
Factsheet cesar brommelstroet en def
 
Factsheet cesar brommelstroet nl def
Factsheet cesar brommelstroet nl defFactsheet cesar brommelstroet nl def
Factsheet cesar brommelstroet nl def
 
Factsheet cesar pelzer en def
Factsheet cesar pelzer en defFactsheet cesar pelzer en def
Factsheet cesar pelzer en def
 
Factsheet cesar pelzer nl def
Factsheet cesar pelzer nl defFactsheet cesar pelzer nl def
Factsheet cesar pelzer nl def
 
Factsheet cesar theeuwes nl def
Factsheet cesar theeuwes nl defFactsheet cesar theeuwes nl def
Factsheet cesar theeuwes nl def
 
Oldenziel and bruheze__eu_bike_lanes
Oldenziel and bruheze__eu_bike_lanesOldenziel and bruheze__eu_bike_lanes
Oldenziel and bruheze__eu_bike_lanes
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 

Climate change and destination choices

  • 1.     CESAR  WORKING  DOCUMENT  SERIES   Project  1,  working  document  no.1               Climate  change  effects  on  destination  choices   for  daily  activities  in  the  Randstad  Holland     Second  climate  change  analysis  on  Dutch  National  Travel  Survey  (MON)  data       L.  Böcker,  J.Prillwitz  and  M.Dijst     19  March  2012             This  working  document  series  is  a  joint  initiative  of  the  University  of  Amsterdam,    Utrecht  University,  Wageningen  University  and   Research  centre  and  TNO               The  research  that  is  presented  in  this  series  is  financed  by  the  NWO  program  on  Sustainable  Accessibility  of  the  Randstad:   http://www.nwo.nl/nwohome.nsf/pages/nwoa_79vlym_eng        
  • 2. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  2     TABLE  OF  CONTENT   1.   INTRODUCTION................................................................................................................ 3   2.   RESEARCH  DESIGN........................................................................................................... 3   3.   ANALYSIS.......................................................................................................................... 5   4.   REFERENCES................................................................................................................... 12      
  • 3. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  3     1. INTRODUCTION   In  the  light  of  a  growing  societal  interest  for  climate  change  adaptation,  various  recent  studies  have   looked  into  the  relationship  between  climate/weather  and  a  variety  of  daily  travel  choices,  such  as   choices   for   transport   modes,   departure   times   and   routes   (see   for   an   overview   of   the   literature   Koetse  and  Rietveld,  2009  and  Böcker,  et  al,  submitted),  as  well  as  on  long  term  preferences  for   tourism  destinations  (Nicholls  and  Amelung,  2008;  Amelung  and  Viner,  2006;  Hamilton  et  al.,  2005;   Bigano   et   al.,   2006;   Matzarakis   and   De   Freitas   2001).   However,   the   impact   on   daily   destination   choices   has   largely   been   neglected   by   these   contributions.   This   is   remarkable,   since   the   role   of   changing  weather  patterns  for  daily  destination  choices  is  highly  relevant  from  a  geographical  point   of   view.   One   can   think   of   citizens   escaping   inner-­‐city   heat   to   recreational   sites   and   shopping   complexes   outside   cities,   or   a   switch   from   active   outdoor   to   inactive   indoor   activities   with   increasing  periods  of  precipitation.                Consequently,  this  study  analyses  the  effects  of  projected  climate  change  on  the  demand  for   different   types   of   activity-­‐destinations   (like   indoor/outdoor   and   recreational/maintenance)   in   different  urban,  suburban  and  rural  residential  environments  in  the  Dutch  Randstad.  This  working   document  presents  the  research  design  and  preliminary  analyses  of  seasonal  climate  change  effects   on   destination   choices   in   the   Randstad   Holland.   First   the   research   design   will   be   outlined.   Thereafter  an  analysis  will  be  provided  of  the  effects  of  climate  change  on:  the  balance  between   leisure  and  utilitarian  activities;  the  participation  into  various  activities;  destination  locations;  and   travelled  distances  in  the  Randstad  Holland. 2. RESEARCH  DESIGN   This  research  is  located  in  the  Randstad  Holland.  The  densely  populated  region  is  located  in  the  west   of  the  Netherlands,  spanning  the  area  around  the  four  largest  cities  Amsterdam,  Rotterdam,  The   Hague   and   Utrecht.   This   region   forms   the   study   area   of   the   CESAR-­‐project   (Climate   and   Environmental   change   and   Sustainable   Accessibility   of   the   Randstad)   on   sustainable   urbanisation   and   accessibility   in   which   this   study   is   embedded   (http://www.nwo.nl/nwohome.nsf/pages/NWOP_7YUHV3_Eng).     This  study’s  research  design  is  similar  to  an  earlier  research  on  climate  change  effects  on   mode  choices  and  travelled  distances  (Böcker  et  al.,  submitted).  Based  on  Randstad  meteorological   records   (KNMI,   2011)   and   four   regional   climate   change   scenarios   reflecting   variations   in   global   temperature  rise  (+1  to  +2˚C)  and  prevailing  wind  patterns  (KNMI,  2009),  we  estimate  present  as   well  as  2050  seasonal  averages.  In  order  to  analyse  climate  change  effects  we  select,  from  the  last   decade,  seasons  with  average  weather  conditions  for  the  climate  at  present  as  well  as  seasons  with   weather   conditions   projected   to   be   average   in   2050   (KNMI,   2009).   Selected   seasons   represent   precipitation  and  temperature  patterns  as  accurately  as  possible.  To  address  not  only  amounts  but   also  distributions  of  precipitation,  we  include  seasonal  precipitation  sums  as  well  as  numbers  of  wet   days   (≥0.1mm).   With   regard   to   temperature,   seasons   at   the   higher   end   of   the   projected   2050-­‐ bandwidth  are  preferred,  as  underlying  climate  scenarios  for  these  are  more  likely  to  occur  (KNMI,   2009).  If  necessary,  precipitation  is  valued  over  temperature  as  a  selection  criterion,  because  of  its   higher  significance  for  travel  behaviour  in  the  literature  (e.g.  Cools  and  other,  2010).   Table  1  presents  shows  the  selected  seasons.  At  present,  the  Randstad  Holland  is  subjected   to  a  maritime  climate  characterised  by  warm  summers,  mild  winters  with  moderate  but  relatively   stable   year-­‐round   precipitation.   For   2050,   winters   are   projected   to   become   much   milder   and   wetter;  springs  warmer  and  wetter;  summers  hotter  with  at  periods  heavier  precipitation  as  well  as   more   intensive   drought;   and   autumns   will   become   warmer   with   also   at   periods   intensified   precipitation  as  well  as  drought,  although  less  than  in  summer.    
  • 4. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  4     Table 1: Overview of changing climate patterns present-2050 in the Netherlands, for the selected seasons Temperature Precipitation Selected season Average in ˚C Seasonal sum in mm # of days ≥0.1mm Present 2050 Present 2050 Present 2050 Present 2050 Winter 2004/05 2007/08 3.6 5.1 176 218 50 47 Spring 2005 2008 9.8 10.2 152 197 57 49 Summer 2009 2006 17.4 18.5 180 263 43 38 Autumn 2008 2005 10.2 12.0 267 241 50 43 Source: Böcker et al., forthcoming From  2004-­‐2009  Dutch  National  Travel  Survey  data  (Mobiliteitsonderzoek  Nederland)  we  analyse   activity  data  for  the  selected  seasons.  The  total  annual  number  of  respondents  varies  from  around   66,000  in  2004  to  40,000  in  2009.  From  a  sub-­‐sample  of  participants  living  in  the  Randstad  region   with   the   age   of   18   years   and   older,   we   select   heads   of   households   and   their   partners   only.  For   different  activity  destinations  –  work/study,  maintenance  (including  shopping  under  30  minutes),   picking  up  persons,  social  visit,  leisure-­‐shopping  (30  minutes  or  longer),  leisure-­‐touring  and  leisure-­‐ other   –   we   analyse   seasonal   climate   change   effects   on   demand   and   location   choice   in   terms   of   travelled  distance  and  urbanization  degree.  Unfourtunately,  an  exact  subdivision  between  indoors   and  outdoors  leisure  activities  could  not  be  made  from  the  existing  data.  Generally,  however,  the   leisure   touring   category   comprises   activities   with   a   more   outdoors   character   (recreational   trips,   including  walking/cycling  tours),  whereas  the  leisure  other  category  includes,  in  addition  to  some   activities   that   could   be   either   indoors   or   outdoors   (hobby,   sports),   a   lot   of   typically   indoors   activities  (cultural  activities,  church,  community  center,  etc).       In  the  multivariate  part  we  control  for  various  independent  individual/household  attributes   and  spatio-­‐temporal  attributes  in  which  trips  are  situated.  As  individual  attributes  we  include  age,   gender,   education   level   and   workweek   duration.   We   include   the   household   attributes   car   availability,  household  income,  and  household  type.  The  latter  is  a  typology  based  on  household   size,  presence  of  children  under  the  age  of  12,  and  the  number  of  adults  participating  in  the  labour   market.   As   spatial   attributes   we   include   address   densities   of   the   destination   and   the   place   of   residence  and  as  temporal  attributes  we  include  activity  timing  in  view  of  day/night,  peak/off-­‐peak   and  weekday/weekend.  Figure  1  summarizes  all  variables  into  a  conceptual  framework.     Figure  1:  Conceptual  framework  of  variables  used      
  • 5. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  5     Activity  demand  is  estimated  in  terms  of  the  number  of  trips  per  person  per  day.  Hereby  use  is   made  of  negative  binomial  regression  models,  which,  unlike  Poisson  regression,  can  deal  with  over-­‐ dispersed  count-­‐data  with  excess  zeros  generated  by  the  large  number  of  people  not  participating   certain  activities  on  a  day.  Travelled  distance  is  estimated  per  trip  by  regression  analyses.  Activity   location  is  estimated  with  binary  logistic  regressions  in  terms  of  whether  or  not  people  on  the  day   of   enquiry   made   a   trip   towards   locations   of   varying   urbanization   degrees   subdivided   into   five   classes.  For  all  analyses  separate  models  are  estimated  for  the  different  activity  types.  In  order  to   address   seasonal   climate   change   effects,   they   are   conducted   for   the   full   sample   and   thereafter   repeated  for  the  four  separate  seasons.       3. ANALYSIS   3.1 Recreational  and  utilitarian  trip  generation   In  the  literature  we  have  encountered  that  on  a  daily  level  under  dry  and  moderately  warm  weather   conditions,  people  generally  perform  more,  or  cancel  less,  recreational  trips,  than  under  wet,  cold  or   very  hot  weather  conditions,  whereas  utilitarian  trips  remain  more  or  less  unaffected  (Aaheim  and   Hauge,  2005;  Sabir,  2011;  Cools  et  al,  2010).  Projected  for  the  Randstad  climate  change  generates   warmer   weather   in   all   seasons   in   2050.   Especially   in   winter   the   temperature   effect   may   have   positive   effects   on   recreational   activities,   whereas   an   extra   increase   in   summer   temperature   will   not,  and  may  on  the  contrary  at  days  have  a  negative  effect.  However  in  winter  and  spring  also   precipitation  increases,  which  could  counter  the  positive  effect  on  recreational  trips.     In  order  to  address  whether  people  adjust  their  number  of  recreational  and  utilitarian  trip   to  changing  climate  conditions,  we  descriptively  analyse  the  number  of  recreational  and  utilitarian   trips.  Hereby  recreational  trips  include  trips  made  for  social  and  leisure  purposes  including  shopping   trips  longer  than  half  an  hour.  Utilitarian  trips  include  trips  with  the  purpose  of  work/study,  errands   and  the  bringing  or  picking  up  of  people.  It  appears  that  in  winter,  spring  and  summer,  as  well  as   year-­‐round,  people  approximately  make  as  many  recreational  trips  as  utilitarian  trips,  and  that  this   ratio   remains   relatively   stable   when   we   compare   2050   to   present   seasons.   In   autumn   a   slight   increase  in  the  share  of  recreational  over  utilitarian  trips  can  be  observed  from  44%  at  present  to   47%   in   2050.   Although   these   figures   do   not   point   at   clear   climate   change   effects,   we   perform   a   multivariate   analysis   to   see   whether   effects   appear   when   controlled   for   various   background   variables.   The   five   binary   logistic   regressions   –   one   for   each   season   and   one   for   the   full   year   –   presented   in   Table   1,   show   the   effects   for   various   independent   background   variables,   including   climate  change,  on  whether  a  trip  is  recreational  or  utilitarian.  The  impacts  of  socio-­‐demographic,   household  and  temporal  attributes  are  as  could  be  expected,  with  for  instance  more  recreational   trips  for  elderly,  couples  and  singles,  especially  those  who  work  less,  and  for  trips  off-­‐peak  and  in   the  weekend.       Table 1: Determinants for the ratio between recreational and utilitarian trips   Binary logistic regression: Recreational trip generation (ref. = utilitarian trips) Winter Spring Summer Autumn All B S.E. B S.E. B S.E. B S.E. B S.E. Constant 1,461*** ,160 1,521 *** ,160 1,394 *** ,168 ,791 *** ,160 1,289 *** ,080 Age (ref.=30-49) 18-29 -,110 ,086 ,068 ,090 ,060 ,090 ,028 ,090 ,007 ,044 50-64 ,107* ,065 -,002 ,065 ,022 ,063 ,155 ** ,063 ,061 * ,032 65-75 ,442*** ,105 ,055 ,104 ,053 ,103 ,539 *** ,108 ,255 *** ,052 75+ ,421*** ,129 ,037 ,128 ,008 ,130 ,502 *** ,129 ,222 *** ,064
  • 6. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  6     Gender (ref.=female) male -,295*** ,052 -,210 *** ,054 -,218 *** ,051 -,214 *** ,053 -,229 *** ,026 Education (ref.= higher) lower_education -,068 ,059 -,046 ,060 ,033 ,059 -,019 ,059 -,020 ,029 middle_education -,152*** ,054 -,056 ,056 -,046 ,055 -,126 ** ,056 -,096 *** ,027 Work duration (ref. <12h/w) >30 hours/week -,621*** ,082 -,520 *** ,082 -,564 *** ,082 -,565 *** ,081 -,556 *** ,040 12-30 hours/week -,630*** ,084 -,416 *** ,087 -,307 *** ,088 -,313 *** ,084 -,410 *** ,043 Household type (ref.= family. 2 workers) family 1 or no worker -,321*** ,109 -,225 ** ,107 -,094 ,117 -,097 ,113 -,167 *** ,055 couple 1 worker ,250** ,109 ,414 *** ,115 ,409 *** ,115 ,510 *** ,113 ,407 *** ,056 couple 2 workers ,282*** ,081 ,130 ,088 ,373 *** ,085 ,448 *** ,084 ,324 *** ,042 couple no worker ,436*** ,122 ,685 *** ,125 ,559 *** ,125 ,527 *** ,126 ,574 *** ,062 single and worker ,111 ,104 ,254 ** ,104 ,340 *** ,103 ,389 *** ,108 ,303 *** ,052 single no worker ,433*** ,141 ,601 *** ,145 ,561 *** ,143 ,528 *** ,142 ,553 *** ,071 other ,209*** ,080 ,218 *** ,083 ,273 *** ,083 ,252 *** ,081 ,251 *** ,041 Household income (ref.<15K) 15,000 to 29,999 euros ,141 ,096 -,162 ,099 -,112 ,100 ,302 *** ,097 ,048 ,049 30,000 euros or more ,015 ,098 -,022 ,103 -,085 ,103 ,165 * ,098 ,033 ,050 unknown ,066 ,101 ,055 ,109 -,195 * ,107 ,052 ,103 ,006 ,052 Car ownership (ref.=no car) 2 cars or more ,062 ,093 -,034 ,090 ,096 ,092 ,049 ,095 ,036 ,046 1 car and main driver ,019 ,081 ,044 ,078 ,044 ,080 -,028 ,083 ,018 ,040 1 car. not main driver ,011 ,095 ,111 ,092 ,207 ** ,093 ,146 ,097 ,121 ** ,047 Geographical context address density residence ,006 ,016 -,023 ,017 -,015 ,017 ,000 ,017 -,009 ,008 address density destination -,014 ,013 -,015 ,014 -,020 ,014 ,006 ,014 -,011 ,007 Temporal context weekend (ref. = weekday) -1,440*** ,054 -1,286 *** ,055 -1,284 *** ,055 -1,336 *** ,056 -1,329 *** ,027 night (ref. = day) ,545*** ,054 ,224 *** ,085 ,165 ,129 ,416 *** ,061 ,318 *** ,032 peak (ref. = off-peak) -2,570*** ,094 -2,118 *** ,087 -1,917 *** ,082 -2,099 *** ,084 -2,143 *** ,043 2050 Climate change ,019 ,044 -,097 ** ,047 ,047 ,047 ,131 *** ,047 ,012 ,022 Goodness of fit Pseudo R2 (Nagelkerke) .342 .302 .271 .314 .304 *p<0.10; **p<0.05; ***p<0.01     When  tested  multivariately,  in  spring  a  significant  decrease  in  recreational  trips  can  be  observed,   which  may  have  to  do  with  the  fact  that  in  spring  2050  weather  conditions  not  only  got  warmer  but   also  wetter.  In  line  with  the  descriptives  a  positive  effect  can  be  observed  in  autumn,  which  could  be   explained  by  the  combination  of  warmer  weather  with  an  increasing  number  of  dry  days  in  the  2050   autumn   season:   conditions   under   which   we   expected   people   to   participate   more   in   recreational  
  • 7. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  7     trips.  During  the  other  seasons,  temperature  also  increases  but  this  is  accompanied  by  an  increase   in  (heavy)  precipitation.  As  with  the  descriptives,  no  significant  climate  change  effects  have  been   found  on  the  ratio  between  utilitarian  and  recreational  trips  in  winter  and  summer  as  well  as  year-­‐ round.  Overall,  therefore,  seasonal  climate  change  effects  on  the  ratio  between  recreational  and   utilitarian   trips   may   seem   quite   marginal.   When   put   in   perspective,   this   is   however   not   entirely   surprising,  as  it  may  be  questioned  whether  substitution  between  leisure  and  utilitarian  activities,  as   observed  in  the  literature  on  a  daily  level,  may  actually  take  place  on  a  seasonal  level.       3.2 Trip  generation  and  travelled  distances  for  different  activity  types   In  section  4.1  we  observed  a  relative  decrease  in  leisure  over  utilitarian  activities  in  spring  and  a   relative  increase  in  autumn.  However  from  this  ratio  we  cannot  conclude  which  changes  in  absolute   terms   take   place.   Neither,   it   becomes   clear   exactly   which   different   types   of   utilitarian   and   recreational  trips  are  affected  by  climate  change.  In  this  section  we  will  therefore  subdivide  within   recreational  as  well  as  utilitarian  trips  between  different  activity  types.  Based  on  the  literature  we   expect   that   the   participation   in   different   types   of   recreational   activities   is   more   subjected   to   changing  weather  conditions  than  that  in  utilitarian  activities  (e.g.  Cools  et  al.,  2010;  Brandenburg   et  al.,  2004).  In  the  literature  we  have  also  encountered  that  physical  activities  (e.g.  Chan  and  Ryan,   2009)  outdoor  leisure  activities  (Spinney  and  Millward,  2010)  and  walking/cycling  trips  (e.g.  Keay,   1992;   Aultman-­‐Hall,   2010)   are   positively   affected   by   warm   and   dry   weather   conditions   and   negatively  by  wet,  cold  or  very  hot  weather  conditions.  Hence  our  expectation  is  to  observe  within   the   recreational   sphere   an   increase   in   leisure-­‐touring   activities   in   the   slightly   wetter   but   much   milder   2050-­‐winters,   and   an   opposed   effect   in   the   hot   2050-­‐summers   with   increased   heavy   precipitation  and  drought.  For  the  generally  more  indoor  and  less  active  leisure-­‐other  and  leisure   shopping  categories,  which  are  competing  within  the  same  leisure  time  budget  as  leisure-­‐touring   and   partially   satisfy   the   same   needs   (Nijland   et   al.,   2011),   we   expect   reversed   effects   due   to   potential  substitution.     Figure  2  presents  the  relative  impact  of  seasonal  climate  change  effects  on  various  activity   types  expressed  in  per  cent  changes.  The  activities  are  ordered,  based  on  the  size  (not  direction)  of   climate  change  impact  summed  up  for  the  different  seasons,  with  maintenance  activities  on  the  left   resembling  the  smallest  impact  and  leisure  touring  activities  showing  the  highest  impact.  In  line   with  the  literature  and  our  expectations  Figure  2  clearly  demonstrates  that  the  participation  into   recreational   activities,   such   as   the   leisure   other   and   leisure   touring   categories,   is   much   more   sensitive  to  climate  change  than  the  participation  into  utilitarian  activities  such  as  work/study  and   maintenance.     Figure 2: Seasonal climate change effects on per cent changes in number of trips per person per day for different activity types
  • 8. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  8     Two   exceptions   here   are   the   relatively   higher   climate   change   impact   on   more   or   less   utilitarian   category  of  bringing  and  picking  up  persons,  and  the  relatively  lower  climate  change  impact  on  the   more  or  less  recreational  category  of  social  visits.  An  explanation  for  the  first  could  be  that  bringing   or   picking   up   persons   may,   in   some   cases,   be   a   more   voluntary   or   even   recreational   event.   Explanations   for   the   latter   could   be   that   social   visits   cannot   easily   be   substituted   for   by   other   activities  (regardless  of  the  weather  in  a  season  one  wants/needs  to  meet  friends  and  family),  that   social  visits  may  need  to  be  planned  far  in  advance,  and  that  social  home  visits  may  often  be  flexibly   located  indoors  or  outdoors  (as  they  may  be  situated  inside,  in  the  garden  or  on  the  terrace),  and   for  all  these  potential  reasons  are  less  subjected  to  the  weather.  Again  we  will  first  turn  to  the   multivariate  part  before  discussing  into  detail  the  results  in  the  context  of  seasonal  climate  change.   In   order   to   analyse   trip   generation   multivariately,   we   estimated   35   negative   binomial   regression  models:  for  each  activity  type  one  model  per  season  and  one  for  the  full  year.  In  these   models,   climate   change   effects   are   analysed   along   with   the   effects   of   various   individual   and   household  background  predictors.  Table  2  summarizes  only  the  effects  for  climate  change;  we  will   not  go  into  detail  into  the  effects  of  the  other  predictors,  but  upon  checking  their  respective  effects   seemed  logical.     Table 2: Climate change effects on frequencies for various activities Negative binomial models: Climate change effects on # trips/person/day Winter Spring Summer Autumn All seasons B B B B B Work/study -,045 -.019 .085 -,056 -,012 Maintenance -.091 -..099 -.019 .000 -.036 Picking up .294 *** .220 ** -.142 ,190 ** ,071 * Social visit .089 -.019 -.076 .127 * .061 ** Leisure shopping -.032 -.171 *** .188 *** .024 -.018 Leisure touring .475 *** .277 *** -.327 *** -.129 * .097 *** Leisure other -.321 *** -.243 *** .210 *** .207 *** -.088 *** All trips .012 -.025 .020 .008 .005 Goodness of fit: Unscaled deviance/df lies between .43 and .63 and unscaled Pearson Chi2 /df between .71 and 1.66. All full models are significant improvement over intercept-only models (Omnibus-test). In most models the majority of predictors is significant. *p<0.10; **p<0.05; ***p<0.01   In   line   with   the   descriptives   utilitarian   trips   remain   largely   unaffected   by   climate   change.   Work   trips,  remain  largely  unaffected  by  climate  change,  and  so  do  errands  trips.  Climate  change  does   seem  to  strongly  increase  trip  for  bringing  and  picking  up  persons  in  winter.  Additional  analysis  (not   included  in  this  paper)  shows  that  this  is  mostly  an  increase  of  trips  by  active  transport  modes,   indicating  that  it  may  often  involve  people  (parents)  who,  with  the  milder  2050-­‐winter  weather,   more  often  bring  or  pick  up  others  (their  children)  by  foot  or  bicycle.  Also  in  spring  and  autumn  this   category  increases  significantly,  whereas  in  summer  a  non-­‐significant  decrease  is  observed.     Under  recreational  trips  more  significant  climate  change  effects  can  be  found.  In  line  with   the  decriptives  social  visits  are  an  exception.  For  social  visits  we  observe  non-­‐significant  effects  for   all  seasons  except  for  autumn  and  full  year,  when  significant  positive  effect  can  be  identified.  In  line   with  the  decriptives  and  our  expectations,  leisure  touring  trips  increase  highly  significantly  in  the   warmer  and  wetter  2050-­‐winter  and  –spring,  whereas  highly  significant  declines  are  observed  in   the  hotter/warmer  2050-­‐summer  and  -­‐autumn  with  intensified  precipitation  and  drought.  These   effects  on  leisure-­‐touring  coincide  with  the  higher  use  of  active  open-­‐air  transport  modes  in  the   Randstad-­‐Holland   in   2050-­‐winter   and   spring   seasons   in   contrast   to   the   lower   use   of   these   in   summer   and   autumn,   found   in   an   earlier   publication   (Böcker   et   al.,   submitted).   As   expected,   leisure-­‐shopping   and   leisure-­‐other   trips   are   subjected   to   seasonal   climate   change   in   the   exact  
  • 9. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  9     opposite  directions.  Both  decrease  in  winter  (although  shopping  insignificantly)  and  spring,  while   increasing   significantly   in   summer.   In   autumn,   shopping   non-­‐significantly   decreases   and   leisure-­‐ other  significantly  increases.  Although  comparison  between  the  activities  should  be  made  carefully   (as   of   the   separate   models)   and   substitution   effects   cannot   directly   be   derived,   there   seems   a   strong  indication  that  people  substitute  between  on  the  one  hand  the  more  active  and  outdoors   leisure-­‐touring   activities   and   on   the   other   hand   the   leisure-­‐shopping   and   leisure-­‐other   activities   with  a  more  mixed/indoors  character.   For   travelled   distances   our   expectations   are   less   clear.   Based   on   one   earlier   Norwegian   study   (Aaheim   and   Hauge,   2005),   an   increase   in   leisure   trip   distance   may   be   expected   when   weather   conditions   get   warmer   and   dryer,   whereas   decreases   may   be   expected   when   weather   conditions  get  colder  and  wetter.  This  supports  the  intuitive  way  of  reasoning  that  climate  change   effects   on   trip   frequencies   would   be   more   or   less   in   line   with   the   effects   on   trip   generation.   However,  climate  change  effects  could  also  work  their  way  through  on  travelled  distances  indirectly   via  the  choice  for  transport  modes  –  a  problem  recognised  but  not  accounted  for  by  the  earlier   Norwegian  study  (Aaheim  and  Hauge,  2005)  –  rising  uncertainty  in  our  expectations  about  its  net   effects.   In   order   to   analyse   the   seasonal   climate   change   effects   on   travelled   distance,   for   each   season  and  the  full  year  we  run  separate  regression  models  for  each  of  the  activity  types  and  all   trips  combined.  A  summary  of  these  models  with  regard  to  the  effects  of  climate  change  is  given  in   table  3  and  will  be  compared  to  the  results  on  trip  generation  in  table  2.     Table 3: Summary of seasonal climate change effects on trip distance for different leisure activities OLS regression: Climate change effects on travelled distance (in 0.1 km) per trip Winter Spring Summer Autumn All B Beta B Beta B Beta B Beta B Beta Work/study .004 .003 -.030 -.023 .039 .030 .030 .024 .012 .010 Maintenance -.042 -.036 .005 .004 -.049 * -.041 .026 .022 -.021 -.018 Picking up -.001 -.001 -.090 ** -.072 -.029 -.022 .009 .007 -.007 -.006 Social visit .018 .013 -.084 ** -.057 -.033 -.022 .035 .024 -.011 -.007 Leisure shopping -.037 -.035 -.111 *** -.096 .029 .026 .071 *** .065 -.02 -.01 Leisure Touring -.059 * -.049 .112 *** .087 -.058 -.045 -.011 -.008 .012 .010 Leisure Other -.043 -.034 -.067 ** -.052 -.003 -.002 .076 ** .061 -.015 -.013 All trips -.022 * -.016 -.033 ** -.023 -.001 -.001 .049 *** .035 -.001 -.001 Goodness of fit: R2  values lie between .05 and .15   Notes: For travelled distances the log is taken. *p<0.10; **p<0.05; ***p<0.01   In  line  with  the  effects  on  trip  generation,  travel  distances  for  recreational  trips  are  more  strongly   influenced   by   seasonal   climate   change   those   for   utilitarian   trips.   When   looked   at   the   shoulder   seasons  Tables  2  and  3  show  many  similarities.  Trip  distances  seem  to  be  mostly  influenced  in  the   warmer   and   wetter   2050   spring   season.   Trip   distances   significantly   increase   for   touring   and   significantly  decrease  for  shopping  and  leisure  other,  as  well  as  for  some  of  the  other  activity  types   and  the  average  for  all  trips  combined.  It  seems  that  with  the  increase  in  the  participation  into  the   active  and  outdoors  oriented  leisure-­‐touring  activities  (Table  2),  people  are  also  willing  to  travel   further  for  these  (Table  3).  For  autumn  we  observe,  also  in  line  with  climate  change  effects  on  trip   generation,   a   decrease   in   leisure-­‐touring   trips   (although   non-­‐significant)   and   highly   significant   increases  in  distances  for  shopping  and  leisure-­‐other,  as  well  as  in  the  average  distance  for  all  trips   combined.   However,  when  looked  at  winter  and  summer,  a  comparison  between  Table  2  and  3  reveals   much   dissimilarity.   In   contrast   to   the   number   of   trips,   trip   distances   in   warmer   2050-­‐winters   significantly  decrease  for  touring  trips.  At  the  same  time  we  do  not  observe  a  significant  decrease  in   distances  travelled  in  summer.  Above  all,  climate  change  effects  on  travelled  distance  in  winter  and   summer  seem  to  be  rather  limited,  rising  our  expectation  of  the  interference  of  second  process:   mode   choice.   In   a   previous   study   on   mode   choice   in   the   Randstad   Holland,   we   found   that   the  
  • 10. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  10     choices   for   active   transport   modes   increase   slightly   in   spring   and   largely   in   winter   conditions   whereas  they  decrease  slightly  in  autumn  and  largely  in  2050-­‐summer  weather  conditions  (Böcker   et   al.,   submitted).   Consequently,   for   instance   warmer   winter   weather   may   on   the   one   hand   enhance   further   travelling   for   leisure   touring,   but   on   the   other   hand   increase   the   use   of   active   transport   modes   –   typically   used   for   shorter   distances   –counteracting   the   former   effect.   Interference   of   the   indirect   effect   via   mode   choices   could   explain   why   in   contrast   to   the   clear   climate  change  effects  on  trip  generation,  its  effects  on  trip  distance  are  less  clear,  especially  in   winter   and   summer   when   climate   change   effects   on   mode   choice   are   strongest   (Böcker   et   al.,   submitted).       3.3 Degree  of  urbanization  of  selected  destinations  for  leisure  activities   For  our  analysis  of  activity  destination  locations  in  terms  of  urbanization  degree,  we  will   focus  our  analysis  on  the  recreational  activities  shopping,  leisure-­‐touring  and  leisure-­‐other   (excluding   social   visits)   for   two   reasons.   First,   in   contrast   to   the   other   activities,   these   leisure   activities   are   generally   more   voluntary,   flexible   and   occassional,   and   as   such   are   expected   to   be   less   fixed   in   time   and   space   and   more   strongly   subjected   to   weather   conditions,  for  which  evidence  has  been  found  throughout  the  literature  (e.g.  Cools  et  al.,   2010;   Brandenburg   et   al.,   2004)   and   which   we   have   seen   in   section   4.2.   Second   these   leisure   activities   are   directly   competing   with   each   other   within   the   same   leisure   time   budget  as  found  in  the  literature  (Nijland  et  al  2011)  and  encountered  in  section  4.2.  Based   on   the   literature   (e.g.   Nikopoulou   and   Lykoudis,   2007)   and   intuitive   reasoning,   our   expectation  is  that  people  stick  to  more  sheltered  inner-­‐city  locations  for  leisure  activities   when  the  weather  conditions  are  colder  or  wetter,  to  benefit  from  the  urban  heat  island   (against   cold)   or   to   be   less   exposed   to   precipitation   or   heavy   wind.   In   contrast,   with   warmer   and   dryer   weather   conditions   we   may   expect   people   to   enjoy   more   weather-­‐ exposed  destinations  outside  the  city.  During  very  hot  weather  conditions,  such  as  in  the   selected  2050-­‐summer,  we  may  –  as  a  result  of  an  escape  of  inner-­‐city  heat  –  also  expect   people   to   select   destinations   outside   cities,   although   we   doubt   whether   this   effect   will   show   on   the   aggregated   seasonal   level.   A   descriptive   overview   of   the   seasonal   climate   change  effects  on  selected  destination  locations  of  various  degrees  of  urbanization  for  the   different  leisure  activities  is  presented  in  figure  3.     Figure 3: Seasonal climate change effects on attendances of destinations of different density for leisure activities, in per cent changes of the number of trips per person per day.
  • 11. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  11     Figure  3  in  broad  lines  echoes  the  climate  change  effects  on  activity  participation  found   earlier   in   Figure   2,   with   clear   increases   in   touring   destinations   in   winter/spring   and   decreases  in  summer  and  to  a  lesser  extent  autumn,  against  opposed  effects  for  leisure-­‐ other  and  shopping.  But  when  looked  into  more  detail  it  appears  that  for  these  different   leisure  activities  under  changing  weather  conditions  different  locations  are  preferred.  For   instance   in   winter,   very   clearly   it   appears   that   the   increases   in   touring   (found   earlier   in   Figure  2)  are  mostly  taking  place  in  the  more  rural/  suburban  locations  and  not  in  inner-­‐city   areas.   Before   discussing   these   effects   on   leisure   destination   locations   in   the   context   of   seasonal  climate  change,  we  will  first  turn  to  the  multivariate  analysis.  For  all  seasons,  we   modelled   the   effects   of   climate   change,   along   with   various   individual   and   household   background  predictors,  on  the  number  of  trips  per  person  per  day  for  the  different  leisure   activities’   destinations   of   varying   address   density.   Table   4   presents   a   summary   of   the   effects  of  seasonal  climate  change.   Table 4: Summary of seasonal climate change effects on location in terms of urbanization degree Binary logistic regression: Climate change effects on #trips/person/day towards different densities Winter Spring Summer Autumn All B Bet a B Bet a B Beta B Bet a B Bet a Leisure shopping <700 -0,277 0,209 -0,731 *** 0,223 0,028 0,216 0,504 ** 0,222 -0,105 0,097 700-1400 0,057 0,131 -0,146 0,139 0,343 ** 0,143 -0,080 0,149 0,022 0,066 1400-2000 -0,079 0,108 -0,054 0,129 0,000 0,127 0,132 0,135 -0,037 0,059 2000-3500 -0,102 0,094 -0,068 0,104 0,367 *** 0,112 -0,151 0,103 -0,028 0,049 >3500 -0,176 0,125 -0,402 *** 0,150 0,263 * 0,149 0,250 * 0,144 -0,040 0,065 Leisure touring <700 0,346 ** 0,164 0,052 0,173 -0,401 *** 0,140 -0,281 0,174 -0,049 0,078 700-1400 0,640 *** 0,168 0,239 0,173 -0,411 *** 0,142 0,145 0,171 0,170 ** 0,079 1400-2000 0,541 *** 0,174 0,417 ** 0,166 -0,278 * 0,163 0,046 0,189 0,165 * 0,084 2000-3500 -0,029 0,172 0,131 0,164 -0,269 * 0,153 0,156 0,164 0,053 0,078 >3500 -0,047 0,224 0,493 ** 0,206 -0,888 *** 0,192 -0,534 ** 0,211 -0,162 0,101 Leisure other <700 -0,279 * 0,168 -0,400 ** 0,164 0,397 ** 0,182 0,188 0,174 -0,069 0,079 700-1400 -0,607 *** 0,149 -0,051 0,132 0,295 * 0,164 -0,033 0,144 -0,171 ** 0,068 1400-2000 -0,022 0,142 -0,138 0,150 0,342 ** 0,171 0,061 0,148 0,032 0,072
  • 12. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  12     2000-3500 -0,511 *** 0,138 -0,306 ** 0,147 -0,145 0,158 0,581 *** 0,152 -0,105 0,067 >3500 -0,332 ** 0,157 -0,375 ** 0,177 0,153 0,206 0,263 0,186 -0,158 * 0,082 Goodness of fit: Pseudo R2 (Nagelkerke) range from .015 to .232 and average .085 *p<0.10; **p<0.05; ***p<0.01   In  the  slightly  wetter  but  much  milder  2050-­‐winters  leisure  touring  trips  increase  highly  significantly   towards  locations  with  lower  address  densities,  whereas  towards  higher-­‐density  destinations  this  is   not   the   case   (non-­‐significant   decreases).   According   to   our   expectations   and   the   descriptives   it   seems  that  the  milder  2050  weather  conditions  favour  the  visiting  of  more-­‐exposed  lower  density   areas,  which  are  less  attractive  in  colder  present-­‐day  winters.  At  the  same  time  the  more  indoors   leisure-­‐other   trips   towards   all   urbanization   degrees   decrease   significantly,   with   the   exception   of   medium   density   locations,   which   remain   unaffected.   Also   shopping   trips   are   not   significantly   impacted.   According  to  the  descriptives,  in  the  warmer  and  wetter  2050  spring  seasons  we  can  see   significant   increases   in   touring   trips,   towards   medium   density   locations   (including   many   of   the   cities’  fringes),  as  well  as  in  inner-­‐city  environments  (including  urban  parks).  Touring  in  rural  areas   seems  to  be  less  affected.  Leisure-­‐other  and  shopping  trips  are  negatively  affected,  but  decreases   are  only  significant  for  the  higher  density  locations  and  the  very  rural  locations.       In   hotter   2050-­‐summers   with   increased   heavy   precipitation   and   drought,   leisure   touring   activities  significantly  decrease  for  all  degrees  of  urbanization.  As  in  the  descriptives,  the  decrease   in  general  seems  to  be  stronger  for  lower  density  areas,  which  could  be  related  lack  of  shelter  in   these   areas   to   heavy   rain.   But   the   decrease   in   touring   is   also   exceptionally   high,   and   highly   significant,  for  the  highest  density  areas,  which  could  be  a  result  of  the  unattractiveness  of  these   areas   for   physical   activity   during   heat.   With   regard   to   the   more   indoors/mixed   recreational   alternatives,   leisure-­‐other   activities   increase   mostly   in   lower   density   areas   whereas   leisure   shopping  increases  mostly  in  higher  density  areas.       Of  all  seasons,  in  autumn  location  in  terms  of  urbanization  degree  seems  to  be  least  clearly   affected.  Leisure  touring  seems  to  decrease  for  the  most  rural  (near-­‐to-­‐significant)  and  urban  areas   (significant),  whereas  towards  locations  of  more  medium  density  non-­‐significant  increases  can  be   observed.   Leisure   shopping   significantly   increases   in   very   urban   and   very   rural   areas,   whereas   leisure-­‐other  increases  only  significantly  in  moderately  urban  areas.     As  of  opposite  seasonal  climate  change  effects,  over  the  whole  year  the  net  climate  change   effect   on   destination   location   for   leisure   activities   is   mostly   marginal:   shopping   remains   entirely   unaffected;   touring   seems   to   increase   significantly   only   for   medium   density   destinations;   and   leisure  other  decreases  in  moderately  rural  and  very  urban  areas.  In  this  section  it  became  clear   that  climate  change  highly  affects  the  choices  for  recreational  activities  on  the  seasonal  level,  but   that  in  addition  to  what  we  have  seen  in  section  4.2,  considerable  differences  exist  between  the   generation  of  trips  in  different  geographical  contexts.         References     Amelung,  B.  and  Viner,  D.  (2006)  Mediterranean  tourism:  explaining  the  future  with  the  tourism     climatic  index,  Journal  of  Sustainable  Tourism  14,  pp.  349–366.   Bigano,  A.,  Hamilton,  J.M.  and  Tol,  R.S.J.  (2006)  The  impact  of  climate  change  on  holiday  destination     choice,  Climatic  Change  76,  389–406.   Hamilton,  J.M.,  Maddison,  D.J.  and  Tol,  R.S.J.  (2005)  Climate  change  and  international  tourism:  a     simulation  study,  Global  Environmental  Change,  15,  pp.  253–266.   Koetse,  M.J.  and  Rietveld,  P.  (2009)  The  impact  of  climate  change  and  weather  on  transport:  An     overview  of  empirical  findings,  Transportation  Research  Part  D,  14,  pp.  205-­‐221.  
  • 13. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  13     Matzarakis,  A.  and  De  Vreitas,  C.  (2001)  Proceedings  of  the  First  International  Workshop  on     Climate,  Tourism,  and  Recreation.  International  Society  of  Biometeorology,  Commision  on     Climate  Tourism  and  Recreation.   Nicholls,  S.  and  Amelung,  B.  (2008)  Climate  change  and  tourism  in  Northwestern  Europe:  impacts     and  adaptation,  Tourism  Analysis,  13,  pp.  21-­‐31.