SlideShare une entreprise Scribd logo
1  sur  28
Télécharger pour lire hors ligne
1
EUROGEN 2011
Mainstream Session 7: Aerospace




  Design Performance Investigation of Modified PARSEC
  D i P f             I     ti ti    f M difi d
      Airfoil Representation Using Genetic Algorithm



                                  •Tomoyoshi Yotsuya
                                         Tokyo Metropolitan University
                                  •Masahiro Kanazaki
                                         Tokyo Metropolitan University
                                  •Kisa Matsushima
                                   Kisa
                                         Toyama University
2
    Contents
     1.   Background
     2.
     2    Objectives
     3.   Airfoil Representation Methods
     4.   Optimization Method
           Multi-objective genetic algorithm (MOGA)
                    j       g         g       (    )
           Data mining method
     5.
     5    Computational fluid dynamics
     6.   Formulations
     7.   Results
     8.   Conclusions
3
    Background
    Development of airfoils
     High fidelity Computational Fluid
      Dynamics (CFD) have been applied
      to real world design problems with
         real-world
      high-performance computing.
     Airfoil/wing can be designed using
        i f il/ i       b d i d i
      evolutionally algorithm with CFD        Blended wing body aircraft

       ffi i l f                   i    f
      efficiently for new concept aircraft.

                                               Supersonic aircraft   Mars exploration aircraft


               Efficient geometry representation is required
               for computer aided design.
4
    Background
 Effi i airfoil representation
  Efficient i f il          i
                             PARSEC(PARametric SECtion) method*
                                                                        Upper surface and l
                                                                        U         f      d lower surface are
                                                                                                     f
                                                                        separately defined.
                                                                        Parameterization geometrical character
                                                                        based on knowledge of transonic flow
                                                                        Easy to understand design information
                                                                        A few geometrical parameters around
                                                                        the leading-edge
modification Modified PARSEC method**
                                                                                     Thickness distribution and
                                                                                     camber are designed
                                                                                                 designed.
                                                                                     This definition is in theory
                                                                                     of wing section

*Sobieczky, H., “Parametric Airfoils and Wings,” Notes on Numerical Fluid Mechanics, pp. 71-88, Vieweg 1998.
** Matsuzawa, T., et al, Application of PARSEC Geometry Representation to High-Fidelity Aircraft Design by
CFD, K. Matsushima, CD proceedings of 5th WCCM/ ECCOMAS2008, Venice, CAS1.8-4 (MS106), 2008.
5
    Objectives


     • Investigation of design performance by
       Modified PARSEC representation.
                           representation
       – Comparison of airfoil design performance among
         original and two proposed modifications
           i i l d               d    difi i
         For this investigation, two design p
                         g     ,         g problem are solved.
         1. Conventional transonic airfoil design problem
         2. Airfoil design problem for low Reynolds number
6
    Airfoil Representation Methods
     Original PARSEC (PARSEC11) method
                 is defined upper and lower surface.
    Advantage It can design transonic airfoil with a few design variables.
    Ad   t            d i t         i i f il ith f d i             i bl
             Because the leading-edge radius centre is supposed on the x-axis,
Disadvantage it has difficulty to improve the aerodynamic performance around
                h diffi lt t i            th      d     i     f             d
             the leading-edge for an airfoil which has large camber.
                             → Only rle decides the leading edge g
                                  y                       g g geometry.
                                                                     y
               Number of design variables is 11.
                                upper surface                       6        2 n1

                                                       zup|low   an  x      2


                                                                   n 1




                                 lower surface
7
    Airfoil Representation Methods
    Modified PARSEC method 1
              is defined by thickness distribution and camber .
        The leading edge radius centre is always on the camber.
        The thickness distribution is same as symmetrical airfoil by
         PARSEC method.
        The camber is defined by a quintic equation.
        Number f design
         N b of d i variables is 11.
                                i bl i 11
Thickness distribution                    Camber                5
                                                         zc   bn  x n
                    6            2 n1

                z t   an  x     2
                                                               n 1
                      n 1

                                     +
8
    Airfoil Representation Methods
    Modified PARSEC method 2
                is added design p
                             g parameters for leading edge camber.
                                                       g g
       In camber definition, the square root term is added to improve
        design performance around the leading edge.
       By adding the root term, the design performance of the
        leading-edge is improved.
       N b of d i variables is 12.
        Number f design       i bl i 12

                                        Camber                5
                                              zc  b0  x   bn  x n
                                                             n 1
9
    Optimization Method
     Adaptive Range Divided Range Multi-Objective
     Genetic Algorithm (
               g       (ARDRMOGA)  )
      Adaptive Range scheme*
        Advantage: global exploration design space
      Divided Range scheme**
        Advantage: maintain high diversity




                                                                 The flow chart of ARDRMOGA
*Sasaki, D., et al, “Efficient search for trade-offs by adaptive range multi-objective genetic algorithms,” Journal of Aerospace
Computing, Information and Communication, pp. 44-64, 2005.
**Hiroyasu , T., et al, The new model of parallel genetic algorithm in multi-objective optimization problems (divided range multi-objective
genetic algorithm), IEEE Proceedings of the Congress on Evolutionary Computation 2000, Vol. 1, pp. 333-340, 2000.
10
 Optimization Method
     Adaptive range (AR)
        Search region is changed according to standard deviation.
        The solution space can be explored without an oversight of
         optimum solutions.
        The new decision space is determined based on the
         statistics of selected better solutions.
        The new population is generated in the new decision space.
11
 Optimization Method
     Divided range (DR)
        The population is divided and sorted by design space.
        DR scheme can prevent the crossover between the
         scattered parents.
        DR scheme maintain high diversity
                                   diversity.
        Every MDR generation, sorted function is switched.




                            Every MDR
                            generation
12
 Data Mining Method
     Parallel C di
     P ll l Coordinate Plot (PCP)
                        Pl
        One of statistical visualization techniques from high-
         dimensional data into two dimensional data.
                                                  data
        Design variables and objective functions are set parallel in the
         normalized axis.
        PCP shows global trends of design variables and objective
         functions.
     1.0
     0.8
     08
     0.6
     0.4
     0.2
     02
     0.0


                                                                   v10
                                                                          v11
                                                                                 v12
                                                                                         v13
                                                                                                v14
            dv1
                  dv2
                        dv3
                              dv4
                                    dv5
                                          dv6
                                                dv7
                                                      dv8
                                                            dv9




                                                                                                      L/D


                                                                                                                   ing
                                                                                                            ΔP
                                                                         dv
            d
                  d
                        d
                              d
                                    d
                                          d
                                                d
                                                      d
                                                            d
                                                                  dv


                                                                                dv
                                                                                        dv
                                                                                               dv
                                                                                                      L


                                                                                                                 Wwi
           Upper bound of ith design variables
                              and objective functions                                  Normalization
                                                                                           x(dvi ) - min(dvi )
           Lower bound of ith design variables                                         P
                                                                                       i
                              and objective functions                                     max(dvi ) - min(dvi )
13
 Formulations
     Case1 : Conventional transonic airfoil design
                  Mach Number :               0.8 (240 m/s)
                  Reynolds Number :           1 0×107
                                              1.0×10
                  Altitude :                  1.0×104 [km]
     Case2 : Airfoil design for low Reynolds number
                            (to use Mars exploration aircraft project(ISAS/JAXA))
                  Mach Number :               0.52 (120 m/s)
                  Reynolds Number: 3 0 104
                         ld         b         3.0×10
                  Altitude :                  Ground level

     Objective Functions
           Maximize Airfoil thickness (t)
           Minimize Drag coefficient (Cd)
                  Subject to lift coefficient (Cl) = target Cl
                                          - Case1 : Cl =0 0, 0.4
                                                        0.0, 0 4
                                          - Case2 : Cl =0.6, 0.8
14
 CFD Method

 Two dimensional Navier-Stokes flow solver
                  Navier Stokes
            
                QdV  F  nds  0
            t 
     Time integration : LU-SGS implicit method
     Flux evaluation : Third-order-accuracy
                                                       Airfoil grid view
                         upwind diff
                             i d differential scheme
                                         ti l h
                          with MUSCL method
     Turbulent model : Baldwin Lomax model
                         Baldwin-Lomax


 Grid : C-H type structured grid
     Grid size         23,000                         Computational grid
                                                          p          g
15
 Design Variables
     Design space for case1

      PARSEC method                  Modified method 1               Modified method2
         Cl=0.0        Cl=0.4             Cl=0.0        Cl=0.4          Cl=0.0        Cl=0.4
      lower upper   lower upper        lower upper   lower upper     lower upper   lower upper
  rle 0.005 0.040   0.004 0.040    rle 0.005 0.040   0.004 0.040 rle 0.005 0.040   0.004 0.040
  αte -8.0 -3.0      -8.0 0.0      xt 0.4 0.5          0.4 0.5   xt 0.4 0.5          0.4 0.5
  xup 0.4 0.5         0.3 0.5      zt 0.04 0.10       0.02 0.08  zt 0.04 0.10       0.02 0.08
  zup 0.04 0.12      0.04 0.12    zxxt -1.0 -0.4      -1.0 -0.1 zxxt -1.0 -0.4      -1.0 -0.1
 zxxup -1.1 -0.4     -1.0 -0.4    βte 4.4 6.4          4.4 6.4   βte 4.4 6.4         4.4 6.4
  xlo 0.35 0.50      0.35 0.50     xc 0.30 0.50       0.35 0.50  rc 0.000 0.002    0.000 0.004
  zlo -0.08 -0.04   -0.05 0.02     zc 0.00 0.04       0.00 0.07  xc 0.30 0.50       0.35 0.50
 zxxlo 0.2 1.0        0.3 1.0     zxxc -0.5 0.0       -0.7 0.0   zc 0.00 0.04       0.00 0.07
  βte 4 4 6 6
        4.4 6.6       4.0 8.0
                      40 80        zte -0.01 0 02
                                        0 01 0.02    -0.01 0 02 zxxc -0.5 0 0
                                                      0 01 0.02        0 5 0.0      -0.7 0 0
                                                                                     0 7 0.0
  zte -0.01 0.02    -0.02 0.02    αte 3.0 8.0          0.0 8.0   zte -0.01 0.02    -0.01 0.02
                                                                 αte 3.0 8.0         0.0 8.0
16
 Design Variables
     Design space for case2

      PARSEC method                  Modified method1                Modified method2
         Cl=0.6        Cl=0.8             Cl=0.6        Cl=0.8          Cl=0.6        Cl=0.8
      lower upper   lower upper        lower upper   lower upper     lower upper   lower upper
  rle 0.004 0.040   0.004 0.040    rle 0.004 0.040   0.004 0.040 rle 0.004 0.040   0.004 0.040
  αte -8.0 0.0       -8.0 0.0      xt 0.4 0.5          0.4 0.5   xt 0.4 0.5          0.4 0.5
  xup 0.3 0.5         0.3 0.5      zt 0.02 0.08       0.02 0.08  zt 0.02 0.08       0.02 0.08
  zup 0.04 0.12      0.04 0.12    zxxt -1.0 -0.1      -1.0 -0.1 zxxt -1.0 -0.1      -1.0 -0.1
 zxxup -1.0 -0.4     -1.0 -0.4    βte 4.4 6.4          4.4 6.4   βte 4.4 6.4         4.4 6.4
  xlo 0.35 0.5       0.35 0.5      xc 0.35 0.50       0.35 0.50 rc 0.000 0.004     0.000 0.004
  zlo -0.05 0.02    -0.05 0.02     zc 0.00 0.07       0.00 0.07 xc 0.35 0.50        0.35 0.50
 zxxlo 0.3 1.0        0.3 1.0     zxxc -0.7 0.0       -0.7 0.0   zc 0.00 0.07       0.00 0.07
  βte 4 0 8 0
        4.0 8.0       4.0 8.0
                      40 80        zte -0.01 0 02
                                        0 01 0.02    -0.01 0 02 zxxc -0.7 0 0
                                                      0 01 0.02        0 7 0.0      -0.7 0 0
                                                                                     0 7 0.0
  zte -0.02 0.02    -0.02 0.02    αte 0.0 8.0          0.0 8.0   zte -0.01 0.02    -0.01 0.02
                                                                 αte 0.0 8.0         0.0 8.0
17




     Results
       Case1 : Conventional transonic airfoil design
        Case2 : Airfoil design for low Reynolds number
18
 Result (case1)
     Optimization result
       Non-dominated solutions
           Design Cl=0 0
                      =0.0                       Design Cl=0 4
                                                           0.4



           Optimum direction                  Optimum direction




       There are trade-off between objective functions in each case.
       Modified method could generate good solutions as well as the
        original PARSEC method.
19
 Result (case1, Cl=0.4)
                                                                    Thickness of des1
                                                                    Thi k      fd 1
Design Cl=0.4                       Thickness distribution
                                                                    Thickness of des2
                                      0.06                          Thickness of des3


                                      0.00
                                              0.0
                                              00              0.5
                                                              05                 1.0
                                                                                 10

                                      -0.06
                                     0.04
                                     Camber                           Camber f d 1
                                                                      C b of des1
                                                                      Camber of des2
                                                                      Camber of des3
                                      0.02

           Des1                       0.00
          AoA=-0.6°
                          Des3
                          D 3                0.0
                                             00               0.5
                                                              05                 1.0
                                                                                 10
                         AoA=-0.3°   Des1-3 are selected from non-dominated
                      Des2            solutions. (t/c are about 0.10 t/c)
                      AoA=-0.3°
                      A A 0 3°       Des1-3 has maximum camber at trailing edge.
                                     Des3 has largest camber around leading edge.
20
 Result (case1, Cl=0.4)
        Des1 (PARSEC method) Pressure distribution
                              -1.00
                     AoA = -0.6°
                                   -0.50
                                           0.0
                                           00                 0.5
                                                              05                1.0
                                                                                10
                                   0.00                upper surface
                                                       lower surface
                                    0 50
                                    0.50
                                   -1.00
       Des2 (Modified method 1)
                    AoA = -0.3°
                                   -0.50
                                           0.0
                                           00                 0.5
                                                              05                1.0
                                                                                10
                                   0.00                upper surface
                                                       lower surface
                                    0 50
                                    0.50
                                   -1.00
       Des3 (Modified method 2)
                     AoA = -0.4°
                                   -0.50
                                            0.0
                                            00                0.5
                                                              05                1.0
                                                                                10
                                    0.00               upper surface
                                                       lower surface
                                    0.50
                                           Smooth Cp di ib i in Des3
                                           S    h distribution i D 3
                                           -Modified2 has possibility to design
                                           airfoil which achieves lower wave drag.
21
 Result (case1, Cl=0.4)
Design information                                       PARSEC method
                                                    1.0
      PCP visualizes 10 individuals which
      achieve low Cd.                               0.8
                                                    0.6
      The trend of αte is same tendency
       among three methods.                         0.4
      The trend of xup and xt is different from 0 20.2
       that obtained by modified method 2.          0.0
            →Because of rc , xt is smaller to




                                                             zup
                                                            xup
                                                              rle
                                                              αte




                                                              βte

                                                                t
                                                            xup



                                                              xlo




                                                              zte
                                                              zlo
                                                            xxlo




                                                               cd
               control leading edge in modification 2.
                                                    2




                                                            x

                                                          zxx
                                                             z




                                                           zx
       Modified method 1                                  Modified method 2
1.0                                                1.0
0.8                                                0.8
0.6                                                0.6
0.4
04                                                 0.4
                                                   04
0.2                                                0.2
0.0                                                0.0
        rle

         zt
      zxxt
       βte
        xc
         zc
      zxxc
        zte
       αte

        cd


                                                            rle

                                                             zt
                                                          zxxt
                                                           βte
                                                             rc
                                                            xc
                                                             zc
                                                          zxxc
                                                            zte
                                                           αte

                                                            cd
         xt




          t




                                                             xt




                                                              t
22




     Results
        Case1 : Conventional transonic airfoil design
       Case2 : Airfoil design for low Reynolds number
23
 Result (case2)
     Optimization result
       Non-dominated solutions
           Design Cl=0 6
                      =0.6                       Design Cl=0 8
                                                           0.8


         Optimum direction                    Optimum direction




         Thinner airfoils can be obtained by modified methods.
         The thinner airfoil cannot be designed by the original
          PARSEC method.
24
 Result (case2, Cl=0.8)
Design
D i Cl=0.8
        08                  Thickness distribution         Thickness of des4
                                                           Thickness of des5
                            0.05                           Thickness of des6


                            0.00
                                    0.0              0.5                1.0
                            -0.05

                            Camber                          Camber of des4
                                                            Camber of des5
                              0.05                          Camber of des6

      Des4
      D 4
      AoA=4.5°                      0
                                        0.0          0.5                1.0
                            Des1-3 are selected from non-dominated
                 Des5
       Des6      AoA=3.5°    solutions. (t/c are about 0.07 t/c)
      AoA=2.9
      AoA=2 9°              Each airfoil has large camber.
                                                    camber
                            The surface of Des4 is not smooth.
25
 Result (case2, Cl=0.8)
        Des4 (PARSEC method) Pressure distribution
                              -1.50
                      AoA=4.5°
                                          0.0             0.5                1.0
                                  0.00
                                  0 00
                                                                 upper surface
                                   1.50                          lower surfacd
                                   1 50
                                  -1.50
       Des5 (Modified method 1)
                       AoA=3.5°           0.0             0.5                1.0
                                  0.00
                                                                  upper surface
                                   1.50                           lower surfacd
                                  -1.50
                                    .50
       Des6 (Modified method 2)           0.0             0.5                1.0
                       AoA=2.9°   0.00
                                                                   upper surface
                                  1.50                             lower surfacd
                                    The thickness distributions are smooth in
                                    Des5 and 6.
                                         →Smooth flow on airfoil.
26
 Result (case2, Cl=0.8)
Design information                                      PARSEC method
                                                                  th d
                                                   1.0
      PCP visualizes 10 individuals which
      achieve low Cd.                              0.8
      The trend of rle is similar.                0.6
      In PARSEC method, αte is smaller.           0.4
            → It cannot represent airfoils with
                          p                        0.2
               large camber.
                                                   0.0
      In modified method 2, the influence of rc




                                                               t
                                                             rle

                                                            xup
                                                            zup
                                                          xxup
                                                             xlo




                                                             zte
                                                             αte




                                                             βte
                                                             zlo
                                                           xxlo




                                                             Cd
       is significant.




                                                          zx
                                                         zx
        Modified method 1                                Modified method 2
1.0                                                1.0
0.8                                                0.8
0.6                                                0.6
0.4
04                                                 0.4
                                                   04
0.2                                                0.2
0.0                                                0.0
          zt
      zxxt
       βte




                                                            zt
                                                         zxxt
                                                          βte
      zxxc




                                                            rc

                                                            zc
        Cd




                                                         zxxc




                                                           Cd
         xt




                                                            xt




                                                             t
        rle




        xc



        zte
       αte
           t




                                                           rle




                                                           xc



                                                           zte
                                                          αte
         zx
27
 Conclusions
      Investigation of design performance modified
       method PARSEC representation by MOGA
                                          MOGA.
        Solving two kinds of airfoil design problems by MOGA;
         1) transonic airfoil, and 2) low Reynolds number airfoil
          )                   ,      )       y
        Comparisons of design results among original and modifications
          – In conventional transonic airfoil design, modified methods
              could design good performance airfoil as well as the original
                  ld d i         d     f        i f il       ll th       i i l
              PARSEC method.
               • In modification2, the local shock is weaken.
          – In airfoil design for low Reynolds number, modified method
              have the potential to design better airfoils than that of the
              original method
                        method.
               • Modified method can be represent smooth surface
                   airfoils with large camber.
               • Modified methods design leading edge camber well.
28




     Thank you for your attention

Contenu connexe

Tendances

Vortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionVortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionMasahiro Kanazaki
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Masahiro Kanazaki
 
Plans2012 Presentation: Angular PDFs and FootSLAM
Plans2012 Presentation: Angular PDFs and FootSLAMPlans2012 Presentation: Angular PDFs and FootSLAM
Plans2012 Presentation: Angular PDFs and FootSLAMsusannakaiser
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluationzukun
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular ArchitectureJose Miguel Moreno
 
Range Extended Second Order Digital Phase Locked Loop
Range Extended Second Order Digital Phase Locked LoopRange Extended Second Order Digital Phase Locked Loop
Range Extended Second Order Digital Phase Locked LoopIDES Editor
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationIPALab
 
Active layer thaw depth
Active layer thaw depthActive layer thaw depth
Active layer thaw depthMaura Lousada
 
3 optimum design of heat sink by using differential evolution and simplex me...
3  optimum design of heat sink by using differential evolution and simplex me...3  optimum design of heat sink by using differential evolution and simplex me...
3 optimum design of heat sink by using differential evolution and simplex me...Purnendra Dixit
 
5 Introduction To Aerospace Transportation Systems
5 Introduction To Aerospace Transportation Systems5 Introduction To Aerospace Transportation Systems
5 Introduction To Aerospace Transportation Systemsguestd436758
 
Lambert Roadef 2008
Lambert Roadef 2008Lambert Roadef 2008
Lambert Roadef 2008lamberttony
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperIJERA Editor
 
Capacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsCapacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsMichel Alves
 

Tendances (16)

Vortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionVortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex Interaction
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
 
Plans2012 Presentation: Angular PDFs and FootSLAM
Plans2012 Presentation: Angular PDFs and FootSLAMPlans2012 Presentation: Angular PDFs and FootSLAM
Plans2012 Presentation: Angular PDFs and FootSLAM
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluation
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
 
C g.2010 supply
C g.2010 supplyC g.2010 supply
C g.2010 supply
 
Hm2513521357
Hm2513521357Hm2513521357
Hm2513521357
 
Range Extended Second Order Digital Phase Locked Loop
Range Extended Second Order Digital Phase Locked LoopRange Extended Second Order Digital Phase Locked Loop
Range Extended Second Order Digital Phase Locked Loop
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its Application
 
Active layer thaw depth
Active layer thaw depthActive layer thaw depth
Active layer thaw depth
 
3 optimum design of heat sink by using differential evolution and simplex me...
3  optimum design of heat sink by using differential evolution and simplex me...3  optimum design of heat sink by using differential evolution and simplex me...
3 optimum design of heat sink by using differential evolution and simplex me...
 
5 Introduction To Aerospace Transportation Systems
5 Introduction To Aerospace Transportation Systems5 Introduction To Aerospace Transportation Systems
5 Introduction To Aerospace Transportation Systems
 
Lambert Roadef 2008
Lambert Roadef 2008Lambert Roadef 2008
Lambert Roadef 2008
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
 
Capacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsCapacity-Constrained Point Distributions
Capacity-Constrained Point Distributions
 

Similaire à DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION USING GENETIC ALGORITHM

Abaqus2004 Morpher Isight
Abaqus2004 Morpher IsightAbaqus2004 Morpher Isight
Abaqus2004 Morpher Isightsimuwayne
 
층류 익형의 설계 최적화
층류 익형의 설계 최적화층류 익형의 설계 최적화
층류 익형의 설계 최적화HyunJoon Kim
 
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaCFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaMario Felipe Campuzano Ochoa
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Masahiro Kanazaki
 
Horizontal axis wind turbine blade- 1way FSI analysis
Horizontal axis wind turbine blade- 1way FSI analysisHorizontal axis wind turbine blade- 1way FSI analysis
Horizontal axis wind turbine blade- 1way FSI analysisVishnu R
 
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveFPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveIJORCS
 
NASA aviation & alternative fuels workshop
NASA aviation & alternative fuels workshopNASA aviation & alternative fuels workshop
NASA aviation & alternative fuels workshopMarcus 2012
 
CFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft bodyCFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft bodyIRJET Journal
 
IRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft bodyIRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft bodyIRJET Journal
 
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...IJERA Editor
 
1 s2.0-s1000936113001039-main
1 s2.0-s1000936113001039-main1 s2.0-s1000936113001039-main
1 s2.0-s1000936113001039-mainetavallali
 
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...AltairKorea
 
On-Prem Solution for the Selection of Wind Energy Models
On-Prem Solution for the Selection of Wind Energy ModelsOn-Prem Solution for the Selection of Wind Energy Models
On-Prem Solution for the Selection of Wind Energy ModelsDatabricks
 
Fingerprint _prem
Fingerprint _premFingerprint _prem
Fingerprint _premlgbl40
 
Elements CAE white paper
Elements CAE white paperElements CAE white paper
Elements CAE white paperAngus Lock
 

Similaire à DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION USING GENETIC ALGORITHM (20)

Abaqus2004 Morpher Isight
Abaqus2004 Morpher IsightAbaqus2004 Morpher Isight
Abaqus2004 Morpher Isight
 
Airfoil
AirfoilAirfoil
Airfoil
 
층류 익형의 설계 최적화
층류 익형의 설계 최적화층류 익형의 설계 최적화
층류 익형의 설계 최적화
 
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaCFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
 
Bs25412419
Bs25412419Bs25412419
Bs25412419
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
 
Horizontal axis wind turbine blade- 1way FSI analysis
Horizontal axis wind turbine blade- 1way FSI analysisHorizontal axis wind turbine blade- 1way FSI analysis
Horizontal axis wind turbine blade- 1way FSI analysis
 
2_MADMML
2_MADMML2_MADMML
2_MADMML
 
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveFPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
 
NASA aviation & alternative fuels workshop
NASA aviation & alternative fuels workshopNASA aviation & alternative fuels workshop
NASA aviation & alternative fuels workshop
 
CFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft bodyCFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft body
 
IRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft bodyIRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft body
 
241 250
241 250241 250
241 250
 
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...
Improved Snr Of Mst Radar Signals By Kaiser-Hamming And Cosh-Hamming Window F...
 
1 s2.0-s1000936113001039-main
1 s2.0-s1000936113001039-main1 s2.0-s1000936113001039-main
1 s2.0-s1000936113001039-main
 
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
 
On-Prem Solution for the Selection of Wind Energy Models
On-Prem Solution for the Selection of Wind Energy ModelsOn-Prem Solution for the Selection of Wind Energy Models
On-Prem Solution for the Selection of Wind Energy Models
 
Fingerprint _prem
Fingerprint _premFingerprint _prem
Fingerprint _prem
 
Nsma wg16 99_050
Nsma wg16 99_050Nsma wg16 99_050
Nsma wg16 99_050
 
Elements CAE white paper
Elements CAE white paperElements CAE white paper
Elements CAE white paper
 

Plus de Masahiro Kanazaki

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】Masahiro Kanazaki
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介Masahiro Kanazaki
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016Masahiro Kanazaki
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Masahiro Kanazaki
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価Masahiro Kanazaki
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014Masahiro Kanazaki
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectMasahiro Kanazaki
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Masahiro Kanazaki
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内Masahiro Kanazaki
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...Masahiro Kanazaki
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示Masahiro Kanazaki
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスターMasahiro Kanazaki
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)Masahiro Kanazaki
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生Masahiro Kanazaki
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計Masahiro Kanazaki
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試みMasahiro Kanazaki
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスターMasahiro Kanazaki
 

Plus de Masahiro Kanazaki (20)

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust Effect
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター
 
finland_japan_joint_seminor
finland_japan_joint_seminorfinland_japan_joint_seminor
finland_japan_joint_seminor
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
 
13 0117 isas
13 0117 isas13 0117 isas
13 0117 isas
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター
 
1 5-kanazaki
1 5-kanazaki1 5-kanazaki
1 5-kanazaki
 

DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION USING GENETIC ALGORITHM

  • 1. 1 EUROGEN 2011 Mainstream Session 7: Aerospace Design Performance Investigation of Modified PARSEC D i P f I ti ti f M difi d Airfoil Representation Using Genetic Algorithm •Tomoyoshi Yotsuya Tokyo Metropolitan University •Masahiro Kanazaki Tokyo Metropolitan University •Kisa Matsushima Kisa Toyama University
  • 2. 2 Contents 1. Background 2. 2 Objectives 3. Airfoil Representation Methods 4. Optimization Method  Multi-objective genetic algorithm (MOGA) j g g ( )  Data mining method 5. 5 Computational fluid dynamics 6. Formulations 7. Results 8. Conclusions
  • 3. 3 Background Development of airfoils  High fidelity Computational Fluid Dynamics (CFD) have been applied to real world design problems with real-world high-performance computing.  Airfoil/wing can be designed using i f il/ i b d i d i evolutionally algorithm with CFD Blended wing body aircraft ffi i l f i f efficiently for new concept aircraft. Supersonic aircraft Mars exploration aircraft Efficient geometry representation is required for computer aided design.
  • 4. 4 Background  Effi i airfoil representation Efficient i f il i PARSEC(PARametric SECtion) method* Upper surface and l U f d lower surface are f separately defined. Parameterization geometrical character based on knowledge of transonic flow Easy to understand design information A few geometrical parameters around the leading-edge modification Modified PARSEC method** Thickness distribution and camber are designed designed. This definition is in theory of wing section *Sobieczky, H., “Parametric Airfoils and Wings,” Notes on Numerical Fluid Mechanics, pp. 71-88, Vieweg 1998. ** Matsuzawa, T., et al, Application of PARSEC Geometry Representation to High-Fidelity Aircraft Design by CFD, K. Matsushima, CD proceedings of 5th WCCM/ ECCOMAS2008, Venice, CAS1.8-4 (MS106), 2008.
  • 5. 5 Objectives • Investigation of design performance by Modified PARSEC representation. representation – Comparison of airfoil design performance among original and two proposed modifications i i l d d difi i For this investigation, two design p g , g problem are solved. 1. Conventional transonic airfoil design problem 2. Airfoil design problem for low Reynolds number
  • 6. 6 Airfoil Representation Methods Original PARSEC (PARSEC11) method is defined upper and lower surface. Advantage It can design transonic airfoil with a few design variables. Ad t d i t i i f il ith f d i i bl Because the leading-edge radius centre is supposed on the x-axis, Disadvantage it has difficulty to improve the aerodynamic performance around h diffi lt t i th d i f d the leading-edge for an airfoil which has large camber. → Only rle decides the leading edge g y g g geometry. y Number of design variables is 11. upper surface 6 2 n1 zup|low   an  x 2 n 1 lower surface
  • 7. 7 Airfoil Representation Methods Modified PARSEC method 1 is defined by thickness distribution and camber .  The leading edge radius centre is always on the camber.  The thickness distribution is same as symmetrical airfoil by PARSEC method.  The camber is defined by a quintic equation.  Number f design N b of d i variables is 11. i bl i 11 Thickness distribution Camber 5 zc   bn  x n 6 2 n1 z t   an  x 2 n 1 n 1 +
  • 8. 8 Airfoil Representation Methods Modified PARSEC method 2 is added design p g parameters for leading edge camber. g g  In camber definition, the square root term is added to improve design performance around the leading edge.  By adding the root term, the design performance of the leading-edge is improved.  N b of d i variables is 12. Number f design i bl i 12 Camber 5 zc  b0  x   bn  x n n 1
  • 9. 9 Optimization Method Adaptive Range Divided Range Multi-Objective Genetic Algorithm ( g (ARDRMOGA) ) Adaptive Range scheme* Advantage: global exploration design space Divided Range scheme** Advantage: maintain high diversity The flow chart of ARDRMOGA *Sasaki, D., et al, “Efficient search for trade-offs by adaptive range multi-objective genetic algorithms,” Journal of Aerospace Computing, Information and Communication, pp. 44-64, 2005. **Hiroyasu , T., et al, The new model of parallel genetic algorithm in multi-objective optimization problems (divided range multi-objective genetic algorithm), IEEE Proceedings of the Congress on Evolutionary Computation 2000, Vol. 1, pp. 333-340, 2000.
  • 10. 10 Optimization Method Adaptive range (AR)  Search region is changed according to standard deviation.  The solution space can be explored without an oversight of optimum solutions.  The new decision space is determined based on the statistics of selected better solutions.  The new population is generated in the new decision space.
  • 11. 11 Optimization Method Divided range (DR)  The population is divided and sorted by design space.  DR scheme can prevent the crossover between the scattered parents.  DR scheme maintain high diversity diversity.  Every MDR generation, sorted function is switched. Every MDR generation
  • 12. 12 Data Mining Method Parallel C di P ll l Coordinate Plot (PCP) Pl  One of statistical visualization techniques from high- dimensional data into two dimensional data. data  Design variables and objective functions are set parallel in the normalized axis.  PCP shows global trends of design variables and objective functions. 1.0 0.8 08 0.6 0.4 0.2 02 0.0 v10 v11 v12 v13 v14 dv1 dv2 dv3 dv4 dv5 dv6 dv7 dv8 dv9 L/D ing ΔP dv d d d d d d d d d dv dv dv dv L Wwi Upper bound of ith design variables and objective functions Normalization x(dvi ) - min(dvi ) Lower bound of ith design variables P i and objective functions max(dvi ) - min(dvi )
  • 13. 13 Formulations Case1 : Conventional transonic airfoil design Mach Number : 0.8 (240 m/s) Reynolds Number : 1 0×107 1.0×10 Altitude : 1.0×104 [km] Case2 : Airfoil design for low Reynolds number (to use Mars exploration aircraft project(ISAS/JAXA)) Mach Number : 0.52 (120 m/s) Reynolds Number: 3 0 104 ld b 3.0×10 Altitude : Ground level Objective Functions Maximize Airfoil thickness (t) Minimize Drag coefficient (Cd) Subject to lift coefficient (Cl) = target Cl - Case1 : Cl =0 0, 0.4 0.0, 0 4 - Case2 : Cl =0.6, 0.8
  • 14. 14 CFD Method Two dimensional Navier-Stokes flow solver Navier Stokes   QdV  F  nds  0 t  Time integration : LU-SGS implicit method Flux evaluation : Third-order-accuracy Airfoil grid view upwind diff i d differential scheme ti l h with MUSCL method Turbulent model : Baldwin Lomax model Baldwin-Lomax Grid : C-H type structured grid Grid size 23,000 Computational grid p g
  • 15. 15 Design Variables Design space for case1 PARSEC method Modified method 1 Modified method2 Cl=0.0 Cl=0.4 Cl=0.0 Cl=0.4 Cl=0.0 Cl=0.4 lower upper lower upper lower upper lower upper lower upper lower upper rle 0.005 0.040 0.004 0.040 rle 0.005 0.040 0.004 0.040 rle 0.005 0.040 0.004 0.040 αte -8.0 -3.0 -8.0 0.0 xt 0.4 0.5 0.4 0.5 xt 0.4 0.5 0.4 0.5 xup 0.4 0.5 0.3 0.5 zt 0.04 0.10 0.02 0.08 zt 0.04 0.10 0.02 0.08 zup 0.04 0.12 0.04 0.12 zxxt -1.0 -0.4 -1.0 -0.1 zxxt -1.0 -0.4 -1.0 -0.1 zxxup -1.1 -0.4 -1.0 -0.4 βte 4.4 6.4 4.4 6.4 βte 4.4 6.4 4.4 6.4 xlo 0.35 0.50 0.35 0.50 xc 0.30 0.50 0.35 0.50 rc 0.000 0.002 0.000 0.004 zlo -0.08 -0.04 -0.05 0.02 zc 0.00 0.04 0.00 0.07 xc 0.30 0.50 0.35 0.50 zxxlo 0.2 1.0 0.3 1.0 zxxc -0.5 0.0 -0.7 0.0 zc 0.00 0.04 0.00 0.07 βte 4 4 6 6 4.4 6.6 4.0 8.0 40 80 zte -0.01 0 02 0 01 0.02 -0.01 0 02 zxxc -0.5 0 0 0 01 0.02 0 5 0.0 -0.7 0 0 0 7 0.0 zte -0.01 0.02 -0.02 0.02 αte 3.0 8.0 0.0 8.0 zte -0.01 0.02 -0.01 0.02 αte 3.0 8.0 0.0 8.0
  • 16. 16 Design Variables Design space for case2 PARSEC method Modified method1 Modified method2 Cl=0.6 Cl=0.8 Cl=0.6 Cl=0.8 Cl=0.6 Cl=0.8 lower upper lower upper lower upper lower upper lower upper lower upper rle 0.004 0.040 0.004 0.040 rle 0.004 0.040 0.004 0.040 rle 0.004 0.040 0.004 0.040 αte -8.0 0.0 -8.0 0.0 xt 0.4 0.5 0.4 0.5 xt 0.4 0.5 0.4 0.5 xup 0.3 0.5 0.3 0.5 zt 0.02 0.08 0.02 0.08 zt 0.02 0.08 0.02 0.08 zup 0.04 0.12 0.04 0.12 zxxt -1.0 -0.1 -1.0 -0.1 zxxt -1.0 -0.1 -1.0 -0.1 zxxup -1.0 -0.4 -1.0 -0.4 βte 4.4 6.4 4.4 6.4 βte 4.4 6.4 4.4 6.4 xlo 0.35 0.5 0.35 0.5 xc 0.35 0.50 0.35 0.50 rc 0.000 0.004 0.000 0.004 zlo -0.05 0.02 -0.05 0.02 zc 0.00 0.07 0.00 0.07 xc 0.35 0.50 0.35 0.50 zxxlo 0.3 1.0 0.3 1.0 zxxc -0.7 0.0 -0.7 0.0 zc 0.00 0.07 0.00 0.07 βte 4 0 8 0 4.0 8.0 4.0 8.0 40 80 zte -0.01 0 02 0 01 0.02 -0.01 0 02 zxxc -0.7 0 0 0 01 0.02 0 7 0.0 -0.7 0 0 0 7 0.0 zte -0.02 0.02 -0.02 0.02 αte 0.0 8.0 0.0 8.0 zte -0.01 0.02 -0.01 0.02 αte 0.0 8.0 0.0 8.0
  • 17. 17 Results  Case1 : Conventional transonic airfoil design Case2 : Airfoil design for low Reynolds number
  • 18. 18 Result (case1) Optimization result Non-dominated solutions Design Cl=0 0 =0.0 Design Cl=0 4 0.4 Optimum direction Optimum direction  There are trade-off between objective functions in each case.  Modified method could generate good solutions as well as the original PARSEC method.
  • 19. 19 Result (case1, Cl=0.4) Thickness of des1 Thi k fd 1 Design Cl=0.4 Thickness distribution Thickness of des2 0.06 Thickness of des3 0.00 0.0 00 0.5 05 1.0 10 -0.06 0.04 Camber Camber f d 1 C b of des1 Camber of des2 Camber of des3 0.02 Des1 0.00 AoA=-0.6° Des3 D 3 0.0 00 0.5 05 1.0 10 AoA=-0.3° Des1-3 are selected from non-dominated Des2 solutions. (t/c are about 0.10 t/c) AoA=-0.3° A A 0 3° Des1-3 has maximum camber at trailing edge. Des3 has largest camber around leading edge.
  • 20. 20 Result (case1, Cl=0.4) Des1 (PARSEC method) Pressure distribution -1.00 AoA = -0.6° -0.50 0.0 00 0.5 05 1.0 10 0.00 upper surface lower surface 0 50 0.50 -1.00 Des2 (Modified method 1) AoA = -0.3° -0.50 0.0 00 0.5 05 1.0 10 0.00 upper surface lower surface 0 50 0.50 -1.00 Des3 (Modified method 2) AoA = -0.4° -0.50 0.0 00 0.5 05 1.0 10 0.00 upper surface lower surface 0.50 Smooth Cp di ib i in Des3 S h distribution i D 3 -Modified2 has possibility to design airfoil which achieves lower wave drag.
  • 21. 21 Result (case1, Cl=0.4) Design information PARSEC method 1.0 PCP visualizes 10 individuals which achieve low Cd. 0.8 0.6 The trend of αte is same tendency among three methods. 0.4 The trend of xup and xt is different from 0 20.2 that obtained by modified method 2. 0.0 →Because of rc , xt is smaller to zup xup rle αte βte t xup xlo zte zlo xxlo cd control leading edge in modification 2. 2 x zxx z zx Modified method 1 Modified method 2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 04 0.4 04 0.2 0.2 0.0 0.0 rle zt zxxt βte xc zc zxxc zte αte cd rle zt zxxt βte rc xc zc zxxc zte αte cd xt t xt t
  • 22. 22 Results Case1 : Conventional transonic airfoil design  Case2 : Airfoil design for low Reynolds number
  • 23. 23 Result (case2) Optimization result Non-dominated solutions Design Cl=0 6 =0.6 Design Cl=0 8 0.8 Optimum direction Optimum direction  Thinner airfoils can be obtained by modified methods.  The thinner airfoil cannot be designed by the original PARSEC method.
  • 24. 24 Result (case2, Cl=0.8) Design D i Cl=0.8 08 Thickness distribution Thickness of des4 Thickness of des5 0.05 Thickness of des6 0.00 0.0 0.5 1.0 -0.05 Camber Camber of des4 Camber of des5 0.05 Camber of des6 Des4 D 4 AoA=4.5° 0 0.0 0.5 1.0 Des1-3 are selected from non-dominated Des5 Des6 AoA=3.5° solutions. (t/c are about 0.07 t/c) AoA=2.9 AoA=2 9° Each airfoil has large camber. camber The surface of Des4 is not smooth.
  • 25. 25 Result (case2, Cl=0.8) Des4 (PARSEC method) Pressure distribution -1.50 AoA=4.5° 0.0 0.5 1.0 0.00 0 00 upper surface 1.50 lower surfacd 1 50 -1.50 Des5 (Modified method 1) AoA=3.5° 0.0 0.5 1.0 0.00 upper surface 1.50 lower surfacd -1.50 .50 Des6 (Modified method 2) 0.0 0.5 1.0 AoA=2.9° 0.00 upper surface 1.50 lower surfacd The thickness distributions are smooth in Des5 and 6. →Smooth flow on airfoil.
  • 26. 26 Result (case2, Cl=0.8) Design information PARSEC method th d 1.0 PCP visualizes 10 individuals which achieve low Cd. 0.8 The trend of rle is similar. 0.6 In PARSEC method, αte is smaller. 0.4 → It cannot represent airfoils with p 0.2 large camber. 0.0 In modified method 2, the influence of rc t rle xup zup xxup xlo zte αte βte zlo xxlo Cd is significant. zx zx Modified method 1 Modified method 2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 04 0.4 04 0.2 0.2 0.0 0.0 zt zxxt βte zt zxxt βte zxxc rc zc Cd zxxc Cd xt xt t rle xc zte αte t rle xc zte αte zx
  • 27. 27 Conclusions  Investigation of design performance modified method PARSEC representation by MOGA MOGA.  Solving two kinds of airfoil design problems by MOGA; 1) transonic airfoil, and 2) low Reynolds number airfoil ) , ) y  Comparisons of design results among original and modifications – In conventional transonic airfoil design, modified methods could design good performance airfoil as well as the original ld d i d f i f il ll th i i l PARSEC method. • In modification2, the local shock is weaken. – In airfoil design for low Reynolds number, modified method have the potential to design better airfoils than that of the original method method. • Modified method can be represent smooth surface airfoils with large camber. • Modified methods design leading edge camber well.
  • 28. 28 Thank you for your attention