SlideShare une entreprise Scribd logo
1  sur  79
Frank Ma © 2011
More on Slopes
Definition of Slope
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δxm =
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Geometry of Slope
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
geometric
meaning
More on Slopes
Example A. Find the slope of each of the following lines.
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
m =
Δy
Δx
=
7
0
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0 (UDF)
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
m =
Δy
Δx
=
7
0
Horizontal line
Slope = 0
Vertical line
Slope is UDF
Tilted line
Slope = 0
= 0 (UDF)
Lines that go through the
quadrants I and III have
positive slopes.
More on Slopes
Lines that go through the
quadrants I and III have
positive slopes.
More on Slopes
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
III
III IV
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
The formula for slopes requires geometric information,
i.e. the positions of two points on the line.
III
III IV
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
The formula for slopes requires geometric information,
i.e. the positions of two points on the line.
However, if a line is given by its equation instead, we may
determine the slope from the equation directly.
III
III IV
III
III IV
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0).
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0). Use these points to draw
the line.
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0). Use these points to draw
the line.
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
b. 0 = –2y + 6
More on Slopes
b. 0 = –2y + 6 solve for y
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
This is the vertical line x = 2.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
This is the vertical line x = 2.
Two Facts About Slopes
I. Parallel lines have the same slope.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y2
3
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y
Hence the slope of 3x = 2y + 4 is .
2
3
2
3
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y
Hence the slope of 3x = 2y + 4 is .
So L has slope –2/3 since L is perpendicular to it.
2
3
2
3
Summary on Slopes
How to Find Slopes
I. If two points on the line are given, use the slope formula
II. If the equation of the line is given, solve for the y and get
slope intercept form y = mx + b, then the number m is
the slope.
Geometry of Slope
The slope of tilted lines are nonzero.
Lines with positive slopes connect quadrants I and III.
Lines with negative slopes connect quadrants II and IV.
Lines that have slopes with large absolute values are steep.
The slope of a horizontal line is 0.
A vertical lines does not have slope or that it’s UDF.
Parallel lines have the same slopes.
Perpendicular lines have the negative reciprocal slopes of
each other.
rise
run=m =
Δy
Δx
y2 – y1
x2 – x1
=
Exercise A. Identify the vertical and the horizontal lines by
inspection first. Find their slopes or if it’s undefined, state so.
Fine the slopes of the other ones by solving for the y.
1. x – y = 3 2. 2x = 6 3. –y – 7= 0
4. 0 = 8 – 2x 5. y = –x + 4 6. 2x/3 – 3 = 6/5
7. 2x = 6 – 2y 8. 4y/5 – 12 = 3x/4 9. 2x + 3y = 3
10. –6 = 3x – 2y 11. 3x + 2 = 4y + 3x 12. 5x/4 + 2y/3 = 2
Exercise B.
13–18. Select two points and estimate the slope of each line.
13. 14. 15.
More on Slopes
16. 17. 18.
Exercise C. Draw and find the slope of the line that passes
through the given two points. Identify the vertical line and the
horizontal lines by inspection first.
19. (0, –1), (–2, 1) 20. (1, –2), (–2, 0) 21. (1, –2), (–2, –1)
22. (3, –1), (3, 1) 23. (1, –2), (–2, 3) 24. (2, –1), (3, –1)
25. (4, –2), (–3, 1) 26. (4, –2), (4, 0) 27. (7, –2), (–2, –6)
28. (3/2, –1), (3/2, 1) 29. (3/2, –1), (1, –3/2)
30. (–5/2, –1/2), (1/2, 1) 31. (3/2, 1/3), (1/3, 1/3)
32. (–2/3, –1/4), (1/2, 2/3) 33. (3/4, –1/3), (1/3, 3/2)
More on Slopes
Exercise D.
34. Identify which lines are parallel and which one are
perpendicular.
A. The line that passes through (0, 1), (1, –2)
D. 2x – 4y = 1
B. C.
E. The line that’s perpendicular to 3y = x
F. The line with the x–intercept at 3 and y intercept at 6.
Find the slope, if possible of each of the following lines.
35. The line passes with the x intercept at x = 2,
and y–intercept at y = –5.
More on Slopes
36. The equation of the line is 3x = –5y+7
37. The equation of the line is 0 = –5y+7
38. The equation of the line is 3x = 7
39. The line is parallel to 2y = 5 – 6x
40. the line is perpendicular to 2y = 5 – 6x
41. The line is parallel to the line in problem 30.
42. the line is perpendicular to line in problem 31.
43. The line is parallel to the line in problem 33.
44. the line is perpendicular to line in problem 34.
More on Slopes
Find the slope, if possible of each of the following lines

Contenu connexe

Tendances

4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisitedmath123c
 
t5 graphs of trig functions and inverse trig functions
t5 graphs of trig functions and inverse trig functionst5 graphs of trig functions and inverse trig functions
t5 graphs of trig functions and inverse trig functionsmath260
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinatesmath267
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_spaceMahbub Alwathoni
 
Lines and planes in space
Lines and planes  in spaceLines and planes  in space
Lines and planes in spaceTarun Gehlot
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas ymath260
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sumsmath260
 
5.3 geometric sequences
5.3 geometric sequences5.3 geometric sequences
5.3 geometric sequencesmath123c
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient xmath260
 
2.0 rectangular coordinate system
2.0 rectangular coordinate system2.0 rectangular coordinate system
2.0 rectangular coordinate systemmath260
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
7 3elimination
7 3elimination7 3elimination
7 3eliminationtaco40
 

Tendances (20)

58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
 
t5 graphs of trig functions and inverse trig functions
t5 graphs of trig functions and inverse trig functionst5 graphs of trig functions and inverse trig functions
t5 graphs of trig functions and inverse trig functions
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates
 
1525 equations of lines in space
1525 equations of lines in space1525 equations of lines in space
1525 equations of lines in space
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_space
 
Lines and planes in space
Lines and planes  in spaceLines and planes  in space
Lines and planes in space
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
Slope intercept
Slope interceptSlope intercept
Slope intercept
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums
 
5.3 geometric sequences
5.3 geometric sequences5.3 geometric sequences
5.3 geometric sequences
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
2.0 rectangular coordinate system
2.0 rectangular coordinate system2.0 rectangular coordinate system
2.0 rectangular coordinate system
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
7 3elimination
7 3elimination7 3elimination
7 3elimination
 

Similaire à Calculating slopes using rise over run formula

4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes xTzenma
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxKristenHathcock
 
Linear equations rev
Linear equations revLinear equations rev
Linear equations revAKASHKENE
 
Geo 3.6&7 slope
Geo 3.6&7 slopeGeo 3.6&7 slope
Geo 3.6&7 slopeejfischer
 
January 9, 2014
January 9, 2014January 9, 2014
January 9, 2014khyps13
 
February 18 2016
February 18 2016February 18 2016
February 18 2016khyps13
 
Geometry unit 3.7
Geometry unit 3.7Geometry unit 3.7
Geometry unit 3.7Mark Ryder
 
Finding slope
Finding slopeFinding slope
Finding slopemccallr
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxKviskvis
 
3 slopes of lines x
3 slopes of lines x3 slopes of lines x
3 slopes of lines xTzenma
 
1554 linear equations in two variables
1554 linear equations in two variables1554 linear equations in two variables
1554 linear equations in two variablesDr Fereidoun Dejahang
 
TechMathI - 3.1 - Lines in Space Day2
TechMathI - 3.1 - Lines in Space Day2TechMathI - 3.1 - Lines in Space Day2
TechMathI - 3.1 - Lines in Space Day2lmrhodes
 

Similaire à Calculating slopes using rise over run formula (20)

4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 
5 slopes of lines
5 slopes of lines5 slopes of lines
5 slopes of lines
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
 
Dec 14
Dec 14Dec 14
Dec 14
 
Linear equations rev
Linear equations revLinear equations rev
Linear equations rev
 
Geo 3.6&7 slope
Geo 3.6&7 slopeGeo 3.6&7 slope
Geo 3.6&7 slope
 
January 9, 2014
January 9, 2014January 9, 2014
January 9, 2014
 
February 18 2016
February 18 2016February 18 2016
February 18 2016
 
Chapter11
Chapter11Chapter11
Chapter11
 
Geometry unit 3.7
Geometry unit 3.7Geometry unit 3.7
Geometry unit 3.7
 
identities1.2
identities1.2identities1.2
identities1.2
 
Finding slope
Finding slopeFinding slope
Finding slope
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Alg2 lesson 2 4
Alg2 lesson 2 4Alg2 lesson 2 4
Alg2 lesson 2 4
 
3 slopes of lines x
3 slopes of lines x3 slopes of lines x
3 slopes of lines x
 
Equation Of A Line
Equation Of A LineEquation Of A Line
Equation Of A Line
 
คาบ 5 7
คาบ 5 7คาบ 5 7
คาบ 5 7
 
1554 linear equations in two variables
1554 linear equations in two variables1554 linear equations in two variables
1554 linear equations in two variables
 
TechMathI - 3.1 - Lines in Space Day2
TechMathI - 3.1 - Lines in Space Day2TechMathI - 3.1 - Lines in Space Day2
TechMathI - 3.1 - Lines in Space Day2
 
Ml lesson 4 5
Ml lesson 4 5Ml lesson 4 5
Ml lesson 4 5
 

Plus de math123a

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eqmath123a
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2math123a
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii expmath123a
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-iimath123a
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problemsmath123a
 
Soluiton i
Soluiton iSoluiton i
Soluiton imath123a
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-samplemath123a
 
Sample fin
Sample finSample fin
Sample finmath123a
 
12 4- sample
12 4- sample12 4- sample
12 4- samplemath123a
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ansmath123a
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpgmath123a
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-formmath123a
 
1exponents
1exponents1exponents
1exponentsmath123a
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optionalmath123a
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractionsmath123a
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcdmath123a
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplicationmath123a
 
5 82nd-degree-equation word problems
5 82nd-degree-equation word problems5 82nd-degree-equation word problems
5 82nd-degree-equation word problemsmath123a
 
4 1exponents
4 1exponents4 1exponents
4 1exponentsmath123a
 

Plus de math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
 
Soluiton i
Soluiton iSoluiton i
Soluiton i
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
 
Sample fin
Sample finSample fin
Sample fin
 
12 4- sample
12 4- sample12 4- sample
12 4- sample
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
 
1exponents
1exponents1exponents
1exponents
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
 
5 82nd-degree-equation word problems
5 82nd-degree-equation word problems5 82nd-degree-equation word problems
5 82nd-degree-equation word problems
 
4 1exponents
4 1exponents4 1exponents
4 1exponents
 

Dernier

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Dernier (20)

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 

Calculating slopes using rise over run formula

  • 1. Frank Ma © 2011 More on Slopes
  • 3. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, (x1, y1) (x2, y2) More on Slopes
  • 4. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δxm = (x1, y1) (x2, y2) More on Slopes
  • 5. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) More on Slopes
  • 6. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Geometry of Slope (x1, y1) (x2, y2) More on Slopes
  • 7. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. More on Slopes
  • 8. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. More on Slopes
  • 9. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. More on Slopes
  • 10. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = More on Slopes
  • 11. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize More on Slopes
  • 12. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula More on Slopes
  • 13. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula geometric meaning More on Slopes
  • 14. Example A. Find the slope of each of the following lines. More on Slopes
  • 15. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). More on Slopes
  • 16. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 More on Slopes
  • 17. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes
  • 18. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 = 0
  • 19. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 20. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 21. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 22. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 23. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 24. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 25. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 26. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 27. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 28. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 m = Δy Δx = 7 0 Horizontal line Slope = 0 Tilted line Slope = 0 = 0 (UDF)
  • 29. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 m = Δy Δx = 7 0 Horizontal line Slope = 0 Vertical line Slope is UDF Tilted line Slope = 0 = 0 (UDF)
  • 30. Lines that go through the quadrants I and III have positive slopes. More on Slopes
  • 31. Lines that go through the quadrants I and III have positive slopes. More on Slopes III III IV
  • 32. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes III III IV
  • 33. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes III III IV III III IV
  • 34. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes The formula for slopes requires geometric information, i.e. the positions of two points on the line. III III IV III III IV
  • 35. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes The formula for slopes requires geometric information, i.e. the positions of two points on the line. However, if a line is given by its equation instead, we may determine the slope from the equation directly. III III IV III III IV
  • 36. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b More on Slopes
  • 37. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. More on Slopes
  • 38. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes
  • 39. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 40. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 41. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 42. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 43. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 44. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 45. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines. a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0).
  • 46. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0). Use these points to draw the line. Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 47. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0). Use these points to draw the line. Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 48. b. 0 = –2y + 6 More on Slopes
  • 49. b. 0 = –2y + 6 solve for y More on Slopes
  • 50. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 More on Slopes
  • 51. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 More on Slopes
  • 52. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. More on Slopes
  • 53. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). More on Slopes
  • 54. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. More on Slopes
  • 55. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. More on Slopes
  • 56. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes
  • 57. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y.
  • 58. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line.
  • 59. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2.
  • 60. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2. This is the vertical line x = 2.
  • 61. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2. This is the vertical line x = 2.
  • 62. Two Facts About Slopes I. Parallel lines have the same slope. More on Slopes
  • 63. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. More on Slopes
  • 64. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? More on Slopes
  • 65. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 More on Slopes
  • 66. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y More on Slopes
  • 67. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y More on Slopes
  • 68. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. More on Slopes
  • 69. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes
  • 70. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
  • 71. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y
  • 72. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y2 3
  • 73. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y Hence the slope of 3x = 2y + 4 is . 2 3 2 3
  • 74. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y Hence the slope of 3x = 2y + 4 is . So L has slope –2/3 since L is perpendicular to it. 2 3 2 3
  • 75. Summary on Slopes How to Find Slopes I. If two points on the line are given, use the slope formula II. If the equation of the line is given, solve for the y and get slope intercept form y = mx + b, then the number m is the slope. Geometry of Slope The slope of tilted lines are nonzero. Lines with positive slopes connect quadrants I and III. Lines with negative slopes connect quadrants II and IV. Lines that have slopes with large absolute values are steep. The slope of a horizontal line is 0. A vertical lines does not have slope or that it’s UDF. Parallel lines have the same slopes. Perpendicular lines have the negative reciprocal slopes of each other. rise run=m = Δy Δx y2 – y1 x2 – x1 =
  • 76. Exercise A. Identify the vertical and the horizontal lines by inspection first. Find their slopes or if it’s undefined, state so. Fine the slopes of the other ones by solving for the y. 1. x – y = 3 2. 2x = 6 3. –y – 7= 0 4. 0 = 8 – 2x 5. y = –x + 4 6. 2x/3 – 3 = 6/5 7. 2x = 6 – 2y 8. 4y/5 – 12 = 3x/4 9. 2x + 3y = 3 10. –6 = 3x – 2y 11. 3x + 2 = 4y + 3x 12. 5x/4 + 2y/3 = 2 Exercise B. 13–18. Select two points and estimate the slope of each line. 13. 14. 15. More on Slopes
  • 77. 16. 17. 18. Exercise C. Draw and find the slope of the line that passes through the given two points. Identify the vertical line and the horizontal lines by inspection first. 19. (0, –1), (–2, 1) 20. (1, –2), (–2, 0) 21. (1, –2), (–2, –1) 22. (3, –1), (3, 1) 23. (1, –2), (–2, 3) 24. (2, –1), (3, –1) 25. (4, –2), (–3, 1) 26. (4, –2), (4, 0) 27. (7, –2), (–2, –6) 28. (3/2, –1), (3/2, 1) 29. (3/2, –1), (1, –3/2) 30. (–5/2, –1/2), (1/2, 1) 31. (3/2, 1/3), (1/3, 1/3) 32. (–2/3, –1/4), (1/2, 2/3) 33. (3/4, –1/3), (1/3, 3/2) More on Slopes
  • 78. Exercise D. 34. Identify which lines are parallel and which one are perpendicular. A. The line that passes through (0, 1), (1, –2) D. 2x – 4y = 1 B. C. E. The line that’s perpendicular to 3y = x F. The line with the x–intercept at 3 and y intercept at 6. Find the slope, if possible of each of the following lines. 35. The line passes with the x intercept at x = 2, and y–intercept at y = –5. More on Slopes
  • 79. 36. The equation of the line is 3x = –5y+7 37. The equation of the line is 0 = –5y+7 38. The equation of the line is 3x = 7 39. The line is parallel to 2y = 5 – 6x 40. the line is perpendicular to 2y = 5 – 6x 41. The line is parallel to the line in problem 30. 42. the line is perpendicular to line in problem 31. 43. The line is parallel to the line in problem 33. 44. the line is perpendicular to line in problem 34. More on Slopes Find the slope, if possible of each of the following lines