SlideShare une entreprise Scribd logo
1  sur  57
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y =x2y
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y = xyy
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y = xyy
c. x2y =x2y = xy
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
a.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
a. =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
a. = =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
a. = =
b.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
9y2
x2
a. = =
b. =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
9y2
x2
3y
x
a. = =
b. = =
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
Rules of Radicals
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
Rules of Radicals
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
Example D. Simplify
5
3
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. 
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. = 
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
8x
5b. 
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. = 
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 9 = 4 +913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 9 = 4 +9 = 2 + 3 = 513 =
5
1 15or
4x
1 10xor
Rules of Radicals
Exercise A. Simplify the following radicals.
1. 12 2. 18 3. 20 4. 28
5. 32 6. 36 7. 40 8. 45
9. 54 10. 60 11. 72 12. 84
13. 90 14. 96x2 15. 108x3 16. 120x2y2
17. 150y4 18. 189x3y2 19. 240x5y8 18. 242x19y34
19. 12 12 20. 1818 21. 2 16
23. 183
22. 123
24. 1227 25. 1850 26. 1040
27. 20x15x 28.12xy15y
29. 32xy324x5 30. x8y13x15y9
Exercise B. Simplify the following radicals. Remember that
you have a choice to simplify each of the radicals first then
multiply, or multiply the radicals first then simplify.
Rules of Radicals
Exercise C. Simplify the following radicals. Remember that
you have a choice to simplify each of the radicals first then
multiply, or multiply the radicals first then simplify. Make sure
the denominators are radical–free.
8x
531. x
10
 14
5x32. 7
20
 5
1233. 15
8x
534. 3
2
 3
32x35. 7
5
 5
236. 29
x

x
(x + 1)39. x
(x + 1)
 x
(x + 1)40. x(x + 1)
1

1
(x + 1)
37.
x
(x2 – 1)41. x(x + 1)
(x – 1)

x
(x + 1)38.
x21 – 1
Exercise D. Take the denominators of out of the radical.
42.
9x21 – 143.

Contenu connexe

Tendances

Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
swartzje
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
itutor
 

Tendances (20)

Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
 
Factoring Perfect Square Trinomial
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
 
Adding and subtracting rational expressions
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Rational Exponents
Rational ExponentsRational Exponents
Rational Exponents
 
Solving Quadratic Equations by Extracting Square Roots
Solving Quadratic Equations by Extracting Square RootsSolving Quadratic Equations by Extracting Square Roots
Solving Quadratic Equations by Extracting Square Roots
 
Triangle inequalities
Triangle inequalitiesTriangle inequalities
Triangle inequalities
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
 
Slope of a Line
Slope of a LineSlope of a Line
Slope of a Line
 
Factoring general trinomials
Factoring general trinomialsFactoring general trinomials
Factoring general trinomials
 
Nature of the roots and sum and product of the roots of a quadratic equation
Nature of the roots and sum and product of the roots of a quadratic equationNature of the roots and sum and product of the roots of a quadratic equation
Nature of the roots and sum and product of the roots of a quadratic equation
 
7.8.-SPECIAL-PRODUCTS.ppt
7.8.-SPECIAL-PRODUCTS.ppt7.8.-SPECIAL-PRODUCTS.ppt
7.8.-SPECIAL-PRODUCTS.ppt
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Factor Completely Different Types of Polynomials
Factor Completely Different Types of PolynomialsFactor Completely Different Types of Polynomials
Factor Completely Different Types of Polynomials
 
Mathematics 9 Lesson 3: Quadratic Functions
Mathematics 9 Lesson 3: Quadratic FunctionsMathematics 9 Lesson 3: Quadratic Functions
Mathematics 9 Lesson 3: Quadratic Functions
 
16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square roots16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square roots
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
 
Linear Equations
Linear EquationsLinear Equations
Linear Equations
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Mathematics 9 Lesson 1-C: Roots and Coefficients of Quadratic Equations
Mathematics 9 Lesson 1-C: Roots and Coefficients of Quadratic EquationsMathematics 9 Lesson 1-C: Roots and Coefficients of Quadratic Equations
Mathematics 9 Lesson 1-C: Roots and Coefficients of Quadratic Equations
 

En vedette

4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
math123b
 
4 3 algebra of radicals
4 3 algebra of radicals4 3 algebra of radicals
4 3 algebra of radicals
math123b
 
Sample 4-5-sp-13
Sample 4-5-sp-13Sample 4-5-sp-13
Sample 4-5-sp-13
math123b
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
math123b
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
math123b
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicals
math123b
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics
math123b
 
123b ans-i
123b ans-i123b ans-i
123b ans-i
math123b
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
math123b
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
math123b
 
Localizacion Geografica 2
Localizacion Geografica 2Localizacion Geografica 2
Localizacion Geografica 2
JCMV83
 

En vedette (20)

4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
 
5 1 complex numbers
5 1 complex numbers5 1 complex numbers
5 1 complex numbers
 
Chain rule solution key
Chain rule solution keyChain rule solution key
Chain rule solution key
 
4 3 algebra of radicals
4 3 algebra of radicals4 3 algebra of radicals
4 3 algebra of radicals
 
Sample 4-5-sp-13
Sample 4-5-sp-13Sample 4-5-sp-13
Sample 4-5-sp-13
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicals
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics
 
123b ans-i
123b ans-i123b ans-i
123b ans-i
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
Introduction to the trigonometric functions
Introduction to the trigonometric functionsIntroduction to the trigonometric functions
Introduction to the trigonometric functions
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
 
Lesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsLesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric Functions
 
Lecture 9 derivatives of trig functions - section 3.3
Lecture 9   derivatives of trig functions - section 3.3Lecture 9   derivatives of trig functions - section 3.3
Lecture 9 derivatives of trig functions - section 3.3
 
Localizacion Geografica 2
Localizacion Geografica 2Localizacion Geografica 2
Localizacion Geografica 2
 
Calculus
CalculusCalculus
Calculus
 
1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x
 
Trigonometric functions - PreCalculus
Trigonometric functions - PreCalculusTrigonometric functions - PreCalculus
Trigonometric functions - PreCalculus
 

Similaire à 4 2 rules of radicals

May 4, 2015
May 4, 2015May 4, 2015
May 4, 2015
khyps13
 
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Demetrio Ccesa Rayme
 

Similaire à 4 2 rules of radicals (20)

4 2 rules of radicals-x
4 2 rules of radicals-x4 2 rules of radicals-x
4 2 rules of radicals-x
 
1 rules of radicals x
1 rules of radicals x1 rules of radicals x
1 rules of radicals x
 
2 algebra of radicals
2 algebra of radicals2 algebra of radicals
2 algebra of radicals
 
4 3 algebra of radicals-x
4 3 algebra of radicals-x4 3 algebra of radicals-x
4 3 algebra of radicals-x
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 
Algebra 2 Section 3-6
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6
 
4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x
 
3 more on algebra of radicals
3 more on algebra of radicals3 more on algebra of radicals
3 more on algebra of radicals
 
2 rules for radicals
2 rules for radicals2 rules for radicals
2 rules for radicals
 
Grade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptxGrade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptx
 
May 4, 2015
May 4, 2015May 4, 2015
May 4, 2015
 
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptx
 
1 rules for exponents
1 rules for exponents1 rules for exponents
1 rules for exponents
 
Hprec2 2
Hprec2 2Hprec2 2
Hprec2 2
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Hprec2 4
Hprec2 4Hprec2 4
Hprec2 4
 
Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
 
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
 

Plus de math123b

2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators
math123b
 
5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x
math123b
 

Plus de math123b (18)

4 multiplication and division of rational expressions
4 multiplication and division of rational expressions4 multiplication and division of rational expressions
4 multiplication and division of rational expressions
 
2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators
 
5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x
 
5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x
 
5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x
 
5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-x
 
4 6 radical equations-x
4 6 radical equations-x4 6 radical equations-x
4 6 radical equations-x
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x
 
3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x
 
3 5 rectangular system and lines-x
3 5 rectangular system and lines-x3 5 rectangular system and lines-x
3 5 rectangular system and lines-x
 
3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x
 
3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x
 
3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
 
3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x
 
2 8 variations-xy
2 8 variations-xy2 8 variations-xy
2 8 variations-xy
 
Sample1
Sample1Sample1
Sample1
 

Dernier

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Dernier (20)

Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

4 2 rules of radicals

  • 2. Square Rule: x2 =x x = x if x > 0. Rules of Radicals
  • 3. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y Rules of Radicals
  • 4. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. Rules of Radicals
  • 5. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 6. Example A. Simplify a. 8 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 7. Example A. Simplify a. 8 = 42 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 8. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 9. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =
  • 10. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362
  • 11. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62
  • 12. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y
  • 13. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y =x2y
  • 14. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y =x2y = xy
  • 15. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 c. x2y =x2y = xy
  • 16. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y c. x2y =x2y = xy
  • 17. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y = xyy c. x2y =x2y = xy
  • 18. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y = xyy c. x2y =x2y = xy A radical expression is said to be simplified if as much as possible is extracted out of the square-root.
  • 19. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Rules of Radicals
  • 20. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 Rules of Radicals
  • 21. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 Rules of Radicals
  • 22. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) Rules of Radicals
  • 23. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 Rules of Radicals
  • 24. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 Rules of Radicals
  • 25. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) Rules of Radicals
  • 26. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 Rules of Radicals
  • 27. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y Rules of Radicals
  • 28. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals
  • 29. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  =
  • 30. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify.
  • 31. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 a.
  • 32. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 a. =
  • 33. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 a. = =
  • 34. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 a. = = b.
  • 35. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 9y2 x2 a. = = b. =
  • 36. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 9y2 x2 3y x a. = = b. = =
  • 37. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, Rules of Radicals
  • 38. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. Rules of Radicals
  • 39. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals
  • 40. Example D. Simplify 5 3 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. 
  • 41. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. = 
  • 42. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15 
  • 43. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15
  • 44. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15 8x 5b.  5 1 15or
  • 45. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  5 1 15or
  • 46. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  5 1 15or
  • 47. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  5 1 15or
  • 48. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * 5 1 15or
  • 49. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x 5 1 15or
  • 50. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x 5 1 15or 4x 1 10xor
  • 51. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b 5 1 15or 4x 1 10xor
  • 52. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 913 = 5 1 15or 4x 1 10xor
  • 53. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 913 = 5 1 15or 4x 1 10xor
  • 54. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 9 = 4 +913 = 5 1 15or 4x 1 10xor
  • 55. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 9 = 4 +9 = 2 + 3 = 513 = 5 1 15or 4x 1 10xor
  • 56. Rules of Radicals Exercise A. Simplify the following radicals. 1. 12 2. 18 3. 20 4. 28 5. 32 6. 36 7. 40 8. 45 9. 54 10. 60 11. 72 12. 84 13. 90 14. 96x2 15. 108x3 16. 120x2y2 17. 150y4 18. 189x3y2 19. 240x5y8 18. 242x19y34 19. 12 12 20. 1818 21. 2 16 23. 183 22. 123 24. 1227 25. 1850 26. 1040 27. 20x15x 28.12xy15y 29. 32xy324x5 30. x8y13x15y9 Exercise B. Simplify the following radicals. Remember that you have a choice to simplify each of the radicals first then multiply, or multiply the radicals first then simplify.
  • 57. Rules of Radicals Exercise C. Simplify the following radicals. Remember that you have a choice to simplify each of the radicals first then multiply, or multiply the radicals first then simplify. Make sure the denominators are radical–free. 8x 531. x 10  14 5x32. 7 20  5 1233. 15 8x 534. 3 2  3 32x35. 7 5  5 236. 29 x  x (x + 1)39. x (x + 1)  x (x + 1)40. x(x + 1) 1  1 (x + 1) 37. x (x2 – 1)41. x(x + 1) (x – 1)  x (x + 1)38. x21 – 1 Exercise D. Take the denominators of out of the radical. 42. 9x21 – 143.