SlideShare une entreprise Scribd logo
1  sur  67
Anecdotes from the history of mathematics : Ways of selling mathematics 1. Numbers
To start off with – a puzzle:What has this 1835 painting by Turner got to do with progress in mathematics?
Number sense               Cardinal number sense                         Number words                                   Counting (influenced by anatomy)                                             Discovery of zero                                                       Development of arithmetic
Number sense – critical for survival of the species The ability to recognize whether a small collection of objects has increased or decreased       Have we lost someone whilst out hunting?       Is our group size sufficient to defend against or attack the opposing tribe?
Early cardinal number sense – giving prototypical structure to number sense The size of the community/group compared with a fixed collection of objects or marks-  pebbles, notches on a stick, or fingers on the hand.
The development of number words The abstraction of number words to abstract symbols came much later. As Bertrand Russell stated "It must have required many ages to discover that a brace of pheasants and a couple of days were both instances of the number 2”.
Counting To be able to count one has to place numbers/number words in order or succession. This is ordinal number sense: one, two, three, .........
Words to symbols - symbolic ordinal number systems Babylonian (present day Iraq – c 3000 BC): Base 60 Egyptian (c 300 BC): Base 10 Indian ( c 11th century AD): Base 10
Need for the development of arithmetic  Calculations in trade, taxation, and the recording of time Organising military affairs The need to record calculations on paper led to widespread adoption of different arithmetic by the 15th century.
Early Arithmetic 37 × 11 and you don’t know place value arithmetic?
Early Arithmetic 23÷ 4 and you don’t know place value arithmetic?
Indo-Arabic Arithmetic 37 × 11 and you know  place value arithmetic? 23÷ 4 and you know  place value arithmetic? In the first example notice the use of 0 as place value:  the 0 in 407 signifies zero=no tens.  Also multiplication  proceeds Right to Left. Division in reverse.
A feature of the Hindu-Arabic Numerals There is direct evidence that the original Hindu numerals were meant to  be used in two ways. Either in the Left-Right orientation: Increase in place value L to R            213 = 2 + 10 + 300 Or the Right-left orientation: Increase in place value R to L                       213 = 200+ 10 + 3   See  A.K. Bag: Mathematics in Ancient and Medieval India,  Chaukhamba Orientalia, 1976, Delhi
A feature of the Indo-Arabic Numerals Islamic mathematicians adopted the Indian system and transmitted it Westwards.  Arabic being written in the right-left orientation is probably the reason why the right-left orientation is universally used.
The 1835 painting by Turner depicts .........the houses of parliament burning in 1834 Resistance to the new arithmetic … tally sticks were in use until the 19th century …. The fire indirectly due to the enormous tally sticks kept in the houses.
The 1835 painting by Turner Charles Dickens commented at the time:  "... it took until 1826 to get these sticks abolished.  ….In 1834 there was a considerable accumulation of them. The sticks were housed in Westminster…… and so the order went out that they should be privately and confidentially burned.  It came to pass that they were burned in a stove in the House of Lords. The stove, overgorged with these preposterous sticks, set fire to the panelling; the panelling set fire to the House of Commons; the two houses were reduced to ashes"
Anecdotes from the history of mathematics : Ways of selling mathematics 2. Algebra
First - a puzzle: What has bone setting got to do with algebra?
Key developments in ancient and medieval algebra Extraction  of square roots      Method for solution of practical problems  Method for approximate solutions of these problems
Some problems of ancient and medieval times that required algebra. Right angled triangles.  Length of the hypotenuse. Implied the need to extract square roots.
Extracting square roots - The Babylonian method Step 1 Given a non-square number N find a number a such that a2  is near N. Step 2Then set b = |N – a2|andc = b/2a Step 3N  a + c if a2  < N; N  a – c otherwise Example N  = 2  Step 1. Choose a  =17/12  Step 2. Then b = 289/144 –2 = 1/144 and               c = 1/144  34/12 = 1/(1234) Step 3 2 = 17/12 - 1/(1234) = 1.414215686…
Solving simple equations – Early generalisations The rule of three. To find the cost multiply the fruit by the requisition, and divide the resulting product by the argument. Example 1. If A = 6[the argument] books cost  F = 12 units [the fruit], what will R = 10 [requisition] books cost?  Rule of 3   Cost = F× R = 12 × 10 = 20 units              A                6
Solving quadratic equations: Al Khwarizmi(820) and Pedro Nunes (1567) The Fourth rule:   x2 +10x = 50   Make a square with x and half the number of things. (x+5)2 = 25 + 50                                                                            x= √75 - 5  number 5 x number of things Half the number of things 5 5x 25  Picture (x+5)2 -25 = 50  (x + half the number of things) squared =  square of (half the number of things) placed next to the number. 5x x2 x To find x subtract from the root half the number of things
Cubic equations – Jamshid al Kashi (15th century AD) Problem from antiquity: Find sin 10. Al Kashiknew sin 30 ≈ 0.0523359562429448 and that                      sin 3  = 3sin  – 4sin3 .                     sin 30  = 3sin 10 – 4sin3 10   If  x = sin 10  then   3x – 4x3  = 0.0523359562429448  Re-arranging gives      x = (0.0523359562429448 + 4x3)/3 1st approximation x0 = 0.016 2nd approximation  x1 = (0.0523359562429448 + 4x03)/3 =  			                         0.0174507800809816 3rd approximation    x2 = (0.0523359562429448 + 4x13)/3 =0.0174524044560038
al-Kashi‘s fixed point iteration This is exactly the fixed-point iteration used in  post 16 mathematics.                                           x  = g(x) In the example g(x) = (0.0523359562429448 + 4x3)/3 y = x y = g(x) Location of exact root x1 x2 x3
What has bone setting got to do with algebra? Al-Khwarizmi wrote the first treatise on algebra: Hisab al-jabr w’al-muqabala in 820 AD. The word algebra is a corruption of al-jabr which means restoration.  In Spain, where the Arabs held sway for a long period, there arose a profession of ‘algebrista’s’ who dealt in bone setting.
What has bone setting got to do with algebra? álgebra. Del lat. tardío algebra, y este abrev. del ár. clás. algabru walmuqabalah, reducción y cotejo.  1. f. Parte de las matemáticas en la cual las operaciones aritméticas son generalizadas empleando números, letras y signos.  2. f. desus. Arte de restituir a su lugar los huesos dislocados   Translation: the art of restoring broken bones to their correct positions
Anecdotes from the history of mathematics : Ways of selling mathematics 3. Geometry: the mother of algebra
How do these paintings show how geometry influenced art? Pietro Perugino fresco at the Sistine Chapel (1481) Melchior Broederlam(c1394)
Some features in the development of  Geometry Practical knowledge for construction of buildings          Practical knowledge for patterning and art                      Generalisation of geometry                           Axiomatic deductive geometry
Practical geometry in real life The 3, 4, 5 rope for ensuring a right angle in building construction – ropes. Artisans in ancient and medieval times used a loop of rope of length 12 units knotted at 3 and 4 units to ensure a right angle was formed. 5 3 4
Practical calculation of areas – the quadrilateral The surveyors rule - first evidenced in Babylonian mathematics (c 2000 BC) – for calculating the area of a quadrilateral. Walk along the 4 sides a, b, c, and d – measure – substitute into the formula.  The formula gives exact area only in the case of a rectangle. In  all other cases it is an overestimate. a b d c
Greek Geometry - Euclid Euclid (c. 300 BC) theorised geometry deriving results using axioms and deductive logic in a series of 13 books called the Elements. One such axiom is that an isosceles triangles has equal angles opposite the equal sides. A long line of non-Greek, mainly Islamic, scholars called Euclidisi’s kept the Elements alive by manually producing editions of the work after Greek culture fell in decay.
The importance of Euclid and Greek geometry Greek geometry was constructed in a culture of democracy where all issues were subject to debate. Greek geometry naturally followed  this tradition  of having to argue the case against  all sceptics.  It could be argued that this democratic,  intellectual feature enabled  Euclidean geometry to plant itself in foreign soil and, therefore, survive long after the  decline of Greek culture.
Geometry of plane patterns - tessellations Just how does a builder make a pattern that repeats in order to tile a  floor or  a wall?  North African geometers between the 8th and 16th centuries worked  out that there were just 17 different  types of tessellations  A result mathematically proved only in 1935. Four of the 17  possibilities are depicted in these pictures of tilings from the  Alhambra in Granada, Spain (all 17 are to be found there).      P3           P4 P6M     P4G
Geometry the mother of algebra There are just 7 types of frieze patterns The realisation that Islamic geometers had given structure to patterns in the plane motivated 19th and 20th century mathematicians algebriasing geometry. The study of geometric symmetry directly leads to methods for the solutions of polynomials – Galois Theory.
Geometrical perspective – how geometry influenced art Filippo Brunelleschi  (1377 –1446 ) discovered theory of perspective.  Essentially in parallel lines on a  horizontal plane depicted  in the vertical plane meet – at the  vanishing point. Only objects in  perspective look realistic. Cuboid with 1 vanishing point
Pietro Perugino’s fresco clearly shows perspective.  While Broederlam’s painting does not look natural … parallel lines in the painting meet at different points. Melchior Broederlam(c1394) Pietro Perugino fresco  (1481)
Anecdotes from the history of mathematics : Ways of selling mathematics 4. Who said calculus was hard?
What has a piece of string go to do with calculus?
Some key points in  the history of calculus Early work on integration; calculation of areas and  volumes The realisation that integration means sum of power  series  The conquest of infinity: summation of infinite terms  Calculation of lengths of curved lines
Integration: the determination of lengths, areas and volumes.  Early Integration. Archimedes (c 225 BC) approximated the length of a circle  and, hence, of π by approximating a circle by inscribed and circumscribed regular polygons.  Using one of 96 sides he found π is between 223⁄71 and 22⁄7. So π ~ 3.1419. Tsu Ch’ung Chi c.430 - c.501) did the same thing reputedly using a polygon of 24,576 sides thereby computing the value of πcorrect to 6 d.p.
Early Integration of area under a curve – the technical problem The area A under the curve y=xkbetween 0 and n is approximated by the areas of the rectangles, each of width1 and height given by xk A ≈ 1k+ 2k  + 3k + ……(n-1)k + nk Need to be able to sum powers of integers. Archimedes and Ibn al Haytam (965-1039) were able to do this for some values of n. Later (12th -14th centuries) al Samawal (Iraq), Zhu Shijie (China), and Narayana Pandit (India) for general values of n. y= xk
Early Integration of area under a curve – Better approximations The area A under the curve y=xkbetween 0 and 1is approximated by the areas of the rectangles, each of width1/nand height given by xk A ≈ 1k + 2k  + 3k + ……(n-1)k + nk                               nk+1 As n ->∞ the sum on the left becomes the exact area. The first appearance of a solution  (A= 1/(k+1) ) was in 1530 – in the Yuktibhasa of Jyesthadeva. Later tackled in the 17th century by Fermat, Pascal, Wallis, etc. y=xk
Infinity conquered – the calculation of the derivative Derivative at P =gradient of tangent at P P f(x) Derivative = f(x-h) x - h x Newton and Leibniz independently discovered the generalised method late 17th century
Historical problems that gave rise to the calculus. Arc length calculation: Approximate small sections of arc by straight lines.  What happens as the sections get smaller and smaller?
Arc length calculation using the calculus Each arc segment ≈ (dx2 + dy2)1/2 = (1 + [dy/dx]2)1/2 ×dx So the total arc length ≈ Sum of all (1 + [dy/dx]2)1/2 ×dx’ s                                                             = ∫ (1 + [dy/dx]2)1/2 dx A2 A3 y A4 dy =y2-y1 A1 dx An x xn x1 x4 x2 x3
What has a piece of string go to do with calculus? In the primary classroom one may see curved length calculation as  follows: lay a piece of string along the curve, mark the ends of the curve along it,  straighten the string, and then measure the marked length.
What has a piece of string go to do with calculus? Lay a piece of string along the curve, mark the ends of  the curve  along it,  straighten the string, and then measure the marked length.  This is essentially the principle employed in the deriving the arc length  formula This was also a principle used in ancient mathematics. Good  mathematics is when you first simplify the problem to easily  deduce the solution and then develop the solution for the complex  case.
Anecdotes from the history of mathematics : Ways of selling mathematics 5. Using one’s imagination
What has special effects in the cinema got to do with mathematics? Source of fractal pictures: www.comp.dit.ie/
Using imagination  - i the complex square root of -1  What kind of pictures would arise from  repeatedly applying a function of the complex  numbers?  These imaginings were that of Gaston Julia in  1915 and the resulting pictures were called  Julia sets.  Julia sets had noconceived applications at the  Time and these later gave rise to Fractal  Geometry.                              The picture from repeatedly applying z  z2 + i.
Fractal Geometry in the classroom: The van Koch snowflake The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre.
Fractal Geometry: The van Koch snowflake at stage 2 The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre.
Fractal Geometry: The van Koch snowflake at stage 3 The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre. v
Development of a van Koch snowflake fractal Observe: Each stellation is congruent to the original equilateral 	 	        triangle
An application of fractal geometry The van Koch snowflake fractal has  the amazing property that its  perimeter tends to infinity while its  area is finite [certainly less than the  area of the bounding rectangle  containing it]. This is the perfect design for  antennae for mobile phone and  microwave communications. Source of fractal antenna picture: Wikipedia
Fractal imagery using computers Beniot Mandelbrot, the mathematician who gave fractal geometry impetus by using computers, said: “Clouds are not spheres, mountains are not cones, coastlines are not circles and bark is not smooth, nor does lightning travel in a straight line.” Picture of a fern leaf computer generated using Fractals
What has special effects in the cinema got to do with mathematics? These pictures show the use of fractals in computer generated imagery in the cinema. Source of fractal pictures: www.comp.dit.ie/
Anecdotes from the history of mathematics : Ways of selling mathematics 6. Using one’s imagination 2
What has the auto-focus in your camera got to do with mathematics?
TWO VALUED LOGIC At the turn of the last century mathematics was defined by the 23 problems posed by the German mathematician David Hilbert.  Hilbert’s problems were preponderantly about proving conjectures. That is, they were entirely to do with pure mathematics where 2 valued logic reigns: either a statement is true (1) or it is false (0).
FUZZY LOGIC: The rise of the imaginative maverick In 1965 a computer scientist by the  name of Lofti Zadeh proposed an  infinite valued logic. The logic would take any value x in  the range  0 ≤ x ≤ 1 This was called FUZZY LOGIC.
                   FUZZY LOGIC Fuzzy logic was not an abstract phenomenon.  Zadeh knew it could be applied from the outset. “Well, I knew it was going to be important. That much I knew. In fact, I had thought about sealing it in a dated envelope with my predictions and then opening it 20-30 years later to see if my intuitions were right. I used to think about it this way: that one day Fuzzy Logic would turn out to be one of the most important things to come out of our Electrical Engineering Computer Systems Division at Berkeley.”
APPLICATIONS OF FUZZY LOGIC CLIMATE CONTROL: To keep the temperature in the operating theatre constant the control device has to direct the heating or cooling to come on when the temperature changes. The question is: how much does the room have to cool down (or heat up) before the heating (or cooling) comes on? What should the device do if it is ‘warm’?  To enable this the temperature has 3 truth values: 0.8 = a bit cold;  0.2 = a little warm; and 0 = hot. Other temperatures will give different values to the 3 functions. Depending on the (infinite) triplets of values the  control device can activate heating or cooling or neither. 1 Hot Cool Warm 0
The success of Fuzzy Logic.Amongst hundreds of industrial applications of Fuzzy Logic are the following:  Handwriting recognition by computers (Sony) Medicine technology: cancer diagnosis (Kawasaki Medical School) Back light control for camcorders (Sanyo) Single button control for washing-machines (Matsushita) Voice Recognition (CSK, Hitachi, Ricoh) Improved fuel-consumption for automobiles (Nippon Tools) Source: http://www.esru.strath.ac.uk/Reference/concepts/fuzzy/fuzzy_appl.10.htm
What has digital camera auto-focus got to do with mathematics? Most people put their digital cameras on auto focus mode.  But how does the camera knows what to focus on?  Is it the necessarily the object you are trying to photograph?  Is this object the nearest in the field of vision?  Etc? The camera uses Fuzzy logic to make assumptions on behalf of the  owner. Occasionally the choice is to focus on the object closest to  the centre of the viewer. On other occasions it focuses on the object closest to the camera. The margins of error are acceptable for the non-expert camera user whose concern is album pictures.  Fuzzy logic enables a digital camera to focus on the right object more often than not

Contenu connexe

Tendances

JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................Pratik Sidhu
 
Pi day presentation 1
Pi day presentation 1Pi day presentation 1
Pi day presentation 1zeinabze
 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)drselvarani
 
Values of learning Mathematics
Values of learning MathematicsValues of learning Mathematics
Values of learning MathematicsMeenu M
 
Pythagoras' Theorem
Pythagoras' TheoremPythagoras' Theorem
Pythagoras' Theoremstephenb
 
HISTORY of GEOMETRY.ppt
HISTORY of GEOMETRY.pptHISTORY of GEOMETRY.ppt
HISTORY of GEOMETRY.pptCheeneeRivera
 
Pythagoras And The Pythagorean Theorem
Pythagoras And The Pythagorean TheoremPythagoras And The Pythagorean Theorem
Pythagoras And The Pythagorean Theoremacavis
 
Lesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probabilityLesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probabilityLorie Jane Letada
 
Greek mathematics
Greek mathematicsGreek mathematics
Greek mathematicsbooksrock
 
Pythagoras Theorem Explained
Pythagoras Theorem ExplainedPythagoras Theorem Explained
Pythagoras Theorem ExplainedPassy World
 
Maths in daily life
Maths in daily lifeMaths in daily life
Maths in daily lifeLavanya
 

Tendances (20)

Numbers
NumbersNumbers
Numbers
 
Ancient math
Ancient mathAncient math
Ancient math
 
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
 
History Of Mathematics
History Of MathematicsHistory Of Mathematics
History Of Mathematics
 
Pi day presentation 1
Pi day presentation 1Pi day presentation 1
Pi day presentation 1
 
Pi
PiPi
Pi
 
History of Math
History of MathHistory of Math
History of Math
 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
 
Maths Project Power Point Presentation
Maths Project Power Point PresentationMaths Project Power Point Presentation
Maths Project Power Point Presentation
 
Values of learning Mathematics
Values of learning MathematicsValues of learning Mathematics
Values of learning Mathematics
 
Pythagoras' Theorem
Pythagoras' TheoremPythagoras' Theorem
Pythagoras' Theorem
 
Maths and philosophy
Maths and philosophyMaths and philosophy
Maths and philosophy
 
HISTORY of GEOMETRY.ppt
HISTORY of GEOMETRY.pptHISTORY of GEOMETRY.ppt
HISTORY of GEOMETRY.ppt
 
Pythagoras And The Pythagorean Theorem
Pythagoras And The Pythagorean TheoremPythagoras And The Pythagorean Theorem
Pythagoras And The Pythagorean Theorem
 
Euclid ppt final
Euclid ppt finalEuclid ppt final
Euclid ppt final
 
Sadiq maths ppt
Sadiq maths pptSadiq maths ppt
Sadiq maths ppt
 
Lesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probabilityLesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probability
 
Greek mathematics
Greek mathematicsGreek mathematics
Greek mathematics
 
Pythagoras Theorem Explained
Pythagoras Theorem ExplainedPythagoras Theorem Explained
Pythagoras Theorem Explained
 
Maths in daily life
Maths in daily lifeMaths in daily life
Maths in daily life
 

En vedette

Antichi mestieri
Antichi mestieriAntichi mestieri
Antichi mestieriNicomarti
 
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacci
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacciLa matematica nel medioevo. intervista doppia a al khwarizmi e fibonacci
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacciNatura Matematica
 
Il basso medioevo 3th
Il basso medioevo 3thIl basso medioevo 3th
Il basso medioevo 3thdierrefranci
 
La rinascita dopo il mille
La rinascita dopo il milleLa rinascita dopo il mille
La rinascita dopo il milleElena Rovelli
 
I mestieri nel Medioevo
I mestieri nel MedioevoI mestieri nel Medioevo
I mestieri nel MedioevoClaudio Matt
 
L'Anno Mille
L'Anno MilleL'Anno Mille
L'Anno Millegplacidia
 
Medioevo 2media
Medioevo 2mediaMedioevo 2media
Medioevo 2mediafms
 
Patterns number and geometric
Patterns  number and geometricPatterns  number and geometric
Patterns number and geometricamdzubinski
 
Storia 1media-medioevo
Storia 1media-medioevoStoria 1media-medioevo
Storia 1media-medioevofms
 
Storia: Il Medioevo
Storia: Il MedioevoStoria: Il Medioevo
Storia: Il MedioevoVan Morrison
 

En vedette (17)

Antichi mestieri
Antichi mestieriAntichi mestieri
Antichi mestieri
 
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacci
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacciLa matematica nel medioevo. intervista doppia a al khwarizmi e fibonacci
La matematica nel medioevo. intervista doppia a al khwarizmi e fibonacci
 
Le Spugne
Le SpugneLe Spugne
Le Spugne
 
Tiktaalik roseae
Tiktaalik roseaeTiktaalik roseae
Tiktaalik roseae
 
Il basso medioevo 3th
Il basso medioevo 3thIl basso medioevo 3th
Il basso medioevo 3th
 
Cnidari
CnidariCnidari
Cnidari
 
La rinascita dopo il mille
La rinascita dopo il milleLa rinascita dopo il mille
La rinascita dopo il mille
 
I mestieri nel Medioevo
I mestieri nel MedioevoI mestieri nel Medioevo
I mestieri nel Medioevo
 
Anno mille e dintorni
Anno mille e dintorniAnno mille e dintorni
Anno mille e dintorni
 
L'europa dopo l'anno mille - parte I -
L'europa dopo l'anno mille - parte I -L'europa dopo l'anno mille - parte I -
L'europa dopo l'anno mille - parte I -
 
L'Anno Mille
L'Anno MilleL'Anno Mille
L'Anno Mille
 
Medioevo 2media
Medioevo 2mediaMedioevo 2media
Medioevo 2media
 
Patterns number and geometric
Patterns  number and geometricPatterns  number and geometric
Patterns number and geometric
 
Il medioevo
Il medioevoIl medioevo
Il medioevo
 
Storia 1media-medioevo
Storia 1media-medioevoStoria 1media-medioevo
Storia 1media-medioevo
 
Genetica
GeneticaGenetica
Genetica
 
Storia: Il Medioevo
Storia: Il MedioevoStoria: Il Medioevo
Storia: Il Medioevo
 

Similaire à Anecdotes from the history of mathematics ways of selling mathemati

Babylonian and egyptian mathematics
Babylonian and egyptian mathematicsBabylonian and egyptian mathematics
Babylonian and egyptian mathematicsClark Kent
 
The Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraThe Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraSami Ullah
 
HISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxHISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxRoseM20
 
METHOD OF BABYLONIANS
METHOD OF BABYLONIANSMETHOD OF BABYLONIANS
METHOD OF BABYLONIANSGRACE qUIMAT
 
Mathematics in the Modern World
Mathematics in the Modern WorldMathematics in the Modern World
Mathematics in the Modern WorldKylyn Albay
 
Early Chinese and Mathematics
Early Chinese and Mathematics Early Chinese and Mathematics
Early Chinese and Mathematics ricklyn gonzaga
 
history in math_1.pptx
history in math_1.pptxhistory in math_1.pptx
history in math_1.pptxBethyOnam
 
Foundations of mathematics
Foundations of mathematicsFoundations of mathematics
Foundations of mathematicsMark Mulit
 
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdf
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdfWhat impact did Pythagoras have on EuclidSolutionPythagorasP.pdf
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdfformaxekochi
 
Yash group Maths PPT for class IX
Yash group  Maths PPT for class IXYash group  Maths PPT for class IX
Yash group Maths PPT for class IXYash Jangra
 
Maths A - Chapter 5
Maths A - Chapter 5Maths A - Chapter 5
Maths A - Chapter 5westy67968
 
Egyptian mathematics
Egyptian mathematicsEgyptian mathematics
Egyptian mathematicsMabdulhady
 
Mathematics model papers for class xi
Mathematics model papers for class xiMathematics model papers for class xi
Mathematics model papers for class xiAPEX INSTITUTE
 
Mixed bag quiz 1-ass-coma
Mixed bag quiz 1-ass-comaMixed bag quiz 1-ass-coma
Mixed bag quiz 1-ass-comaAlankar Devta
 

Similaire à Anecdotes from the history of mathematics ways of selling mathemati (20)

Babylonian and egyptian mathematics
Babylonian and egyptian mathematicsBabylonian and egyptian mathematics
Babylonian and egyptian mathematics
 
RADICALS
RADICALSRADICALS
RADICALS
 
Ge Mlec1
Ge Mlec1Ge Mlec1
Ge Mlec1
 
History of trigonometry2
History of trigonometry2History of trigonometry2
History of trigonometry2
 
The Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraThe Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear Algebra
 
HISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxHISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptx
 
Maths
MathsMaths
Maths
 
METHOD OF BABYLONIANS
METHOD OF BABYLONIANSMETHOD OF BABYLONIANS
METHOD OF BABYLONIANS
 
Mathematics in the Modern World
Mathematics in the Modern WorldMathematics in the Modern World
Mathematics in the Modern World
 
Early Chinese and Mathematics
Early Chinese and Mathematics Early Chinese and Mathematics
Early Chinese and Mathematics
 
history in math_1.pptx
history in math_1.pptxhistory in math_1.pptx
history in math_1.pptx
 
Egyptian Mathematics
Egyptian MathematicsEgyptian Mathematics
Egyptian Mathematics
 
Foundations of mathematics
Foundations of mathematicsFoundations of mathematics
Foundations of mathematics
 
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdf
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdfWhat impact did Pythagoras have on EuclidSolutionPythagorasP.pdf
What impact did Pythagoras have on EuclidSolutionPythagorasP.pdf
 
Yash group Maths PPT for class IX
Yash group  Maths PPT for class IXYash group  Maths PPT for class IX
Yash group Maths PPT for class IX
 
Magiuri kvadrati.ppt (1)
Magiuri kvadrati.ppt (1)Magiuri kvadrati.ppt (1)
Magiuri kvadrati.ppt (1)
 
Maths A - Chapter 5
Maths A - Chapter 5Maths A - Chapter 5
Maths A - Chapter 5
 
Egyptian mathematics
Egyptian mathematicsEgyptian mathematics
Egyptian mathematics
 
Mathematics model papers for class xi
Mathematics model papers for class xiMathematics model papers for class xi
Mathematics model papers for class xi
 
Mixed bag quiz 1-ass-coma
Mixed bag quiz 1-ass-comaMixed bag quiz 1-ass-coma
Mixed bag quiz 1-ass-coma
 

Plus de Dennis Almeida

Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Dennis Almeida
 
How to decode a Vigenere code
How to decode a Vigenere codeHow to decode a Vigenere code
How to decode a Vigenere codeDennis Almeida
 
Teach secondary school algebra
Teach secondary school algebraTeach secondary school algebra
Teach secondary school algebraDennis Almeida
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsDennis Almeida
 
Further pure mathematics 3 matrix algebra
Further pure mathematics 3 matrix algebraFurther pure mathematics 3 matrix algebra
Further pure mathematics 3 matrix algebraDennis Almeida
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsDennis Almeida
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systemsDennis Almeida
 
Lesson plan equiv fractions
Lesson plan equiv fractionsLesson plan equiv fractions
Lesson plan equiv fractionsDennis Almeida
 
Misconceptions in mathematics
Misconceptions in mathematicsMisconceptions in mathematics
Misconceptions in mathematicsDennis Almeida
 
Teaching equivalent fractions
Teaching equivalent fractionsTeaching equivalent fractions
Teaching equivalent fractionsDennis Almeida
 

Plus de Dennis Almeida (10)

Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107
 
How to decode a Vigenere code
How to decode a Vigenere codeHow to decode a Vigenere code
How to decode a Vigenere code
 
Teach secondary school algebra
Teach secondary school algebraTeach secondary school algebra
Teach secondary school algebra
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectors
 
Further pure mathematics 3 matrix algebra
Further pure mathematics 3 matrix algebraFurther pure mathematics 3 matrix algebra
Further pure mathematics 3 matrix algebra
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functions
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systems
 
Lesson plan equiv fractions
Lesson plan equiv fractionsLesson plan equiv fractions
Lesson plan equiv fractions
 
Misconceptions in mathematics
Misconceptions in mathematicsMisconceptions in mathematics
Misconceptions in mathematics
 
Teaching equivalent fractions
Teaching equivalent fractionsTeaching equivalent fractions
Teaching equivalent fractions
 

Anecdotes from the history of mathematics ways of selling mathemati

  • 1. Anecdotes from the history of mathematics : Ways of selling mathematics 1. Numbers
  • 2. To start off with – a puzzle:What has this 1835 painting by Turner got to do with progress in mathematics?
  • 3. Number sense Cardinal number sense Number words Counting (influenced by anatomy) Discovery of zero Development of arithmetic
  • 4. Number sense – critical for survival of the species The ability to recognize whether a small collection of objects has increased or decreased Have we lost someone whilst out hunting? Is our group size sufficient to defend against or attack the opposing tribe?
  • 5. Early cardinal number sense – giving prototypical structure to number sense The size of the community/group compared with a fixed collection of objects or marks- pebbles, notches on a stick, or fingers on the hand.
  • 6. The development of number words The abstraction of number words to abstract symbols came much later. As Bertrand Russell stated "It must have required many ages to discover that a brace of pheasants and a couple of days were both instances of the number 2”.
  • 7. Counting To be able to count one has to place numbers/number words in order or succession. This is ordinal number sense: one, two, three, .........
  • 8. Words to symbols - symbolic ordinal number systems Babylonian (present day Iraq – c 3000 BC): Base 60 Egyptian (c 300 BC): Base 10 Indian ( c 11th century AD): Base 10
  • 9. Need for the development of arithmetic Calculations in trade, taxation, and the recording of time Organising military affairs The need to record calculations on paper led to widespread adoption of different arithmetic by the 15th century.
  • 10. Early Arithmetic 37 × 11 and you don’t know place value arithmetic?
  • 11. Early Arithmetic 23÷ 4 and you don’t know place value arithmetic?
  • 12. Indo-Arabic Arithmetic 37 × 11 and you know place value arithmetic? 23÷ 4 and you know place value arithmetic? In the first example notice the use of 0 as place value: the 0 in 407 signifies zero=no tens. Also multiplication proceeds Right to Left. Division in reverse.
  • 13. A feature of the Hindu-Arabic Numerals There is direct evidence that the original Hindu numerals were meant to be used in two ways. Either in the Left-Right orientation: Increase in place value L to R 213 = 2 + 10 + 300 Or the Right-left orientation: Increase in place value R to L 213 = 200+ 10 + 3 See A.K. Bag: Mathematics in Ancient and Medieval India, Chaukhamba Orientalia, 1976, Delhi
  • 14. A feature of the Indo-Arabic Numerals Islamic mathematicians adopted the Indian system and transmitted it Westwards. Arabic being written in the right-left orientation is probably the reason why the right-left orientation is universally used.
  • 15. The 1835 painting by Turner depicts .........the houses of parliament burning in 1834 Resistance to the new arithmetic … tally sticks were in use until the 19th century …. The fire indirectly due to the enormous tally sticks kept in the houses.
  • 16. The 1835 painting by Turner Charles Dickens commented at the time: "... it took until 1826 to get these sticks abolished. ….In 1834 there was a considerable accumulation of them. The sticks were housed in Westminster…… and so the order went out that they should be privately and confidentially burned. It came to pass that they were burned in a stove in the House of Lords. The stove, overgorged with these preposterous sticks, set fire to the panelling; the panelling set fire to the House of Commons; the two houses were reduced to ashes"
  • 17. Anecdotes from the history of mathematics : Ways of selling mathematics 2. Algebra
  • 18. First - a puzzle: What has bone setting got to do with algebra?
  • 19. Key developments in ancient and medieval algebra Extraction of square roots Method for solution of practical problems Method for approximate solutions of these problems
  • 20. Some problems of ancient and medieval times that required algebra. Right angled triangles. Length of the hypotenuse. Implied the need to extract square roots.
  • 21. Extracting square roots - The Babylonian method Step 1 Given a non-square number N find a number a such that a2 is near N. Step 2Then set b = |N – a2|andc = b/2a Step 3N  a + c if a2 < N; N  a – c otherwise Example N = 2 Step 1. Choose a =17/12 Step 2. Then b = 289/144 –2 = 1/144 and c = 1/144  34/12 = 1/(1234) Step 3 2 = 17/12 - 1/(1234) = 1.414215686…
  • 22. Solving simple equations – Early generalisations The rule of three. To find the cost multiply the fruit by the requisition, and divide the resulting product by the argument. Example 1. If A = 6[the argument] books cost F = 12 units [the fruit], what will R = 10 [requisition] books cost? Rule of 3 Cost = F× R = 12 × 10 = 20 units A 6
  • 23. Solving quadratic equations: Al Khwarizmi(820) and Pedro Nunes (1567) The Fourth rule: x2 +10x = 50 Make a square with x and half the number of things. (x+5)2 = 25 + 50 x= √75 - 5 number 5 x number of things Half the number of things 5 5x 25 Picture (x+5)2 -25 = 50 (x + half the number of things) squared = square of (half the number of things) placed next to the number. 5x x2 x To find x subtract from the root half the number of things
  • 24. Cubic equations – Jamshid al Kashi (15th century AD) Problem from antiquity: Find sin 10. Al Kashiknew sin 30 ≈ 0.0523359562429448 and that sin 3 = 3sin  – 4sin3 . sin 30 = 3sin 10 – 4sin3 10 If x = sin 10 then 3x – 4x3 = 0.0523359562429448 Re-arranging gives x = (0.0523359562429448 + 4x3)/3 1st approximation x0 = 0.016 2nd approximation x1 = (0.0523359562429448 + 4x03)/3 = 0.0174507800809816 3rd approximation x2 = (0.0523359562429448 + 4x13)/3 =0.0174524044560038
  • 25. al-Kashi‘s fixed point iteration This is exactly the fixed-point iteration used in post 16 mathematics. x = g(x) In the example g(x) = (0.0523359562429448 + 4x3)/3 y = x y = g(x) Location of exact root x1 x2 x3
  • 26. What has bone setting got to do with algebra? Al-Khwarizmi wrote the first treatise on algebra: Hisab al-jabr w’al-muqabala in 820 AD. The word algebra is a corruption of al-jabr which means restoration. In Spain, where the Arabs held sway for a long period, there arose a profession of ‘algebrista’s’ who dealt in bone setting.
  • 27. What has bone setting got to do with algebra? álgebra. Del lat. tardío algebra, y este abrev. del ár. clás. algabru walmuqabalah, reducción y cotejo. 1. f. Parte de las matemáticas en la cual las operaciones aritméticas son generalizadas empleando números, letras y signos. 2. f. desus. Arte de restituir a su lugar los huesos dislocados Translation: the art of restoring broken bones to their correct positions
  • 28. Anecdotes from the history of mathematics : Ways of selling mathematics 3. Geometry: the mother of algebra
  • 29. How do these paintings show how geometry influenced art? Pietro Perugino fresco at the Sistine Chapel (1481) Melchior Broederlam(c1394)
  • 30. Some features in the development of Geometry Practical knowledge for construction of buildings Practical knowledge for patterning and art Generalisation of geometry Axiomatic deductive geometry
  • 31. Practical geometry in real life The 3, 4, 5 rope for ensuring a right angle in building construction – ropes. Artisans in ancient and medieval times used a loop of rope of length 12 units knotted at 3 and 4 units to ensure a right angle was formed. 5 3 4
  • 32. Practical calculation of areas – the quadrilateral The surveyors rule - first evidenced in Babylonian mathematics (c 2000 BC) – for calculating the area of a quadrilateral. Walk along the 4 sides a, b, c, and d – measure – substitute into the formula. The formula gives exact area only in the case of a rectangle. In all other cases it is an overestimate. a b d c
  • 33. Greek Geometry - Euclid Euclid (c. 300 BC) theorised geometry deriving results using axioms and deductive logic in a series of 13 books called the Elements. One such axiom is that an isosceles triangles has equal angles opposite the equal sides. A long line of non-Greek, mainly Islamic, scholars called Euclidisi’s kept the Elements alive by manually producing editions of the work after Greek culture fell in decay.
  • 34. The importance of Euclid and Greek geometry Greek geometry was constructed in a culture of democracy where all issues were subject to debate. Greek geometry naturally followed this tradition of having to argue the case against all sceptics. It could be argued that this democratic, intellectual feature enabled Euclidean geometry to plant itself in foreign soil and, therefore, survive long after the decline of Greek culture.
  • 35. Geometry of plane patterns - tessellations Just how does a builder make a pattern that repeats in order to tile a floor or a wall? North African geometers between the 8th and 16th centuries worked out that there were just 17 different types of tessellations A result mathematically proved only in 1935. Four of the 17 possibilities are depicted in these pictures of tilings from the Alhambra in Granada, Spain (all 17 are to be found there). P3 P4 P6M P4G
  • 36. Geometry the mother of algebra There are just 7 types of frieze patterns The realisation that Islamic geometers had given structure to patterns in the plane motivated 19th and 20th century mathematicians algebriasing geometry. The study of geometric symmetry directly leads to methods for the solutions of polynomials – Galois Theory.
  • 37. Geometrical perspective – how geometry influenced art Filippo Brunelleschi (1377 –1446 ) discovered theory of perspective. Essentially in parallel lines on a horizontal plane depicted in the vertical plane meet – at the vanishing point. Only objects in perspective look realistic. Cuboid with 1 vanishing point
  • 38. Pietro Perugino’s fresco clearly shows perspective. While Broederlam’s painting does not look natural … parallel lines in the painting meet at different points. Melchior Broederlam(c1394) Pietro Perugino fresco (1481)
  • 39. Anecdotes from the history of mathematics : Ways of selling mathematics 4. Who said calculus was hard?
  • 40. What has a piece of string go to do with calculus?
  • 41. Some key points in the history of calculus Early work on integration; calculation of areas and volumes The realisation that integration means sum of power series The conquest of infinity: summation of infinite terms Calculation of lengths of curved lines
  • 42. Integration: the determination of lengths, areas and volumes. Early Integration. Archimedes (c 225 BC) approximated the length of a circle and, hence, of π by approximating a circle by inscribed and circumscribed regular polygons. Using one of 96 sides he found π is between 223⁄71 and 22⁄7. So π ~ 3.1419. Tsu Ch’ung Chi c.430 - c.501) did the same thing reputedly using a polygon of 24,576 sides thereby computing the value of πcorrect to 6 d.p.
  • 43. Early Integration of area under a curve – the technical problem The area A under the curve y=xkbetween 0 and n is approximated by the areas of the rectangles, each of width1 and height given by xk A ≈ 1k+ 2k + 3k + ……(n-1)k + nk Need to be able to sum powers of integers. Archimedes and Ibn al Haytam (965-1039) were able to do this for some values of n. Later (12th -14th centuries) al Samawal (Iraq), Zhu Shijie (China), and Narayana Pandit (India) for general values of n. y= xk
  • 44. Early Integration of area under a curve – Better approximations The area A under the curve y=xkbetween 0 and 1is approximated by the areas of the rectangles, each of width1/nand height given by xk A ≈ 1k + 2k + 3k + ……(n-1)k + nk nk+1 As n ->∞ the sum on the left becomes the exact area. The first appearance of a solution (A= 1/(k+1) ) was in 1530 – in the Yuktibhasa of Jyesthadeva. Later tackled in the 17th century by Fermat, Pascal, Wallis, etc. y=xk
  • 45. Infinity conquered – the calculation of the derivative Derivative at P =gradient of tangent at P P f(x) Derivative = f(x-h) x - h x Newton and Leibniz independently discovered the generalised method late 17th century
  • 46. Historical problems that gave rise to the calculus. Arc length calculation: Approximate small sections of arc by straight lines. What happens as the sections get smaller and smaller?
  • 47. Arc length calculation using the calculus Each arc segment ≈ (dx2 + dy2)1/2 = (1 + [dy/dx]2)1/2 ×dx So the total arc length ≈ Sum of all (1 + [dy/dx]2)1/2 ×dx’ s = ∫ (1 + [dy/dx]2)1/2 dx A2 A3 y A4 dy =y2-y1 A1 dx An x xn x1 x4 x2 x3
  • 48. What has a piece of string go to do with calculus? In the primary classroom one may see curved length calculation as follows: lay a piece of string along the curve, mark the ends of the curve along it, straighten the string, and then measure the marked length.
  • 49. What has a piece of string go to do with calculus? Lay a piece of string along the curve, mark the ends of the curve along it, straighten the string, and then measure the marked length. This is essentially the principle employed in the deriving the arc length formula This was also a principle used in ancient mathematics. Good mathematics is when you first simplify the problem to easily deduce the solution and then develop the solution for the complex case.
  • 50. Anecdotes from the history of mathematics : Ways of selling mathematics 5. Using one’s imagination
  • 51. What has special effects in the cinema got to do with mathematics? Source of fractal pictures: www.comp.dit.ie/
  • 52. Using imagination - i the complex square root of -1 What kind of pictures would arise from repeatedly applying a function of the complex numbers? These imaginings were that of Gaston Julia in 1915 and the resulting pictures were called Julia sets. Julia sets had noconceived applications at the Time and these later gave rise to Fractal Geometry. The picture from repeatedly applying z  z2 + i.
  • 53. Fractal Geometry in the classroom: The van Koch snowflake The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre.
  • 54. Fractal Geometry: The van Koch snowflake at stage 2 The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre.
  • 55. Fractal Geometry: The van Koch snowflake at stage 3 The mapping to be applied repeatedly: Rotate every equilateral triangle by 600about its centre. v
  • 56. Development of a van Koch snowflake fractal Observe: Each stellation is congruent to the original equilateral triangle
  • 57. An application of fractal geometry The van Koch snowflake fractal has the amazing property that its perimeter tends to infinity while its area is finite [certainly less than the area of the bounding rectangle containing it]. This is the perfect design for antennae for mobile phone and microwave communications. Source of fractal antenna picture: Wikipedia
  • 58. Fractal imagery using computers Beniot Mandelbrot, the mathematician who gave fractal geometry impetus by using computers, said: “Clouds are not spheres, mountains are not cones, coastlines are not circles and bark is not smooth, nor does lightning travel in a straight line.” Picture of a fern leaf computer generated using Fractals
  • 59. What has special effects in the cinema got to do with mathematics? These pictures show the use of fractals in computer generated imagery in the cinema. Source of fractal pictures: www.comp.dit.ie/
  • 60. Anecdotes from the history of mathematics : Ways of selling mathematics 6. Using one’s imagination 2
  • 61. What has the auto-focus in your camera got to do with mathematics?
  • 62. TWO VALUED LOGIC At the turn of the last century mathematics was defined by the 23 problems posed by the German mathematician David Hilbert. Hilbert’s problems were preponderantly about proving conjectures. That is, they were entirely to do with pure mathematics where 2 valued logic reigns: either a statement is true (1) or it is false (0).
  • 63. FUZZY LOGIC: The rise of the imaginative maverick In 1965 a computer scientist by the name of Lofti Zadeh proposed an infinite valued logic. The logic would take any value x in the range 0 ≤ x ≤ 1 This was called FUZZY LOGIC.
  • 64. FUZZY LOGIC Fuzzy logic was not an abstract phenomenon. Zadeh knew it could be applied from the outset. “Well, I knew it was going to be important. That much I knew. In fact, I had thought about sealing it in a dated envelope with my predictions and then opening it 20-30 years later to see if my intuitions were right. I used to think about it this way: that one day Fuzzy Logic would turn out to be one of the most important things to come out of our Electrical Engineering Computer Systems Division at Berkeley.”
  • 65. APPLICATIONS OF FUZZY LOGIC CLIMATE CONTROL: To keep the temperature in the operating theatre constant the control device has to direct the heating or cooling to come on when the temperature changes. The question is: how much does the room have to cool down (or heat up) before the heating (or cooling) comes on? What should the device do if it is ‘warm’? To enable this the temperature has 3 truth values: 0.8 = a bit cold; 0.2 = a little warm; and 0 = hot. Other temperatures will give different values to the 3 functions. Depending on the (infinite) triplets of values the control device can activate heating or cooling or neither. 1 Hot Cool Warm 0
  • 66. The success of Fuzzy Logic.Amongst hundreds of industrial applications of Fuzzy Logic are the following: Handwriting recognition by computers (Sony) Medicine technology: cancer diagnosis (Kawasaki Medical School) Back light control for camcorders (Sanyo) Single button control for washing-machines (Matsushita) Voice Recognition (CSK, Hitachi, Ricoh) Improved fuel-consumption for automobiles (Nippon Tools) Source: http://www.esru.strath.ac.uk/Reference/concepts/fuzzy/fuzzy_appl.10.htm
  • 67. What has digital camera auto-focus got to do with mathematics? Most people put their digital cameras on auto focus mode. But how does the camera knows what to focus on? Is it the necessarily the object you are trying to photograph? Is this object the nearest in the field of vision? Etc? The camera uses Fuzzy logic to make assumptions on behalf of the owner. Occasionally the choice is to focus on the object closest to the centre of the viewer. On other occasions it focuses on the object closest to the camera. The margins of error are acceptable for the non-expert camera user whose concern is album pictures. Fuzzy logic enables a digital camera to focus on the right object more often than not