SlideShare une entreprise Scribd logo
1  sur  46
Chapter 8 Switching Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Figure 8.1  Switched network
Figure 8.2  Taxonomy of switched networks
8-1  CIRCUIT-SWITCHED NETWORKS A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM. Three Phases Efficiency Delay Circuit-Switched Technology in Telephone Networks Topics discussed in this section:
A circuit-switched network is made of a set of switches connected by physical links, in which  each link is  divided into  n  channels. Note
Figure 8.3  A trivial circuit-switched network
In circuit switching, the resources need to be  reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase. Note
As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections. Example 8.1
Figure 8.4  Circuit-switched network used in Example 8.1
As another example, consider a circuit-switched network that connects computers in two remote offices of a private company. The offices are connected using a T-1 line leased from a communication service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For each switch, four output ports are folded into the input ports to allow communication between computers in the same office. Four other output ports allow communication between the two offices. Figure 8.5 shows the situation. Example 8.2
Figure 8.5  Circuit-switched network used in Example 8.2
Figure 8.6  Delay in a circuit-switched network
Switching at the physical layer in the traditional telephone network uses the circuit-switching approach. Note
8-2  DATAGRAM NETWORKS In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol. Routing Table Efficiency Delay Datagram Networks in the Internet Topics discussed in this section:
In a packet-switched network, there  is no resource reservation; resources are allocated on demand. Note
Figure 8.7  A datagram network with four switches (routers)
Figure 8.8  Routing table in a datagram network
A switch in a datagram network uses a routing table that is based on the destination address. Note
The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet. Note
Figure 8.9  Delay in a datagram network
Switching in the Internet is done by using the datagram approach  to packet switching at  the network layer. Note
8-3  VIRTUAL-CIRCUIT NETWORKS A virtual-circuit network is a cross between a circuit-switched network and a datagram network. It has some characteristics of both. Addressing Three Phases Efficiency Delay Circuit-Switched Technology in WANs Topics discussed in this section:
Figure 8.10  Virtual-circuit network
Figure 8.11  Virtual-circuit identifier
Figure 8.12  Switch and tables in a virtual-circuit network
Figure 8.13  Source-to-destination data transfer in a virtual-circuit network
Figure 8.14  Setup request in a virtual-circuit network
Figure 8.15  Setup acknowledgment in a virtual-circuit network
In virtual-circuit switching, all packets belonging to the same source and  destination travel the same path; but the packets  may arrive at the destination with different delays  if resource allocation is on demand. Note
Figure 8.16  Delay in a virtual-circuit network
Switching at the data link layer in a switched WAN is normally implemented by using  virtual-circuit techniques. Note
8-4  STRUCTURE OF A SWITCH We use switches in circuit-switched and packet-switched networks. In this section, we discuss the structures of the switches used in each type of network. Structure of Circuit Switches Structure of Packet Switches Topics discussed in this section:
Figure 8.17  Crossbar switch with three inputs and four outputs
Figure 8.18  Multistage switch
In a three-stage switch, the total  number of crosspoints is  2kN + k(N/n) 2 which is much smaller than the number of crosspoints in a single-stage switch (N 2 ). Note
Design a three-stage, 200 × 200 switch (N = 200) with  k = 4 and n = 20. Solution In the first stage we have N/n or 10 crossbars, each of size 20 × 4. In the second stage, we have 4 crossbars, each of size 10 × 10. In the third stage, we have 10 crossbars, each of size 4 × 20. The total number of crosspoints is 2kN + k(N/n) 2 , or  2000  crosspoints. This is 5 percent of the number of crosspoints in a single-stage switch (200 × 200 = 40,000). Example 8.3
According to the Clos criterion: n  = (N/2) 1/2 k  > 2 n  – 1 Crosspoints ≥  4N [(2N) 1/2  – 1] Note
Redesign the previous three-stage, 200 × 200 switch, using the Clos criteria with a minimum number of crosspoints. Solution We let n = (200/2) 1/2 , or n = 10. We calculate k = 2n − 1 = 19. In the first stage, we have 200/10, or 20, crossbars, each with 10 × 19 crosspoints. In the second stage, we have 19 crossbars, each with 10 × 10 crosspoints. In the third stage, we have 20 crossbars each with 19 × 10 crosspoints. The total number of crosspoints is 20(10 × 19) + 19(10 × 10) + 20(19 ×10) =  9500 . Example 8.4
Figure 8.19  Time-slot interchange
Figure 8.20  Time-space-time switch
Figure 8.21  Packet switch components
Figure 8.22  Input port
Figure 8.23  Output port
Figure 8.24  A banyan switch
Figure 8.25  Examples of routing in a banyan switch
Figure 8.26  Batcher-banyan switch

Contenu connexe

Tendances (20)

Chapter 7: Transmission Media
Chapter 7: Transmission MediaChapter 7: Transmission Media
Chapter 7: Transmission Media
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ch12
Ch12Ch12
Ch12
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
2. data and signals
2. data and signals2. data and signals
2. data and signals
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Ch12
Ch12Ch12
Ch12
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Ch07
Ch07Ch07
Ch07
 
Ch 06
Ch 06Ch 06
Ch 06
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Chapter 25
Chapter 25Chapter 25
Chapter 25
 
Ch3 2 Data communication and networking
Ch3 2  Data communication and networkingCh3 2  Data communication and networking
Ch3 2 Data communication and networking
 
Chapter 21
Chapter 21Chapter 21
Chapter 21
 
Guided Transmission Media
Guided Transmission MediaGuided Transmission Media
Guided Transmission Media
 
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESSComputer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
 
Introduction to switching & circuit switching
Introduction to switching & circuit switchingIntroduction to switching & circuit switching
Introduction to switching & circuit switching
 
Cs8591 Computer Networks
Cs8591 Computer NetworksCs8591 Computer Networks
Cs8591 Computer Networks
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 

Similaire à Chapter 8 (20)

heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxvheloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
 
Ch08
Ch08Ch08
Ch08
 
Network switching
Network switchingNetwork switching
Network switching
 
Ppt 01 10
Ppt 01 10Ppt 01 10
Ppt 01 10
 
Lecture-8 Data Communication ~www.fida.com.bd
Lecture-8 Data Communication ~www.fida.com.bdLecture-8 Data Communication ~www.fida.com.bd
Lecture-8 Data Communication ~www.fida.com.bd
 
Ch08
Ch08Ch08
Ch08
 
Ch08
Ch08Ch08
Ch08
 
Chapter 8 switching -computer_network
Chapter 8   switching -computer_networkChapter 8   switching -computer_network
Chapter 8 switching -computer_network
 
08 Switching
08 Switching08 Switching
08 Switching
 
08-Switching.ppt
08-Switching.ppt08-Switching.ppt
08-Switching.ppt
 
Ch8 Switching.pdf
Ch8 Switching.pdfCh8 Switching.pdf
Ch8 Switching.pdf
 
Data Communication and Computer Networks
Data Communication and Computer NetworksData Communication and Computer Networks
Data Communication and Computer Networks
 
Swiching
SwichingSwiching
Swiching
 
Ch08
Ch08Ch08
Ch08
 
Unit_I - 5
Unit_I - 5Unit_I - 5
Unit_I - 5
 
Ch08
Ch08Ch08
Ch08
 
Chapter10 switching
Chapter10 switchingChapter10 switching
Chapter10 switching
 
2b switching in networks
2b switching in networks2b switching in networks
2b switching in networks
 
Switching
SwitchingSwitching
Switching
 
Palermo serial io_overview
Palermo serial io_overviewPalermo serial io_overview
Palermo serial io_overview
 

Plus de Faisal Mehmood (20)

Indoor Comfort Index Monitoring System using KNN algorithm
Indoor Comfort Index Monitoring System using KNN algorithmIndoor Comfort Index Monitoring System using KNN algorithm
Indoor Comfort Index Monitoring System using KNN algorithm
 
Raspberry pi and Google Cloud
Raspberry pi and Google CloudRaspberry pi and Google Cloud
Raspberry pi and Google Cloud
 
Raspberry pi and Azure
Raspberry pi and AzureRaspberry pi and Azure
Raspberry pi and Azure
 
Raspberry pi and AWS
Raspberry pi and AWSRaspberry pi and AWS
Raspberry pi and AWS
 
Raspbian Noobs
Raspbian NoobsRaspbian Noobs
Raspbian Noobs
 
Lecture 44
Lecture 44Lecture 44
Lecture 44
 
Lecture 37 cond prob
Lecture 37 cond probLecture 37 cond prob
Lecture 37 cond prob
 
Lecture 20 combinatorics o
Lecture 20 combinatorics oLecture 20 combinatorics o
Lecture 20 combinatorics o
 
Lecture 36 laws of prob
Lecture 36 laws of probLecture 36 laws of prob
Lecture 36 laws of prob
 
Lecture 36
Lecture 36 Lecture 36
Lecture 36
 
Lecture 35 prob
Lecture 35 probLecture 35 prob
Lecture 35 prob
 
Lecture 27
Lecture 27Lecture 27
Lecture 27
 
Lecture 26
Lecture 26Lecture 26
Lecture 26
 
Lecture 25
Lecture 25Lecture 25
Lecture 25
 
Lecture 24
Lecture 24Lecture 24
Lecture 24
 
Lecture 22
Lecture 22Lecture 22
Lecture 22
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
Lecture 20
Lecture 20Lecture 20
Lecture 20
 
Lecture 19 counting
Lecture 19 countingLecture 19 counting
Lecture 19 counting
 
Lecture 18 recursion
Lecture 18 recursionLecture 18 recursion
Lecture 18 recursion
 

Dernier

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 

Dernier (20)

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 

Chapter 8

  • 1. Chapter 8 Switching Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. Figure 8.1 Switched network
  • 3. Figure 8.2 Taxonomy of switched networks
  • 4. 8-1 CIRCUIT-SWITCHED NETWORKS A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM. Three Phases Efficiency Delay Circuit-Switched Technology in Telephone Networks Topics discussed in this section:
  • 5. A circuit-switched network is made of a set of switches connected by physical links, in which each link is divided into n channels. Note
  • 6. Figure 8.3 A trivial circuit-switched network
  • 7. In circuit switching, the resources need to be reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase. Note
  • 8. As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections. Example 8.1
  • 9. Figure 8.4 Circuit-switched network used in Example 8.1
  • 10. As another example, consider a circuit-switched network that connects computers in two remote offices of a private company. The offices are connected using a T-1 line leased from a communication service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For each switch, four output ports are folded into the input ports to allow communication between computers in the same office. Four other output ports allow communication between the two offices. Figure 8.5 shows the situation. Example 8.2
  • 11. Figure 8.5 Circuit-switched network used in Example 8.2
  • 12. Figure 8.6 Delay in a circuit-switched network
  • 13. Switching at the physical layer in the traditional telephone network uses the circuit-switching approach. Note
  • 14. 8-2 DATAGRAM NETWORKS In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol. Routing Table Efficiency Delay Datagram Networks in the Internet Topics discussed in this section:
  • 15. In a packet-switched network, there is no resource reservation; resources are allocated on demand. Note
  • 16. Figure 8.7 A datagram network with four switches (routers)
  • 17. Figure 8.8 Routing table in a datagram network
  • 18. A switch in a datagram network uses a routing table that is based on the destination address. Note
  • 19. The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet. Note
  • 20. Figure 8.9 Delay in a datagram network
  • 21. Switching in the Internet is done by using the datagram approach to packet switching at the network layer. Note
  • 22. 8-3 VIRTUAL-CIRCUIT NETWORKS A virtual-circuit network is a cross between a circuit-switched network and a datagram network. It has some characteristics of both. Addressing Three Phases Efficiency Delay Circuit-Switched Technology in WANs Topics discussed in this section:
  • 23. Figure 8.10 Virtual-circuit network
  • 24. Figure 8.11 Virtual-circuit identifier
  • 25. Figure 8.12 Switch and tables in a virtual-circuit network
  • 26. Figure 8.13 Source-to-destination data transfer in a virtual-circuit network
  • 27. Figure 8.14 Setup request in a virtual-circuit network
  • 28. Figure 8.15 Setup acknowledgment in a virtual-circuit network
  • 29. In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand. Note
  • 30. Figure 8.16 Delay in a virtual-circuit network
  • 31. Switching at the data link layer in a switched WAN is normally implemented by using virtual-circuit techniques. Note
  • 32. 8-4 STRUCTURE OF A SWITCH We use switches in circuit-switched and packet-switched networks. In this section, we discuss the structures of the switches used in each type of network. Structure of Circuit Switches Structure of Packet Switches Topics discussed in this section:
  • 33. Figure 8.17 Crossbar switch with three inputs and four outputs
  • 34. Figure 8.18 Multistage switch
  • 35. In a three-stage switch, the total number of crosspoints is 2kN + k(N/n) 2 which is much smaller than the number of crosspoints in a single-stage switch (N 2 ). Note
  • 36. Design a three-stage, 200 × 200 switch (N = 200) with k = 4 and n = 20. Solution In the first stage we have N/n or 10 crossbars, each of size 20 × 4. In the second stage, we have 4 crossbars, each of size 10 × 10. In the third stage, we have 10 crossbars, each of size 4 × 20. The total number of crosspoints is 2kN + k(N/n) 2 , or 2000 crosspoints. This is 5 percent of the number of crosspoints in a single-stage switch (200 × 200 = 40,000). Example 8.3
  • 37. According to the Clos criterion: n = (N/2) 1/2 k > 2 n – 1 Crosspoints ≥ 4N [(2N) 1/2 – 1] Note
  • 38. Redesign the previous three-stage, 200 × 200 switch, using the Clos criteria with a minimum number of crosspoints. Solution We let n = (200/2) 1/2 , or n = 10. We calculate k = 2n − 1 = 19. In the first stage, we have 200/10, or 20, crossbars, each with 10 × 19 crosspoints. In the second stage, we have 19 crossbars, each with 10 × 10 crosspoints. In the third stage, we have 20 crossbars each with 19 × 10 crosspoints. The total number of crosspoints is 20(10 × 19) + 19(10 × 10) + 20(19 ×10) = 9500 . Example 8.4
  • 39. Figure 8.19 Time-slot interchange
  • 40. Figure 8.20 Time-space-time switch
  • 41. Figure 8.21 Packet switch components
  • 42. Figure 8.22 Input port
  • 43. Figure 8.23 Output port
  • 44. Figure 8.24 A banyan switch
  • 45. Figure 8.25 Examples of routing in a banyan switch
  • 46. Figure 8.26 Batcher-banyan switch