SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
Page 1 of 11
CHAPTER THREE
3. ONE DIMENSIONAL RANDOM VARIABLES
3.1 Random variable: definition and distribution function
3.2 Discrete random variables
3.3 Continuous random variables
3.4 Cumulative distribution function and its properties
3.1 Random Variable
Introduction
The theory of probability distributions is widely used in both natural and social sciences. For that
matter, the concept of random variables and distributions is the backbone of statistics.
Particularly, the area of inferential statistics is entirely dependent on this concept. In
estimation and hypotheses testing, we extensively use some commonly known distributions.
Definition: Let E be an experiment and S be a sample space associated with the experiment. A
function X that assigns to every element ∈ , a real number, ( ), is called a random
variable.The set of all possible values of the random variable X is called the range space.
Moreover, the domain of the random variable X is S.
 Random variables are real valued functions that transform each sample point of a sample space to
real numbers. Hence, random variables serve as links between outcomes of a random experiment and
real numbers. Their significance can be seen from the fact that it is theoretically easier to deal
with numbers than outcomes.
 A random variable, X, is a function that assigns a single, but variable, value to each element
of a sample space.
 A random variable, X, provides a means of assigning numerical values to experimental
outcomes.

 A random variable, X, is a numerical description of the outcomes of the experiment or a
numerical valued function defined on sample space, usually denoted by capital letters.
Page 2 of 11
Example 1: Consider the different possible orderings of boy (B) and girl (G) in four sequential
births. There are 2*2*2*2= 16 possibilities, so the sample space is:
BBBB GGBB BGBB GBBB
BBBG BGBG GBBG GGBG
BBGB BGGB GBGB GGGB
BBGG BGGG GBGG GGGG
If girl and boy are each equally likely [P(G) = P(B) = 1/2], and the gender of each child is
independent of that of the previous child, then the probability of each of these 16 possibilities is:
(1/2)(1/2)(1/2)(1/2) = 1/16.
Now count the number of girls in each set of four sequential births:
BBBB (0) GGBB (2) BGBB (1) GBBB (1)
BBBG (1) BGBG (2) GBBG (2) GGBG (3)
BBGB (1) BGGB (2) GBGB (2) GGGB (3)
BBGG (2) BGGG (3) GBGG (3) GGGG (4)
Notice that:
 each possible outcome is assigned a single numeric value,
 all outcomes are assigned numeric values, and
 the value assigned varies across the outcomes.
The count of the number of girls is a random variable:
Page 3 of 11
Where RX is the range space of X and S is the sample space.
Example 2: Consider the experiment of tossing of a fair coin once.
The sample space is S= {H, T} where H denotes the outcome ‘Head’ and T denotes the outcome
‘Tail’. So, there are two possible outcomes H or T.
Now, let the random variable X represents the outcome `Head’, then X can take the value 0 or 1.
Example 3: Suppose a single fair die is rolled once.
The sample space of this experiment constitutes six possible outcomes, S = {1, 2, 3, 4, 5, 6}
Let the random variable X denotes the event: "anumber greater than 2 occurs’. Then the
random variable can assume the values 3, 4, 5 or 6.
Probability Distribution
The probability distribution for a random variable describes how the probabilities are distributed
over the values of the random variable.
Page 4 of 11
Depending upon the numerical values it can assume, a random variable can be classified into two
major divisions.
 Discrete Random Variable and
 Continuous Random Variable
3.2. Discrete Random Variable
Definition: Let X be a random variable. If the number of possible values of X (i.e. Rx) is finite
or countably infinite, then we call X as a discrete random variable. That is, the possible values of
X may be listed as , , … , ,… In the finite case, the list terminates and in the countably
infinite case the list continues indefinitely.
Examples:
• Toss a coin times and count the number of heads.
• Number of children in a family.
• Number of car accidents per week.
• Number of defective items in a given company.
• Number of bacteria per two cubic centimeter of water.
Probability Distribution of Discrete Random Variable
Definition:
: Let X be a discrete random variable. Hence, RX consists of at most a countably
infinite number of values, , , … with each possible outcome we associate a number
( ) = ( = ) called the probability of .The probabilities ( ) for = 1,2,3, . . . , , . ..
must satisfy the following two conditions:
I. ( ) ≥ 0 for all ,
II. ∑ ( ) = 1
The function p defined above is called the probability function (or point probability
function) of the random variable X. Furthermore, the tabular arrangement of all possible
values of X with their corresponding probability is called probability distribution of X.
Example 1: Construct a probability distribution for the number of heads in tossing of a fair coin
two times.
Types of Random Variables
Page 5 of 11
Solution: The sample space of the experiment contains the following:
S = {HH, HT, TH, TT}
Let the random variable X denotes the ‘number of heads’. We then use the probability function
P(X) to assign probability to each outcome consequently; the probability distribution is given
below:
0 1 2
( ) 1/4 1/2 1/4
Notes:
a) Suppose that the discrete random variable X may assume only a finite number of values,
say , , … , . If each outcome is equally probable, then we obviously have ( ) =
( ) = ⋯ = ( ) = .
b) If X assumes a countably infinite number of values, then it is impossible to have all
outcomes equally probable. For we cannot possibly satisfy the condition ∑ P(x ) = 1
if we must have ( ) = c for all .
c) In every finite interval, there will be at most afinite number of possible values of X. if
some such interval contains none of these possible values, we assign a probability zero to
it. That is, if = { , , … , } and if no ∈ [a, b], then ( ≤ ≤ ) = 0.
3.3. Continuous Random Variable
Definition: A random variable X is said to be a continuous random variable if it assumes all
values in some interval (c,d), where c and d are real numbers.
Examples:
• Height of students at a certain college.
• Mark of a student.
• Life time of light bulbs.
• Length of time required to complete a given training.
Probability density function ( ) of continuous random variable
Page 6 of 11
A random variable X is said to be a continuous random variable if there exists a function ,
called the probability density function (pdf) of X, satisfying the following conditions:
a) ( ) ≥ 0 for all
b) ∫ ( ) = 1
c) For any ℎ − ∞ < < < ∞, ℎ ( ≤ ≤ ) = ∫ ( )
Remark:
a. P(a≤x≤b) represents the area under the graph ( or curve) of the P.d.f of f between a and b.
b
b.
. It is a consequence of the above description of X that for any specified value of X, say X0,
w
we
e h
ha
av
ve
e p
p(
(X
X=
=X
X0
0)
)=
=0
0,
, s
si
in
nc
ce
e P
P(
(X
X=
=X
X0
0)
)=
= 0
)
(
0
0

 dx
x
f
x
x
W
We
e m
mu
us
st
t r
re
ea
al
li
iz
ze
e,
, h
ho
ow
we
ev
ve
er
r,
, t
th
ha
at
t i
if
f w
we
e a
al
ll
lo
ow
w X
X t
to
o a
as
ss
su
um
me
e a
al
ll
l t
th
he
e v
va
al
lu
ue
es
s i
in
n s
so
om
me
e i
in
nt
te
er
rv
va
al
l,
, t
th
he
en
n t
th
he
e
z
ze
er
ro
o v
va
al
lu
ue
e o
of
f t
th
he
e p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y d
do
oe
es
s n
no
ot
t i
im
mp
pl
ly
y t
th
ha
at
t t
th
he
e e
ev
ve
en
nt
t i
is
s i
im
mp
po
os
ss
si
ib
bl
le
e.
. T
Th
ha
at
t i
is
s,
, z
ze
er
ro
o p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y
d
do
oe
es
s n
no
ot
t n
ne
ec
ce
es
ss
sa
ar
ri
il
ly
y i
im
mp
pl
ly
y i
im
mp
po
os
ss
si
ib
bi
il
li
it
ty
y.
. H
He
en
nc
ce
e,
, i
in
n t
th
he
e c
co
on
nt
ti
in
nu
uo
ou
us
s c
ca
as
se
e P
P(
(A
A)
)=
=0
0 d
do
oe
es
s n
no
ot
t i
im
mp
pl
ly
y
A
A=
=
.
. I
In
n v
vi
ie
ew
w o
of
f t
th
hi
is
s f
fa
ac
ct
t,
, t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g p
pr
ro
ob
ba
ab
bi
il
li
it
ti
ie
es
s a
ar
re
e a
al
ll
l t
th
he
e s
sa
am
me
e i
if
f X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m
v
va
ar
ri
ia
ab
bl
le
e.
.
P
P(
(c
c≤
≤X
X≤
≤d
d)
)=
= P
P(
(c
c≤
≤X
X
d
d)
)=
= P
P(
(c
c<
<X
X≤
≤d
d)
)=
= P
P(
(c
c<
<X
X<
<d
d)
)
C
Ca
au
ut
ti
io
on
n:
: T
Th
he
e a
ab
bo
ov
ve
e p
pr
ro
op
pe
er
rt
ty
y c
ca
an
n n
ne
ev
ve
er
r b
be
e e
ex
xt
te
en
nd
de
ed
d t
to
o t
th
he
e c
ca
as
se
e o
of
f d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
es
s.
.
E
Ex
xa
am
mp
pl
le
e 1
1:
: L
Le
et
t X
X b
be
e a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e w
wi
it
th
h p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y d
de
en
ns
si
it
ty
y f
fu
un
nc
ct
ti
io
on
n (
(P
P.
.d
d.
.f
f)
)


 


otherwise
0
1
0
if
2
)
(
x
x
x
f
a
a)
) V
Ve
er
ri
if
fy
y t
th
ha
at
t f
f i
is
s a
a P
P.
.d
d.
.f
f b
b)
) f
fi
in
nd
d P
P(
(0
0.
.5
5<
<x
x<
<0
0.
.7
75
5)
)
Probability Density Function (pdf) of Continuous Random Variables
Page 7 of 11
a
a)
) A
A f
fu
un
nc
ct
ti
io
on
n f
f i
is
s a
a P
P.
.d
d.
.f
f i
if
ff
f t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g t
tw
wo
o c
co
on
nd
di
it
ti
io
on
ns
s a
ar
re
e s
sa
at
ti
is
sf
fi
ie
ed
d
i
i)
) f
f(
(x
x)
)
0
0 a
an
nd
d i
ii
i)
) 1
)
( 




dx
x
f
I
In
n o
ou
ur
r c
ca
as
se
e,
, i
it
t i
is
s e
ea
as
si
il
ly
y o
ob
bs
se
er
rv
va
ab
bl
le
e t
th
ha
at
t f
f (
(x
x)
) 
 0
0 b
be
ec
ca
au
us
se
e 2
2x
x i
is
s a
a p
po
os
si
it
ti
iv
ve
e n
nu
um
mb
be
er
r f
fo
or
r a
al
ll
l x
x
b
be
et
tw
we
ee
en
n 0
0 a
an
nd
d 1
1.
.M
Mo
or
re
eo
ov
ve
er
r,
, f
fo
or
r o
ot
th
he
er
r v
va
al
lu
ue
es
s o
of
f x
x t
th
he
e g
gi
iv
ve
en
n f
fu
un
nc
ct
ti
io
on
n a
as
ss
su
um
me
es
s t
th
he
e v
va
al
lu
ue
e 0
0.
.
H
He
en
nc
ce
e t
th
he
e f
fi
ir
rs
st
t c
co
on
nd
di
it
ti
io
on
n i
is
s s
sa
at
ti
is
sf
fi
ie
ed
d.
. W
We
e c
ca
an
n a
al
ls
so
o s
sh
ho
ow
w t
th
he
e s
se
ec
co
on
nd
d c
co
on
nd
di
it
ti
io
on
n a
as
s u
un
nd
de
er
r.
.
1
0
1
0
0dx
2
0
f(x)dx
)
(
)
(
)
(
1
0 1
0
1
0 1
0









 
 

 










xdx
dx
dx
x
f
dx
x
f
dx
x
f
T
Th
he
er
re
ef
fo
or
re
e,
, w
we
e c
ca
an
n c
co
on
nc
cl
lu
ud
de
e t
th
ha
at
t t
th
he
e g
gi
iv
ve
en
n f
fu
un
nc
ct
ti
io
on
n i
is
s a
a P
P.
.d
d.
.f
f.
.
b
b)
) P
P (
(0
0.
.5
5<
<x
x<
<0
0.
.7
75
5)
)=
=
16
5
4
1
16
9
x
2
75
.
0
5
.
0
2
75
.
0
5
.
0




 xdx
E
Ex
xa
am
mp
pl
le
e 2
2:
: S
Su
up
pp
po
os
se
e t
th
ha
at
t X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e w
wi
it
th
h P
P.
.d
d.
.f
f


 


otherwise
0
1
x
0
if
3x
)
(
2
x
f
a
a)
) V
Ve
er
ri
if
fy
y t
th
ha
at
t f
f i
is
s a
a P
P.
.d
d.
.f
f b
b)
) P
P(
(X
X>
>1
1/
/3
3)
) c
c)
) P
P(
(1
1/
/4
4 
 x
x 
 2
2/
/3
3)
)
C
Co
on
nd
di
it
ti
io
on
na
al
l P
Pr
ro
ob
ba
ab
bi
il
li
it
ty
y i
in
n t
th
he
e C
Ca
as
se
e o
of
f C
Co
on
nt
ti
in
nu
uo
ou
us
s R
Ra
an
nd
do
om
m V
Va
ar
ri
ia
ab
bl
le
es
s
R
Re
ec
ca
al
ll
l t
th
ha
at
t f
fo
or
r t
th
he
e c
ca
as
se
e o
of
f d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
es
s t
th
he
e c
co
on
nd
di
it
ti
io
on
na
al
l p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y i
is
s g
gi
iv
ve
en
n b
by
y
)
(
)
(
)
/
(
B
P
B
A
P
B
A
P


T
Th
he
e s
sa
am
me
e f
fo
or
rm
mu
ul
la
at
ti
io
on
n h
ho
ol
ld
ds
s t
tr
ru
ue
e f
fo
or
r t
th
he
e c
ca
as
se
e o
of
f c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
es
s e
ex
xc
ce
ep
pt
t t
th
ha
at
t A
A a
an
nd
d B
B
t
ta
ak
ke
e r
ra
an
ng
ge
e o
of
f v
va
al
lu
ue
es
s (
(i
in
nt
te
er
rv
va
al
ls
s)
) r
ra
at
th
he
er
r t
th
ha
an
n d
di
is
sc
cr
re
et
te
e v
va
al
lu
ue
es
s.
.
E
Ex
xa
am
mp
pl
le
e:
: T
Th
he
e d
di
ia
am
me
et
te
er
r o
of
f a
an
n e
el
le
ec
ct
tr
ri
ic
c c
ca
ab
bl
le
e i
is
s a
as
ss
su
um
me
ed
d t
to
o b
be
e a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e,
, s
sa
ay
y
X
X,
, w
wi
it
th
h P
P.
.d
d.
.f
f


 



otherwise
0
1
0
if
)
1
(
6
)
(
x
x
x
x
f
C
Co
om
mp
pu
ut
te
e 










3
2
3
1
2
1
x
x
P
Solution
Page 8 of 11
3.4 Cumulative distribution function and its properties
D
De
ef
fi
in
ni
it
ti
io
on
n (
(C
Cu
um
mu
ul
la
at
ti
iv
ve
e D
Di
is
st
tr
ri
ib
bu
ut
ti
io
on
n F
Fu
un
nc
ct
ti
io
on
n)
) L
Le
et
t X
X b
be
e a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e (
(d
di
is
sc
cr
re
et
te
e o
or
r
c
co
on
nt
ti
in
nu
uo
ou
us
s)
).
. T
Th
he
e f
fu
un
nc
ct
ti
io
on
n F
F t
th
ha
at
t i
is
s d
de
ef
fi
in
ne
ed
d a
as
s
F
F(
(x
x)
) =
= P
P[
[X
X
x
x]
]
i
is
s c
ca
al
ll
le
ed
d t
th
he
e c
cu
um
mu
ul
la
at
ti
iv
ve
e d
di
is
st
tr
ri
ib
bu
ut
ti
io
on
n f
fu
un
nc
ct
ti
io
on
n (
(C
Cd
df
f)
) o
of
f t
th
he
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X.
.
N
No
ot
ta
at
ti
io
on
n:
: C
Cu
um
mu
ul
la
at
ti
iv
ve
e d
di
is
st
tr
ri
ib
bu
ut
ti
io
on
n f
fu
un
nc
ct
ti
io
on
n i
is
s u
us
su
ua
al
ll
ly
y d
de
en
no
ot
te
ed
d b
by
y u
up
pp
pe
er
r c
ca
as
se
e a
al
lp
ph
ha
ab
be
et
ts
s.
.
T
Th
he
eo
or
re
em
ms
s
1
1.
. I
If
f X
X i
is
s a
a d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e,
, t
th
he
en
n
x
x
p
x
F
j
j 
  j
x
all
for
)
(
)
(
2
2.
. I
If
f X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e,
, t
th
he
en
n

x


 ds
s
f
x
F )
(
)
(
E
Ex
xa
am
mp
pl
le
e 1
1:
: L
Le
et
t S
S=
={
{H
H,
,T
T}
} a
an
nd
d X
X:
: t
th
he
e n
nu
um
mb
be
er
r o
of
f h
he
ea
ad
ds
s.
.
C
Cl
le
ea
ar
rl
ly
y,
, X
X i
is
s a
a d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e.
. S
Si
in
nc
ce
e P
P(
(x
x=
=0
0)
)=
=1
1/
/2
2=
=P
P(
(x
x=
=1
1)
),
, w
we
e h
ha
av
ve
e










1
x
if
1
1
x
0
if
2
/
1
0
X
if
0
)
(x
F
E
Ex
xa
am
mp
pl
le
e 2
2:
: S
Su
up
pp
po
os
se
e t
th
ha
at
t a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X a
as
ss
su
um
me
es
s t
th
he
e s
si
ix
x v
va
al
lu
ue
es
s 1
1,
, 2
2,
, 3
3,
, 4
4,
, 5
5,
, 6
6 w
wi
it
th
h
p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y 1
1/
/6
6.
. T
Th
he
en
n,
,
























6
x
if
1
6
x
5
if
5/6
5
x
4
if
4/6
4
x
3
if
3/6
3
2
if
2/6
2
x
1
if
6
/
1
1
X
if
0
)
(
x
x
F
Page 9 of 11
E
Ex
xa
am
mp
pl
le
e 3
3:
: F
Fi
in
nd
d t
th
he
e c
cd
df
f o
of
f t
th
he
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X w
wh
ho
os
se
e P
P.
.d
d.
.f
f i
is
s g
gi
iv
ve
en
n b
by
y











Otherwise
0
2
x
1
if
2
1
x
0
if
x
)
( x
x
f
S
So
ol
lu
ut
ti
io
on
n:
:

















2
2
1
1
0
0
)
(
)
(
)
(
)
(
)
(
)
(
F(x) dt
t
f
dt
t
f
dt
t
f
dt
t
f
dt
t
f
x
X
P
x
C
Ca
as
se
e 1
1:
: F
Fo
or
r x
x
0
0
0
0
)
(
F(x) 
 






x
x
dt
dt
t
f
C
Ca
as
se
e 2
2:
: F
Fo
or
r 0
0
 x
x 
 1
1
2
2
t
0
)
(
)
(
)
(
)
(
F(x)
2
0
2
0
0
0
x
tdt
dt
t
f
dt
t
f
dt
t
f
x
X
P
x
x
x
x








 


 



C
Ca
as
se
e 3
3:
: F
Fo
or
r 1
1
 x
x 
 2
2
1
2
2
2
2
2
1
2
2
t
0
)
(
)
(
)
(
)
(
)
(
F(x)
2
1
2
1
1
0
2
1
0 1
0























 
 

 



x
x
x
x
x
dt
t
f
dt
t
f
dt
t
f
dt
t
f
x
X
P
x
x
x
x
C
Ca
as
se
e 4
4:
: F
Fo
or
r x
x>
>2
2
1
0
2
3
2
2
1
0
2
2
2
t
0
)
(
)
(
)
(
)
(
)
(
)
(
F(x)
2
2
1
2
1
0
2
2
1
0
2
1
0

































 

 



x
x
x
dt
x
x
dt
t
f
dt
t
f
dt
t
f
dt
t
f
dt
t
f
x
X
P
T
Th
he
er
re
ef
fo
or
re
e,
, t
th
he
e c
cd
df
f o
of
f X
X b
be
ec
co
om
me
es
s,
,
Page 10 of 11
















2
x
if
1
2
x
1
if
1
-
2
x
-
2x
1
x
0
if
2
0
x
if
0
)
( 2
2
x
x
F
E
Ex
xe
er
rc
ci
is
se
es
s:
:
1
1.
. F
Fi
in
nd
d t
th
he
e c
cd
df
f o
of
f a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X w
wh
ho
os
se
e P
P.
.d
d.
.f
f i
is
s g
gi
iv
ve
en
n b
by
y


 

Otherwise
0
0
x
if
e
)
(
-x
x
f
2
2.
. D
De
et
te
er
rm
mi
in
ne
e t
th
he
e c
cd
df
f o
of
f t
th
he
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X w
wi
it
th
h P
P.
.d
d.
.f
f



















Otherwise
0
3
2
if
2
3
2
1
-
2
x
1
if
2
1
1
x
0
if
x
2
1
)
(
x
x
x
f
P
Pr
ro
op
pe
er
rt
ti
ie
es
s o
of
f C
Cu
um
mu
ul
la
at
ti
iv
ve
e D
Di
is
st
tr
ri
ib
bu
ut
ti
io
on
n F
Fu
un
nc
ct
ti
io
on
n (
(c
cd
df
f)
) F
F
a
a)
) T
Th
he
e f
fu
un
nc
ct
ti
io
on
n F
F i
is
s a
a n
no
on
n-
-d
de
ec
cr
re
ea
as
si
in
ng
g f
fu
un
nc
ct
ti
io
on
n,
,
b
b)
) 1
)
(
lim
and
0
)
(
lim
x
x






x
F
x
F
T
Th
he
eo
or
re
em
m
I
If
f X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e,
, t
th
he
en
n w
we
e h
ha
av
ve
e )
(
)
( x
F
dx
d
x
f  .
. O
On
n t
th
he
e o
ot
th
he
er
r h
ha
an
nd
d,
, i
if
f X
X i
is
s a
a
d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e,
, t
th
he
en
n w
we
e h
ha
av
ve
e )
(
)
(
)
( 1


 j
j
j x
F
x
F
x
P .
.
P
Pr
ro
oo
of
f
C
Ca
as
se
e 1
1:
: X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e
calculus
of
theorem
l
fundamenta
the
.......by
)
(
)
(
dx
d
)
(
dx
d
)
(
)
(
x
f
dt
t
f
x
F
dt
t
f
x
F
x
x










C
Ca
as
se
e 2
2:
: X
X i
is
s a
a d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e
Page 11 of 11
)
(
)
(
)
(
)
(
)
(
)
(
...
)
(
)
(
)
(
)
(
)
(
)
(
...
)
(
)
(
)
(
)
(
1
1
2
2
1
1
1
1
2
1
x
f
x
P
x
F
x
F
x
P
x
P
x
P
x
P
x
x
P
x
F
x
P
x
P
x
P
x
P
x
x
P
x
F
j
j
j
j
j
j
j
j
j
j
j
























R
Re
em
ma
ar
rk
k:
: P
P(
(a
a
 X
X 
 b
b)
)=
=F
F(
(b
b)
)-
-F
F(
(a
a)
)
E
Ex
xa
am
mp
pl
le
e:
: S
Su
up
pp
po
os
se
e X
X i
is
s a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e w
wi
it
th
h c
cd
df
f






0
x
if
e
-
1
0
x
if
0
)
( x
-
x
F
F
Fi
in
nd
d t
th
he
e P
P.
.d
d.
.f
f o
of
f X
X.
.

Contenu connexe

Tendances

Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009
ayimsevenfold
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probability
Ranjan Kumar
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
asimnawaz54
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
Selvin Hadi
 

Tendances (17)

2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
random variables-descriptive and contincuous
random variables-descriptive and contincuousrandom variables-descriptive and contincuous
random variables-descriptive and contincuous
 
Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009
 
Use of binomial probability distribution
Use of binomial probability distributionUse of binomial probability distribution
Use of binomial probability distribution
 
Chapter4
Chapter4Chapter4
Chapter4
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Random variables and probability distributions
Random variables and probability distributionsRandom variables and probability distributions
Random variables and probability distributions
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probability
 
Probability Basics and Bayes' Theorem
Probability Basics and Bayes' TheoremProbability Basics and Bayes' Theorem
Probability Basics and Bayes' Theorem
 
Probability Assignment Help
Probability Assignment HelpProbability Assignment Help
Probability Assignment Help
 
Random variables
Random variablesRandom variables
Random variables
 
Statistics Coursework Help
Statistics Coursework HelpStatistics Coursework Help
Statistics Coursework Help
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
 
Probability Theory 9
Probability Theory 9Probability Theory 9
Probability Theory 9
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
 
Lemh1a1
Lemh1a1Lemh1a1
Lemh1a1
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 

Similaire à Ch5

Random variables and probability distributions Random Va.docx
Random variables and probability distributions Random Va.docxRandom variables and probability distributions Random Va.docx
Random variables and probability distributions Random Va.docx
catheryncouper
 
Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...
Asma CHERIF
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
BhojRajAdhikari5
 

Similaire à Ch5 (20)

Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdf
 
Discussion about random variable ad its characterization
Discussion about random variable ad its characterizationDiscussion about random variable ad its characterization
Discussion about random variable ad its characterization
 
CHAPTER I- Part 1.pptx
CHAPTER I- Part 1.pptxCHAPTER I- Part 1.pptx
CHAPTER I- Part 1.pptx
 
ISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptxISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptx
 
random variation 9473 by jaideep.ppt
random variation 9473 by jaideep.pptrandom variation 9473 by jaideep.ppt
random variation 9473 by jaideep.ppt
 
CH6.pdf
CH6.pdfCH6.pdf
CH6.pdf
 
Random variables and probability distributions Random Va.docx
Random variables and probability distributions Random Va.docxRandom variables and probability distributions Random Va.docx
Random variables and probability distributions Random Va.docx
 
Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Chapter-6-Random Variables & Probability distributions-3.doc
Chapter-6-Random Variables & Probability distributions-3.docChapter-6-Random Variables & Probability distributions-3.doc
Chapter-6-Random Variables & Probability distributions-3.doc
 
Probability and Statistics
Probability and StatisticsProbability and Statistics
Probability and Statistics
 
Excel Homework Help
Excel Homework HelpExcel Homework Help
Excel Homework Help
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
 
Econometrics 2.pptx
Econometrics 2.pptxEconometrics 2.pptx
Econometrics 2.pptx
 
Discrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDiscrete Random Variables And Probability Distributions
Discrete Random Variables And Probability Distributions
 
Mayo Slides: Part I Meeting #2 (Phil 6334/Econ 6614)
Mayo Slides: Part I Meeting #2 (Phil 6334/Econ 6614)Mayo Slides: Part I Meeting #2 (Phil 6334/Econ 6614)
Mayo Slides: Part I Meeting #2 (Phil 6334/Econ 6614)
 
Probability[1]
Probability[1]Probability[1]
Probability[1]
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Random variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptRandom variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.ppt
 
Chapter 1 random variables and probability distributions
Chapter 1   random variables and probability distributionsChapter 1   random variables and probability distributions
Chapter 1 random variables and probability distributions
 

Plus de mekuannintdemeke

Plus de mekuannintdemeke (16)

2.1. HRP.pdf
2.1. HRP.pdf2.1. HRP.pdf
2.1. HRP.pdf
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pptCOTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdfCE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdfCOTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
 
Chapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdfChapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdf
 
Chapter -Two (3).pdf
Chapter -Two (3).pdfChapter -Two (3).pdf
Chapter -Two (3).pdf
 
Chapter -Two (2).pdf
Chapter -Two (2).pdfChapter -Two (2).pdf
Chapter -Two (2).pdf
 
CH1.pdf
CH1.pdfCH1.pdf
CH1.pdf
 
CH3.pdf
CH3.pdfCH3.pdf
CH3.pdf
 
CH2.pdf
CH2.pdfCH2.pdf
CH2.pdf
 
exercises.pdf
exercises.pdfexercises.pdf
exercises.pdf
 
Ch3
Ch3Ch3
Ch3
 
Ch2
Ch2Ch2
Ch2
 
Ch1
Ch1Ch1
Ch1
 

Dernier

+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
Health
 
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Bertram Ludäscher
 
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi ArabiaIn Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
ahmedjiabur940
 
Computer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdfComputer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdf
SayantanBiswas37
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
gajnagarg
 
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
nirzagarg
 
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
gajnagarg
 
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
nirzagarg
 

Dernier (20)

Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...
 
Fun all Day Call Girls in Jaipur 9332606886 High Profile Call Girls You Ca...
Fun all Day Call Girls in Jaipur   9332606886  High Profile Call Girls You Ca...Fun all Day Call Girls in Jaipur   9332606886  High Profile Call Girls You Ca...
Fun all Day Call Girls in Jaipur 9332606886 High Profile Call Girls You Ca...
 
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
 
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book nowVadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
 
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
 
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi ArabiaIn Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
 
Computer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdfComputer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdf
 
Statistics notes ,it includes mean to index numbers
Statistics notes ,it includes mean to index numbersStatistics notes ,it includes mean to index numbers
Statistics notes ,it includes mean to index numbers
 
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
 
Aspirational Block Program Block Syaldey District - Almora
Aspirational Block Program Block Syaldey District - AlmoraAspirational Block Program Block Syaldey District - Almora
Aspirational Block Program Block Syaldey District - Almora
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
 
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
 
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
 
Digital Transformation Playbook by Graham Ware
Digital Transformation Playbook by Graham WareDigital Transformation Playbook by Graham Ware
Digital Transformation Playbook by Graham Ware
 
Dubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls DubaiDubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls Dubai
 
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
 
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Satna [ 7014168258 ] Call Me For Genuine Models We ...
 
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
 
7. Epi of Chronic respiratory diseases.ppt
7. Epi of Chronic respiratory diseases.ppt7. Epi of Chronic respiratory diseases.ppt
7. Epi of Chronic respiratory diseases.ppt
 

Ch5

  • 1. Page 1 of 11 CHAPTER THREE 3. ONE DIMENSIONAL RANDOM VARIABLES 3.1 Random variable: definition and distribution function 3.2 Discrete random variables 3.3 Continuous random variables 3.4 Cumulative distribution function and its properties 3.1 Random Variable Introduction The theory of probability distributions is widely used in both natural and social sciences. For that matter, the concept of random variables and distributions is the backbone of statistics. Particularly, the area of inferential statistics is entirely dependent on this concept. In estimation and hypotheses testing, we extensively use some commonly known distributions. Definition: Let E be an experiment and S be a sample space associated with the experiment. A function X that assigns to every element ∈ , a real number, ( ), is called a random variable.The set of all possible values of the random variable X is called the range space. Moreover, the domain of the random variable X is S.  Random variables are real valued functions that transform each sample point of a sample space to real numbers. Hence, random variables serve as links between outcomes of a random experiment and real numbers. Their significance can be seen from the fact that it is theoretically easier to deal with numbers than outcomes.  A random variable, X, is a function that assigns a single, but variable, value to each element of a sample space.  A random variable, X, provides a means of assigning numerical values to experimental outcomes.   A random variable, X, is a numerical description of the outcomes of the experiment or a numerical valued function defined on sample space, usually denoted by capital letters.
  • 2. Page 2 of 11 Example 1: Consider the different possible orderings of boy (B) and girl (G) in four sequential births. There are 2*2*2*2= 16 possibilities, so the sample space is: BBBB GGBB BGBB GBBB BBBG BGBG GBBG GGBG BBGB BGGB GBGB GGGB BBGG BGGG GBGG GGGG If girl and boy are each equally likely [P(G) = P(B) = 1/2], and the gender of each child is independent of that of the previous child, then the probability of each of these 16 possibilities is: (1/2)(1/2)(1/2)(1/2) = 1/16. Now count the number of girls in each set of four sequential births: BBBB (0) GGBB (2) BGBB (1) GBBB (1) BBBG (1) BGBG (2) GBBG (2) GGBG (3) BBGB (1) BGGB (2) GBGB (2) GGGB (3) BBGG (2) BGGG (3) GBGG (3) GGGG (4) Notice that:  each possible outcome is assigned a single numeric value,  all outcomes are assigned numeric values, and  the value assigned varies across the outcomes. The count of the number of girls is a random variable:
  • 3. Page 3 of 11 Where RX is the range space of X and S is the sample space. Example 2: Consider the experiment of tossing of a fair coin once. The sample space is S= {H, T} where H denotes the outcome ‘Head’ and T denotes the outcome ‘Tail’. So, there are two possible outcomes H or T. Now, let the random variable X represents the outcome `Head’, then X can take the value 0 or 1. Example 3: Suppose a single fair die is rolled once. The sample space of this experiment constitutes six possible outcomes, S = {1, 2, 3, 4, 5, 6} Let the random variable X denotes the event: "anumber greater than 2 occurs’. Then the random variable can assume the values 3, 4, 5 or 6. Probability Distribution The probability distribution for a random variable describes how the probabilities are distributed over the values of the random variable.
  • 4. Page 4 of 11 Depending upon the numerical values it can assume, a random variable can be classified into two major divisions.  Discrete Random Variable and  Continuous Random Variable 3.2. Discrete Random Variable Definition: Let X be a random variable. If the number of possible values of X (i.e. Rx) is finite or countably infinite, then we call X as a discrete random variable. That is, the possible values of X may be listed as , , … , ,… In the finite case, the list terminates and in the countably infinite case the list continues indefinitely. Examples: • Toss a coin times and count the number of heads. • Number of children in a family. • Number of car accidents per week. • Number of defective items in a given company. • Number of bacteria per two cubic centimeter of water. Probability Distribution of Discrete Random Variable Definition: : Let X be a discrete random variable. Hence, RX consists of at most a countably infinite number of values, , , … with each possible outcome we associate a number ( ) = ( = ) called the probability of .The probabilities ( ) for = 1,2,3, . . . , , . .. must satisfy the following two conditions: I. ( ) ≥ 0 for all , II. ∑ ( ) = 1 The function p defined above is called the probability function (or point probability function) of the random variable X. Furthermore, the tabular arrangement of all possible values of X with their corresponding probability is called probability distribution of X. Example 1: Construct a probability distribution for the number of heads in tossing of a fair coin two times. Types of Random Variables
  • 5. Page 5 of 11 Solution: The sample space of the experiment contains the following: S = {HH, HT, TH, TT} Let the random variable X denotes the ‘number of heads’. We then use the probability function P(X) to assign probability to each outcome consequently; the probability distribution is given below: 0 1 2 ( ) 1/4 1/2 1/4 Notes: a) Suppose that the discrete random variable X may assume only a finite number of values, say , , … , . If each outcome is equally probable, then we obviously have ( ) = ( ) = ⋯ = ( ) = . b) If X assumes a countably infinite number of values, then it is impossible to have all outcomes equally probable. For we cannot possibly satisfy the condition ∑ P(x ) = 1 if we must have ( ) = c for all . c) In every finite interval, there will be at most afinite number of possible values of X. if some such interval contains none of these possible values, we assign a probability zero to it. That is, if = { , , … , } and if no ∈ [a, b], then ( ≤ ≤ ) = 0. 3.3. Continuous Random Variable Definition: A random variable X is said to be a continuous random variable if it assumes all values in some interval (c,d), where c and d are real numbers. Examples: • Height of students at a certain college. • Mark of a student. • Life time of light bulbs. • Length of time required to complete a given training. Probability density function ( ) of continuous random variable
  • 6. Page 6 of 11 A random variable X is said to be a continuous random variable if there exists a function , called the probability density function (pdf) of X, satisfying the following conditions: a) ( ) ≥ 0 for all b) ∫ ( ) = 1 c) For any ℎ − ∞ < < < ∞, ℎ ( ≤ ≤ ) = ∫ ( ) Remark: a. P(a≤x≤b) represents the area under the graph ( or curve) of the P.d.f of f between a and b. b b. . It is a consequence of the above description of X that for any specified value of X, say X0, w we e h ha av ve e p p( (X X= =X X0 0) )= =0 0, , s si in nc ce e P P( (X X= =X X0 0) )= = 0 ) ( 0 0   dx x f x x W We e m mu us st t r re ea al li iz ze e, , h ho ow we ev ve er r, , t th ha at t i if f w we e a al ll lo ow w X X t to o a as ss su um me e a al ll l t th he e v va al lu ue es s i in n s so om me e i in nt te er rv va al l, , t th he en n t th he e z ze er ro o v va al lu ue e o of f t th he e p pr ro ob ba ab bi il li it ty y d do oe es s n no ot t i im mp pl ly y t th ha at t t th he e e ev ve en nt t i is s i im mp po os ss si ib bl le e. . T Th ha at t i is s, , z ze er ro o p pr ro ob ba ab bi il li it ty y d do oe es s n no ot t n ne ec ce es ss sa ar ri il ly y i im mp pl ly y i im mp po os ss si ib bi il li it ty y. . H He en nc ce e, , i in n t th he e c co on nt ti in nu uo ou us s c ca as se e P P( (A A) )= =0 0 d do oe es s n no ot t i im mp pl ly y A A= = . . I In n v vi ie ew w o of f t th hi is s f fa ac ct t, , t th he e f fo ol ll lo ow wi in ng g p pr ro ob ba ab bi il li it ti ie es s a ar re e a al ll l t th he e s sa am me e i if f X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e. . P P( (c c≤ ≤X X≤ ≤d d) )= = P P( (c c≤ ≤X X d d) )= = P P( (c c< <X X≤ ≤d d) )= = P P( (c c< <X X< <d d) ) C Ca au ut ti io on n: : T Th he e a ab bo ov ve e p pr ro op pe er rt ty y c ca an n n ne ev ve er r b be e e ex xt te en nd de ed d t to o t th he e c ca as se e o of f d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le es s. . E Ex xa am mp pl le e 1 1: : L Le et t X X b be e a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e w wi it th h p pr ro ob ba ab bi il li it ty y d de en ns si it ty y f fu un nc ct ti io on n ( (P P. .d d. .f f) )       otherwise 0 1 0 if 2 ) ( x x x f a a) ) V Ve er ri if fy y t th ha at t f f i is s a a P P. .d d. .f f b b) ) f fi in nd d P P( (0 0. .5 5< <x x< <0 0. .7 75 5) ) Probability Density Function (pdf) of Continuous Random Variables
  • 7. Page 7 of 11 a a) ) A A f fu un nc ct ti io on n f f i is s a a P P. .d d. .f f i if ff f t th he e f fo ol ll lo ow wi in ng g t tw wo o c co on nd di it ti io on ns s a ar re e s sa at ti is sf fi ie ed d i i) ) f f( (x x) ) 0 0 a an nd d i ii i) ) 1 ) (      dx x f I In n o ou ur r c ca as se e, , i it t i is s e ea as si il ly y o ob bs se er rv va ab bl le e t th ha at t f f ( (x x) )   0 0 b be ec ca au us se e 2 2x x i is s a a p po os si it ti iv ve e n nu um mb be er r f fo or r a al ll l x x b be et tw we ee en n 0 0 a an nd d 1 1. .M Mo or re eo ov ve er r, , f fo or r o ot th he er r v va al lu ue es s o of f x x t th he e g gi iv ve en n f fu un nc ct ti io on n a as ss su um me es s t th he e v va al lu ue e 0 0. . H He en nc ce e t th he e f fi ir rs st t c co on nd di it ti io on n i is s s sa at ti is sf fi ie ed d. . W We e c ca an n a al ls so o s sh ho ow w t th he e s se ec co on nd d c co on nd di it ti io on n a as s u un nd de er r. . 1 0 1 0 0dx 2 0 f(x)dx ) ( ) ( ) ( 1 0 1 0 1 0 1 0                           xdx dx dx x f dx x f dx x f T Th he er re ef fo or re e, , w we e c ca an n c co on nc cl lu ud de e t th ha at t t th he e g gi iv ve en n f fu un nc ct ti io on n i is s a a P P. .d d. .f f. . b b) ) P P ( (0 0. .5 5< <x x< <0 0. .7 75 5) )= = 16 5 4 1 16 9 x 2 75 . 0 5 . 0 2 75 . 0 5 . 0      xdx E Ex xa am mp pl le e 2 2: : S Su up pp po os se e t th ha at t X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e w wi it th h P P. .d d. .f f       otherwise 0 1 x 0 if 3x ) ( 2 x f a a) ) V Ve er ri if fy y t th ha at t f f i is s a a P P. .d d. .f f b b) ) P P( (X X> >1 1/ /3 3) ) c c) ) P P( (1 1/ /4 4   x x   2 2/ /3 3) ) C Co on nd di it ti io on na al l P Pr ro ob ba ab bi il li it ty y i in n t th he e C Ca as se e o of f C Co on nt ti in nu uo ou us s R Ra an nd do om m V Va ar ri ia ab bl le es s R Re ec ca al ll l t th ha at t f fo or r t th he e c ca as se e o of f d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le es s t th he e c co on nd di it ti io on na al l p pr ro ob ba ab bi il li it ty y i is s g gi iv ve en n b by y ) ( ) ( ) / ( B P B A P B A P   T Th he e s sa am me e f fo or rm mu ul la at ti io on n h ho ol ld ds s t tr ru ue e f fo or r t th he e c ca as se e o of f c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le es s e ex xc ce ep pt t t th ha at t A A a an nd d B B t ta ak ke e r ra an ng ge e o of f v va al lu ue es s ( (i in nt te er rv va al ls s) ) r ra at th he er r t th ha an n d di is sc cr re et te e v va al lu ue es s. . E Ex xa am mp pl le e: : T Th he e d di ia am me et te er r o of f a an n e el le ec ct tr ri ic c c ca ab bl le e i is s a as ss su um me ed d t to o b be e a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e, , s sa ay y X X, , w wi it th h P P. .d d. .f f        otherwise 0 1 0 if ) 1 ( 6 ) ( x x x x f C Co om mp pu ut te e            3 2 3 1 2 1 x x P Solution
  • 8. Page 8 of 11 3.4 Cumulative distribution function and its properties D De ef fi in ni it ti io on n ( (C Cu um mu ul la at ti iv ve e D Di is st tr ri ib bu ut ti io on n F Fu un nc ct ti io on n) ) L Le et t X X b be e a a r ra an nd do om m v va ar ri ia ab bl le e ( (d di is sc cr re et te e o or r c co on nt ti in nu uo ou us s) ). . T Th he e f fu un nc ct ti io on n F F t th ha at t i is s d de ef fi in ne ed d a as s F F( (x x) ) = = P P[ [X X x x] ] i is s c ca al ll le ed d t th he e c cu um mu ul la at ti iv ve e d di is st tr ri ib bu ut ti io on n f fu un nc ct ti io on n ( (C Cd df f) ) o of f t th he e r ra an nd do om m v va ar ri ia ab bl le e X X. . N No ot ta at ti io on n: : C Cu um mu ul la at ti iv ve e d di is st tr ri ib bu ut ti io on n f fu un nc ct ti io on n i is s u us su ua al ll ly y d de en no ot te ed d b by y u up pp pe er r c ca as se e a al lp ph ha ab be et ts s. . T Th he eo or re em ms s 1 1. . I If f X X i is s a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e, , t th he en n x x p x F j j    j x all for ) ( ) ( 2 2. . I If f X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e, , t th he en n  x    ds s f x F ) ( ) ( E Ex xa am mp pl le e 1 1: : L Le et t S S= ={ {H H, ,T T} } a an nd d X X: : t th he e n nu um mb be er r o of f h he ea ad ds s. . C Cl le ea ar rl ly y, , X X i is s a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e. . S Si in nc ce e P P( (x x= =0 0) )= =1 1/ /2 2= =P P( (x x= =1 1) ), , w we e h ha av ve e           1 x if 1 1 x 0 if 2 / 1 0 X if 0 ) (x F E Ex xa am mp pl le e 2 2: : S Su up pp po os se e t th ha at t a a r ra an nd do om m v va ar ri ia ab bl le e X X a as ss su um me es s t th he e s si ix x v va al lu ue es s 1 1, , 2 2, , 3 3, , 4 4, , 5 5, , 6 6 w wi it th h p pr ro ob ba ab bi il li it ty y 1 1/ /6 6. . T Th he en n, ,                         6 x if 1 6 x 5 if 5/6 5 x 4 if 4/6 4 x 3 if 3/6 3 2 if 2/6 2 x 1 if 6 / 1 1 X if 0 ) ( x x F
  • 9. Page 9 of 11 E Ex xa am mp pl le e 3 3: : F Fi in nd d t th he e c cd df f o of f t th he e r ra an nd do om m v va ar ri ia ab bl le e X X w wh ho os se e P P. .d d. .f f i is s g gi iv ve en n b by y            Otherwise 0 2 x 1 if 2 1 x 0 if x ) ( x x f S So ol lu ut ti io on n: :                  2 2 1 1 0 0 ) ( ) ( ) ( ) ( ) ( ) ( F(x) dt t f dt t f dt t f dt t f dt t f x X P x C Ca as se e 1 1: : F Fo or r x x 0 0 0 0 ) ( F(x)          x x dt dt t f C Ca as se e 2 2: : F Fo or r 0 0  x x   1 1 2 2 t 0 ) ( ) ( ) ( ) ( F(x) 2 0 2 0 0 0 x tdt dt t f dt t f dt t f x X P x x x x                  C Ca as se e 3 3: : F Fo or r 1 1  x x   2 2 1 2 2 2 2 2 1 2 2 t 0 ) ( ) ( ) ( ) ( ) ( F(x) 2 1 2 1 1 0 2 1 0 1 0                                  x x x x x dt t f dt t f dt t f dt t f x X P x x x x C Ca as se e 4 4: : F Fo or r x x> >2 2 1 0 2 3 2 2 1 0 2 2 2 t 0 ) ( ) ( ) ( ) ( ) ( ) ( F(x) 2 2 1 2 1 0 2 2 1 0 2 1 0                                          x x x dt x x dt t f dt t f dt t f dt t f dt t f x X P T Th he er re ef fo or re e, , t th he e c cd df f o of f X X b be ec co om me es s, ,
  • 10. Page 10 of 11                 2 x if 1 2 x 1 if 1 - 2 x - 2x 1 x 0 if 2 0 x if 0 ) ( 2 2 x x F E Ex xe er rc ci is se es s: : 1 1. . F Fi in nd d t th he e c cd df f o of f a a r ra an nd do om m v va ar ri ia ab bl le e X X w wh ho os se e P P. .d d. .f f i is s g gi iv ve en n b by y      Otherwise 0 0 x if e ) ( -x x f 2 2. . D De et te er rm mi in ne e t th he e c cd df f o of f t th he e r ra an nd do om m v va ar ri ia ab bl le e X X w wi it th h P P. .d d. .f f                    Otherwise 0 3 2 if 2 3 2 1 - 2 x 1 if 2 1 1 x 0 if x 2 1 ) ( x x x f P Pr ro op pe er rt ti ie es s o of f C Cu um mu ul la at ti iv ve e D Di is st tr ri ib bu ut ti io on n F Fu un nc ct ti io on n ( (c cd df f) ) F F a a) ) T Th he e f fu un nc ct ti io on n F F i is s a a n no on n- -d de ec cr re ea as si in ng g f fu un nc ct ti io on n, , b b) ) 1 ) ( lim and 0 ) ( lim x x       x F x F T Th he eo or re em m I If f X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e, , t th he en n w we e h ha av ve e ) ( ) ( x F dx d x f  . . O On n t th he e o ot th he er r h ha an nd d, , i if f X X i is s a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e, , t th he en n w we e h ha av ve e ) ( ) ( ) ( 1    j j j x F x F x P . . P Pr ro oo of f C Ca as se e 1 1: : X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e calculus of theorem l fundamenta the .......by ) ( ) ( dx d ) ( dx d ) ( ) ( x f dt t f x F dt t f x F x x           C Ca as se e 2 2: : X X i is s a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e
  • 11. Page 11 of 11 ) ( ) ( ) ( ) ( ) ( ) ( ... ) ( ) ( ) ( ) ( ) ( ) ( ... ) ( ) ( ) ( ) ( 1 1 2 2 1 1 1 1 2 1 x f x P x F x F x P x P x P x P x x P x F x P x P x P x P x x P x F j j j j j j j j j j j                         R Re em ma ar rk k: : P P( (a a  X X   b b) )= =F F( (b b) )- -F F( (a a) ) E Ex xa am mp pl le e: : S Su up pp po os se e X X i is s a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e w wi it th h c cd df f       0 x if e - 1 0 x if 0 ) ( x - x F F Fi in nd d t th he e P P. .d d. .f f o of f X X. .