SlideShare une entreprise Scribd logo
1  sur  30
SOLIDOS CRISTALINOS
   Estructura cristalina, propiedades y
aplicaciones de los siguientes elementos:
              Silicio
             Germanio
               Galio
Silicio




Polvo de silicio   Policristal de silicio   Olivino.
Silicio


El silicio es un elemento químico metaloide, número
atómico 14 y situado en el grupo 4 de la tabla
periódica de los elementos formando parte de la
familia de los carbonoideos de símbolo Si. Es el
segundo elemento más abundante en la corteza
terrestre (27,7% en peso) después del oxígeno. Se
presenta en forma amorfa y cristalizada; el primero es
un polvo parduzco, más activo que la variante
cristalina, que se presenta en octaedros de color azul
grisáceo y brillo metálico.
Estructura Cristalina del Silicio
Estructura Cristalina del Silicio
                          silicio

Estructura cristalina               Cúbica centrada en las caras

N° CAS                              7440-21-3

N° EINECS                           231-130-8

Calor específico                    700 J/(K·kg)

Conductividad eléctrica             4.35·10-4 S/m

Conductividad térmica               148 W/(K·m)

Velocidad del sonido                8433 m/s a 293,15 K(20 °C)
Propiedades


 Sus propiedades son intermedias entre las del carbono y el
germanio. En forma cristalina es muy duro y poco soluble y presenta
un brillo metálico y color grisáceo. Aunque es un elemento
relativamente inerte y resiste la acción de la mayoría de los ácidos,
reacciona con los halógenos y álcalis diluidos. El silicio transmite
más del 95% de las longitudes de onda de la radiación infrarroja.

Se prepara en forma de polvo amorfo amarillo pardo o de cristales
negros-grisáceos. Se obtiene calentando sílice, o dióxido de silicio
(SiO2), con un agente reductor, como carbono o magnesio, en un
horno eléctrico. El silicio cristalino tiene una dureza de 7, suficiente
para rayar el vidrio, de dureza de 5 a 7. El silicio tiene un punto de
fusión de 1.411 °C, un punto de ebullición de 2.355 °C y una densidad
relativa de 2,33. Su masa atómica es 28,086.
Propiedades


Se disuelve en ácido fluorhídrico formando el gas
tetrafluoruro de silicio, SiF4 (ver flúor), y es atacado por los
ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de
silicio formado inhibe la reacción. También se disuelve en
hidróxido de sodio, formando silicato de sodio y gas
hidrógeno. A temperaturas ordinarias el silicio no es
atacado por el aire, pero a temperaturas elevadas
reacciona con el oxígeno formando una capa de sílice que
impide que continúe la reacción. A altas temperaturas
reacciona también con nitrógeno y cloro formando nitruro
de silicio y cloruro de silicio respectivamente.
Propiedades


El silicio constituye un 28% de la corteza terrestre. No existe en
estado libre, sino que se encuentra en forma de dióxido de silicio y
de silicatos complejos. Los minerales que contienen silicio
constituyen cerca del 40% de todos los minerales comunes,
incluyendo más del 90% de los minerales que forman rocas
volcánicas. El mineral cuarzo, sus variedades (cornalina, crisoprasa,
ónice, pedernal y jaspe) y los minerales cristobalita y tridimita son
las formas cristalinas del silicio existentes en la naturaleza. El
dióxido de silicio es el componente principal de la arena. Los
silicatos (en concreto los de aluminio, calcio y magnesio) son los
componentes principales de las arcillas, el suelo y las rocas, en
forma de feldespatos, anfíboles, piroxenos, micas y ceolitas, y de
piedras semipreciosas como el olivino, granate, zircón, topacio y
turmalina.
Aplicaciones


 Se utiliza en aleaciones, en la preparación de las siliconas, en la industria de
la cerámica técnica y, debido a que es un material semiconductor muy
abundante, tiene un interés especial en la industria electrónica y
microelectrónica como material básico para la creación de obleas o chips
que se pueden implantar en transistores, pilas solares y una gran variedad
de circuitos electrónicos. El silicio es un elemento vital en numerosas
industrias. El dióxido de silicio (arena y arcilla) es un importante
constituyente del hormigón y los ladrillos, y se emplea en la producción de
cemento portland. Por sus propiedades semiconductoras se usa en la
fabricación de transistores, células solares y todo tipo de dispositivos
semiconductores; por esta razón se conoce como Silicon Valley (Valle del
Silicio) a la región de California en la que concentran numerosas empresas
del sector de la electrónica y la informática. Otros importantes usos del
silicio son:
Aplicaciones


 Como material refractario, se usa en cerámicas, vidriados y
esmaltados.
Como elemento fertilizante en forma de mineral primario rico en
silicio, para la agricultura.
Como elemento de aleación en fundiciones.
Fabricación de vidrio para ventanas y aislantes.
El carburo de silicio es uno de los abrasivos más importantes.
Se usa en láseres para obtener una luz con una longitud de onda
de 456 nm.
La silicona se usa en medicina en implantes de seno y lentes de
contacto.
Aplicaciones


 Se utiliza en la industria del acero como componente de las
aleaciones de silicio-acero. Para fabricar el acero, se desoxida el
acero fundido añadiéndole pequeñas cantidades de silicio; el
acero común contiene menos de un 0,30 % de silicio. El acero al
silicio, que contiene de 2,5 a 4% de silicio, se usa para fabricar los
núcleos de los transformadores eléctricos, pues la aleación
presenta baja histéresis (ver Magnetismo). Existe una aleación
de acero, el durirón, que contiene un 15% de silicio y es dura,
frágil y resistente a la corrosión; el durirón se usa en los equipos
industriales que están en contacto con productos químicos
corrosivos. El silicio se utiliza también en las aleaciones de cobre,
como el bronce y el latón.
Aplicaciones


 El silicio es un semiconductor; su resistividad a la
corriente eléctrica a temperatura ambiente varía
entre la de los metales y la de los aislantes. La
conductividad del silicio se puede controlar
añadiendo pequeñas cantidades de impurezas
llamadas dopantes. La capacidad de controlar las
propiedades eléctricas del silicio y su abundancia en la
naturaleza han posibilitado el desarrollo y aplicación
de los transistores y circuitos integrados que se
utilizan en la industria electrónica.
Aplicaciones


 La sílice y los silicatos se utilizan en la fabricación de vidrio,
barnices, esmaltes, cemento y porcelana, y tienen importantes
aplicaciones individuales. La sílice fundida, que es un vidrio que
se obtiene fundiendo cuarzo o hidrolizando tetracloruro de
silicio, se caracteriza por un bajo coeficiente de dilatación y una
alta resistencia a la mayoría de los productos químicos. El gel de
sílice es una sustancia incolora, porosa y amorfa; se prepara
eliminando parte del agua de un precipitado gelatinoso de ácido
silícico, SiO2·H2O, el cual se obtiene añadiendo ácido clorhídrico
a una disolución de silicato de sodio. El gel de sílice absorbe agua
y otras sustancias y se usa como agente desecante y
decolorante.
Aplicaciones


 El silicato de sodio (Na2SiO3), también llamado vidrio, es un
silicato sintético importante, sólido amorfo, incoloro y soluble en
agua, que funde a 1088 °C. Se obtiene haciendo reaccionar sílice
(arena) y carbonato de sodio a alta temperatura, o calentando
arena con hidróxido de sodio concentrado a alta presión. La
disolución acuosa de silicato de sodio se utiliza para conservar
huevos; como sustituto de la cola o pegamento para hacer cajas
y otros contenedores; para unir gemas artificiales; como agente
incombustible, y como relleno y adherente en jabones y
limpiadores. Otro compuesto de silicio importante es el
carborundo, un compuesto de silicio y carbono que se utiliza
como abrasivo.
Aplicaciones


   El monóxido de silicio, SiO, se usa para proteger
   materiales, recubriéndolos de forma que la superficie
   exterior se oxida al dióxido, SiO2. Estas capas se aplican
   también a los filtros de interferencias.

   Fue identificado por primera vez por Antoine Lavoisier en
   1787.


Referencia: http://es.wikipedia.org/wiki/Silicio
Germanio
Germanio


El germanio es un elemento químico con número
atómico 32, y símbolo Ge perteneciente al grupo 4 de
la tabla periódica de los elementos.
Estructura Cristalina del Germanio
Estructura Cristalina del Germanio
                          germanio

Estructura cristalina           Cúbica centrada en las caras

N° CAS                          7440-56-4

N° EINECS                       231-164-3

Calor específico                320 J/(K·kg)

Conductividad eléctrica         1,45 S/m

Conductividad térmica           59,9 W/(K·m)

Velocidad del sonido            5400 m/s a 293,15 K(20 °C)
Propiedades


 Es un metaloide sólido duro, cristalino, de color blanco
grisáceo lustroso, quebradizo, que conserva el brillo a
temperaturas ordinarias. Presenta la misma estructura
cristalina que el diamante y resiste a los ácidos y álcalis.

Forma gran número de compuestos organometálicos y es
un importante material semiconductor utilizado en
transistores y fotodetectores. A diferencia de la mayoría de
semiconductores, el germanio tiene una pequeña banda
prohibida (band gap) por lo que responde de forma eficaz
a la radiación infrarroja y puede usarse en amplificadores
de baja intensidad.
Aplicaciones


Las aplicaciones del germanio se ven limitadas por su elevado costo
    Fibra óptica.
    Electrónica: radares y amplificadores de guitarras eléctricas usados por músicos
    nostálgicos del sonido de la primera época del rock and roll; aleaciones SiGe en
    circuitos integrados de alta velocidad. También se utilizan compuestos sandwich Si/Ge
    para aumentar la movilidad de los electrones en el silicio (streched silicon).
    Óptica de infrarrojos: Espectroscopios, sistemas de visión nocturna y otros equipos.
    Lentes, con alto índice de refracción, de ángulo ancho y para microscopios.
    En joyería se usa la aleación Au con 12% de germanio.
    Como elemento endurecedor del aluminio, magnesio y estaño.
    Quimioterapia.
    El tetracloruro de germanio es un ácido de Lewis y se usa como catalizador en la
    síntesis de polímeros (PET).
Referencia: http://es.wikipedia.org/wiki/Germanio
Galio
Galio


Elemento químico metálico, raro, blanco, duro y
maleable, parecido al aluminio, que suele aparecer en
minerales de cinc. Núm. atóm. 31. Símb. Ga.
Estructura Cristalina del Galio
Estructura Cristalina del Galio
                          galio
Estructura cristalina       Ortorrómbica
N° CAS                      7440-55-3
N° EINECS                   231-163-8
Calor específico            370 J/(K·kg)
Conductividad eléctrica     6,78 106 S/m
Conductividad térmica       40,6 W/(K·m)
Velocidad del sonido        2740 m/s a 293,15 K(20 °C)
Propiedades


 El galio es un metal blando, grisáceo en estado líquido y
plateado brillante al solidificar, sólido deleznable a bajas
temperaturas que funde a temperaturas cercanas a la de la
ambiente (como cesio, mercurio y rubidio) e incluso
cuando se lo agarra con la mano por su bajo punto de
fusión (28,56 °C). El rango de temperatura en el que
permanece líquido es uno de los más altos de los metales
(2174 °C separan sus punto de fusión y ebullición) y la
presión de vapor es baja incluso a altas temperaturas. El
metal se expande un 3,1% al solidificar y flota en el líquido al
igual que el hielo en el agua.
Propiedades


 Presenta una acusada tendencia a subenfriarse por debajo
del punto de fusión (permaneciendo aún en estado
líquido) por lo que es necesaria una semilla (un pequeño
sólido añadido al líquido) para solidificarlo. La cristalización
no se produce en ninguna de las estructuras simples; la
fase estable en condiciones normales es ortorrómbica, con
8 átomos en cada celda unitaria en la que cada átomo sólo
tiene otro en su vecindad más próxima a una distancia de
2,44 Å y estando los otros seis a 2,83 Å. En esta estructura
el enlace químico formado entre los átomos más cercanos
es covalente siendo la molécula Ga2 la que realmente
forma el entramado cristalino.
Aplicaciones


 La principal aplicación del galio (arseniuro de galio) es la
construcción de circuitos integrados y dispositivos
optoelectrónicos como diodos láser y LED.
Se emplea para dopar materiales semiconductores y construir
dispositivos diversos como transistores.
En termómetros de alta temperatura por su bajo punto de
fusión.
El galio se alea con facilidad con la mayoría de los metales y se
usa en aleaciones de bajo punto de fusión.
El isótopo Ga-67 se usa en medicina nuclear.
Aplicaciones


    Se ha descubierto recientemente que aleaciones galio-aluminio en
   contacto con agua produce una reacción química dando como
   resultado hidrógeno. Este método para la obtención de hidrógeno
   no es rentable, ni ecológico, ya que requiere la doble fundición del
   aluminio, con el consiguiente gasto energético.
   También se ha descubierto más recientemente que una aleación de
   galio-antimonio sumergida en agua y en la cual incide la luz solar
   provoca la separación de las moléculas de agua en hidrógeno y
   oxígeno. Gracias al uso potencial de esta aleación no será necesario
   el uso de combustibles fósiles para generar hidrógeno a partir del
   agua, reduciendo con ello las emisiones de CO2.
Referencia: http://es.wikipedia.org/wiki/Galio

Contenu connexe

Tendances (20)

Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos ticona llaja
Solidos cristalinos ticona llajaSolidos cristalinos ticona llaja
Solidos cristalinos ticona llaja
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
SOLIDOS CRISTALINOS
SOLIDOS CRISTALINOSSOLIDOS CRISTALINOS
SOLIDOS CRISTALINOS
 
Solidos cristalinoss
Solidos cristalinossSolidos cristalinoss
Solidos cristalinoss
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos By Adderly Wilson Vilca Jara
Solidos cristalinos By Adderly Wilson Vilca JaraSolidos cristalinos By Adderly Wilson Vilca Jara
Solidos cristalinos By Adderly Wilson Vilca Jara
 
Solidos cristalinos aecs
Solidos cristalinos aecsSolidos cristalinos aecs
Solidos cristalinos aecs
 
Solidos cristalinos by MAV
Solidos cristalinos by MAVSolidos cristalinos by MAV
Solidos cristalinos by MAV
 
Solidos Cristalinos,
Solidos Cristalinos, Solidos Cristalinos,
Solidos Cristalinos,
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Los metales de transición
Los metales de transiciónLos metales de transición
Los metales de transición
 
Solidos cristalinos af
Solidos cristalinos afSolidos cristalinos af
Solidos cristalinos af
 
Solidos cristalino
Solidos cristalinoSolidos cristalino
Solidos cristalino
 
solidos cristalinos
solidos cristalinossolidos cristalinos
solidos cristalinos
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 

Similaire à Solidos cristalinos(tarea) (19)

Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Silicio germanio galio
Silicio germanio galioSilicio germanio galio
Silicio germanio galio
 
Solidos cristalizados
Solidos cristalizadosSolidos cristalizados
Solidos cristalizados
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Silicio
SilicioSilicio
Silicio
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Solidos cristalinos (1)
Solidos cristalinos (1)Solidos cristalinos (1)
Solidos cristalinos (1)
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos - Edwin Vicente
Solidos cristalinos - Edwin VicenteSolidos cristalinos - Edwin Vicente
Solidos cristalinos - Edwin Vicente
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Sólidos cristalinos
Sólidos cristalinosSólidos cristalinos
Sólidos cristalinos
 

Dernier

6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 

Dernier (20)

SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 

Solidos cristalinos(tarea)

  • 1.
  • 2. SOLIDOS CRISTALINOS Estructura cristalina, propiedades y aplicaciones de los siguientes elementos:  Silicio  Germanio  Galio
  • 3. Silicio Polvo de silicio Policristal de silicio Olivino.
  • 4. Silicio El silicio es un elemento químico metaloide, número atómico 14 y situado en el grupo 4 de la tabla periódica de los elementos formando parte de la familia de los carbonoideos de símbolo Si. Es el segundo elemento más abundante en la corteza terrestre (27,7% en peso) después del oxígeno. Se presenta en forma amorfa y cristalizada; el primero es un polvo parduzco, más activo que la variante cristalina, que se presenta en octaedros de color azul grisáceo y brillo metálico.
  • 6. Estructura Cristalina del Silicio silicio Estructura cristalina Cúbica centrada en las caras N° CAS 7440-21-3 N° EINECS 231-130-8 Calor específico 700 J/(K·kg) Conductividad eléctrica 4.35·10-4 S/m Conductividad térmica 148 W/(K·m) Velocidad del sonido 8433 m/s a 293,15 K(20 °C)
  • 7. Propiedades Sus propiedades son intermedias entre las del carbono y el germanio. En forma cristalina es muy duro y poco soluble y presenta un brillo metálico y color grisáceo. Aunque es un elemento relativamente inerte y resiste la acción de la mayoría de los ácidos, reacciona con los halógenos y álcalis diluidos. El silicio transmite más del 95% de las longitudes de onda de la radiación infrarroja. Se prepara en forma de polvo amorfo amarillo pardo o de cristales negros-grisáceos. Se obtiene calentando sílice, o dióxido de silicio (SiO2), con un agente reductor, como carbono o magnesio, en un horno eléctrico. El silicio cristalino tiene una dureza de 7, suficiente para rayar el vidrio, de dureza de 5 a 7. El silicio tiene un punto de fusión de 1.411 °C, un punto de ebullición de 2.355 °C y una densidad relativa de 2,33. Su masa atómica es 28,086.
  • 8. Propiedades Se disuelve en ácido fluorhídrico formando el gas tetrafluoruro de silicio, SiF4 (ver flúor), y es atacado por los ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de silicio formado inhibe la reacción. También se disuelve en hidróxido de sodio, formando silicato de sodio y gas hidrógeno. A temperaturas ordinarias el silicio no es atacado por el aire, pero a temperaturas elevadas reacciona con el oxígeno formando una capa de sílice que impide que continúe la reacción. A altas temperaturas reacciona también con nitrógeno y cloro formando nitruro de silicio y cloruro de silicio respectivamente.
  • 9. Propiedades El silicio constituye un 28% de la corteza terrestre. No existe en estado libre, sino que se encuentra en forma de dióxido de silicio y de silicatos complejos. Los minerales que contienen silicio constituyen cerca del 40% de todos los minerales comunes, incluyendo más del 90% de los minerales que forman rocas volcánicas. El mineral cuarzo, sus variedades (cornalina, crisoprasa, ónice, pedernal y jaspe) y los minerales cristobalita y tridimita son las formas cristalinas del silicio existentes en la naturaleza. El dióxido de silicio es el componente principal de la arena. Los silicatos (en concreto los de aluminio, calcio y magnesio) son los componentes principales de las arcillas, el suelo y las rocas, en forma de feldespatos, anfíboles, piroxenos, micas y ceolitas, y de piedras semipreciosas como el olivino, granate, zircón, topacio y turmalina.
  • 10. Aplicaciones Se utiliza en aleaciones, en la preparación de las siliconas, en la industria de la cerámica técnica y, debido a que es un material semiconductor muy abundante, tiene un interés especial en la industria electrónica y microelectrónica como material básico para la creación de obleas o chips que se pueden implantar en transistores, pilas solares y una gran variedad de circuitos electrónicos. El silicio es un elemento vital en numerosas industrias. El dióxido de silicio (arena y arcilla) es un importante constituyente del hormigón y los ladrillos, y se emplea en la producción de cemento portland. Por sus propiedades semiconductoras se usa en la fabricación de transistores, células solares y todo tipo de dispositivos semiconductores; por esta razón se conoce como Silicon Valley (Valle del Silicio) a la región de California en la que concentran numerosas empresas del sector de la electrónica y la informática. Otros importantes usos del silicio son:
  • 11. Aplicaciones Como material refractario, se usa en cerámicas, vidriados y esmaltados. Como elemento fertilizante en forma de mineral primario rico en silicio, para la agricultura. Como elemento de aleación en fundiciones. Fabricación de vidrio para ventanas y aislantes. El carburo de silicio es uno de los abrasivos más importantes. Se usa en láseres para obtener una luz con una longitud de onda de 456 nm. La silicona se usa en medicina en implantes de seno y lentes de contacto.
  • 12. Aplicaciones Se utiliza en la industria del acero como componente de las aleaciones de silicio-acero. Para fabricar el acero, se desoxida el acero fundido añadiéndole pequeñas cantidades de silicio; el acero común contiene menos de un 0,30 % de silicio. El acero al silicio, que contiene de 2,5 a 4% de silicio, se usa para fabricar los núcleos de los transformadores eléctricos, pues la aleación presenta baja histéresis (ver Magnetismo). Existe una aleación de acero, el durirón, que contiene un 15% de silicio y es dura, frágil y resistente a la corrosión; el durirón se usa en los equipos industriales que están en contacto con productos químicos corrosivos. El silicio se utiliza también en las aleaciones de cobre, como el bronce y el latón.
  • 13. Aplicaciones El silicio es un semiconductor; su resistividad a la corriente eléctrica a temperatura ambiente varía entre la de los metales y la de los aislantes. La conductividad del silicio se puede controlar añadiendo pequeñas cantidades de impurezas llamadas dopantes. La capacidad de controlar las propiedades eléctricas del silicio y su abundancia en la naturaleza han posibilitado el desarrollo y aplicación de los transistores y circuitos integrados que se utilizan en la industria electrónica.
  • 14. Aplicaciones La sílice y los silicatos se utilizan en la fabricación de vidrio, barnices, esmaltes, cemento y porcelana, y tienen importantes aplicaciones individuales. La sílice fundida, que es un vidrio que se obtiene fundiendo cuarzo o hidrolizando tetracloruro de silicio, se caracteriza por un bajo coeficiente de dilatación y una alta resistencia a la mayoría de los productos químicos. El gel de sílice es una sustancia incolora, porosa y amorfa; se prepara eliminando parte del agua de un precipitado gelatinoso de ácido silícico, SiO2·H2O, el cual se obtiene añadiendo ácido clorhídrico a una disolución de silicato de sodio. El gel de sílice absorbe agua y otras sustancias y se usa como agente desecante y decolorante.
  • 15. Aplicaciones El silicato de sodio (Na2SiO3), también llamado vidrio, es un silicato sintético importante, sólido amorfo, incoloro y soluble en agua, que funde a 1088 °C. Se obtiene haciendo reaccionar sílice (arena) y carbonato de sodio a alta temperatura, o calentando arena con hidróxido de sodio concentrado a alta presión. La disolución acuosa de silicato de sodio se utiliza para conservar huevos; como sustituto de la cola o pegamento para hacer cajas y otros contenedores; para unir gemas artificiales; como agente incombustible, y como relleno y adherente en jabones y limpiadores. Otro compuesto de silicio importante es el carborundo, un compuesto de silicio y carbono que se utiliza como abrasivo.
  • 16. Aplicaciones El monóxido de silicio, SiO, se usa para proteger materiales, recubriéndolos de forma que la superficie exterior se oxida al dióxido, SiO2. Estas capas se aplican también a los filtros de interferencias. Fue identificado por primera vez por Antoine Lavoisier en 1787. Referencia: http://es.wikipedia.org/wiki/Silicio
  • 18. Germanio El germanio es un elemento químico con número atómico 32, y símbolo Ge perteneciente al grupo 4 de la tabla periódica de los elementos.
  • 20. Estructura Cristalina del Germanio germanio Estructura cristalina Cúbica centrada en las caras N° CAS 7440-56-4 N° EINECS 231-164-3 Calor específico 320 J/(K·kg) Conductividad eléctrica 1,45 S/m Conductividad térmica 59,9 W/(K·m) Velocidad del sonido 5400 m/s a 293,15 K(20 °C)
  • 21. Propiedades Es un metaloide sólido duro, cristalino, de color blanco grisáceo lustroso, quebradizo, que conserva el brillo a temperaturas ordinarias. Presenta la misma estructura cristalina que el diamante y resiste a los ácidos y álcalis. Forma gran número de compuestos organometálicos y es un importante material semiconductor utilizado en transistores y fotodetectores. A diferencia de la mayoría de semiconductores, el germanio tiene una pequeña banda prohibida (band gap) por lo que responde de forma eficaz a la radiación infrarroja y puede usarse en amplificadores de baja intensidad.
  • 22. Aplicaciones Las aplicaciones del germanio se ven limitadas por su elevado costo Fibra óptica. Electrónica: radares y amplificadores de guitarras eléctricas usados por músicos nostálgicos del sonido de la primera época del rock and roll; aleaciones SiGe en circuitos integrados de alta velocidad. También se utilizan compuestos sandwich Si/Ge para aumentar la movilidad de los electrones en el silicio (streched silicon). Óptica de infrarrojos: Espectroscopios, sistemas de visión nocturna y otros equipos. Lentes, con alto índice de refracción, de ángulo ancho y para microscopios. En joyería se usa la aleación Au con 12% de germanio. Como elemento endurecedor del aluminio, magnesio y estaño. Quimioterapia. El tetracloruro de germanio es un ácido de Lewis y se usa como catalizador en la síntesis de polímeros (PET). Referencia: http://es.wikipedia.org/wiki/Germanio
  • 23. Galio
  • 24. Galio Elemento químico metálico, raro, blanco, duro y maleable, parecido al aluminio, que suele aparecer en minerales de cinc. Núm. atóm. 31. Símb. Ga.
  • 26. Estructura Cristalina del Galio galio Estructura cristalina Ortorrómbica N° CAS 7440-55-3 N° EINECS 231-163-8 Calor específico 370 J/(K·kg) Conductividad eléctrica 6,78 106 S/m Conductividad térmica 40,6 W/(K·m) Velocidad del sonido 2740 m/s a 293,15 K(20 °C)
  • 27. Propiedades El galio es un metal blando, grisáceo en estado líquido y plateado brillante al solidificar, sólido deleznable a bajas temperaturas que funde a temperaturas cercanas a la de la ambiente (como cesio, mercurio y rubidio) e incluso cuando se lo agarra con la mano por su bajo punto de fusión (28,56 °C). El rango de temperatura en el que permanece líquido es uno de los más altos de los metales (2174 °C separan sus punto de fusión y ebullición) y la presión de vapor es baja incluso a altas temperaturas. El metal se expande un 3,1% al solidificar y flota en el líquido al igual que el hielo en el agua.
  • 28. Propiedades Presenta una acusada tendencia a subenfriarse por debajo del punto de fusión (permaneciendo aún en estado líquido) por lo que es necesaria una semilla (un pequeño sólido añadido al líquido) para solidificarlo. La cristalización no se produce en ninguna de las estructuras simples; la fase estable en condiciones normales es ortorrómbica, con 8 átomos en cada celda unitaria en la que cada átomo sólo tiene otro en su vecindad más próxima a una distancia de 2,44 Å y estando los otros seis a 2,83 Å. En esta estructura el enlace químico formado entre los átomos más cercanos es covalente siendo la molécula Ga2 la que realmente forma el entramado cristalino.
  • 29. Aplicaciones La principal aplicación del galio (arseniuro de galio) es la construcción de circuitos integrados y dispositivos optoelectrónicos como diodos láser y LED. Se emplea para dopar materiales semiconductores y construir dispositivos diversos como transistores. En termómetros de alta temperatura por su bajo punto de fusión. El galio se alea con facilidad con la mayoría de los metales y se usa en aleaciones de bajo punto de fusión. El isótopo Ga-67 se usa en medicina nuclear.
  • 30. Aplicaciones Se ha descubierto recientemente que aleaciones galio-aluminio en contacto con agua produce una reacción química dando como resultado hidrógeno. Este método para la obtención de hidrógeno no es rentable, ni ecológico, ya que requiere la doble fundición del aluminio, con el consiguiente gasto energético. También se ha descubierto más recientemente que una aleación de galio-antimonio sumergida en agua y en la cual incide la luz solar provoca la separación de las moléculas de agua en hidrógeno y oxígeno. Gracias al uso potencial de esta aleación no será necesario el uso de combustibles fósiles para generar hidrógeno a partir del agua, reduciendo con ello las emisiones de CO2. Referencia: http://es.wikipedia.org/wiki/Galio