SlideShare une entreprise Scribd logo
1  sur  111
Unidad   1 Repaso de Redes Neuronales Artificiales
[object Object],¿ Que Es Una RNA?
Red Neuronal Artificial ,[object Object],[object Object]
Estructura Típica De Una Neurona Biológica
Una Neurona Biológica Consta De: ,[object Object],[object Object],[object Object],[object Object]
Existen 2 tipos de sinapsis: ,[object Object],[object Object]
[object Object],[object Object]
[object Object]
Similitud directa entre actividad sináptica y la analogía con las RNA ,[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object]
¿Como se relaciona una RNA con un sistema neuronal Biológico? ,[object Object],[object Object]
Capas en una RNA.
[object Object],[object Object]
[object Object],[object Object],[object Object]
Niveles o capas de neuronas
[object Object]
[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
¿Como trabaja una RNA? ,[object Object],[object Object],[object Object]
[object Object],[object Object]
¿Cómo aprende la red neuronal? ,[object Object],[object Object]
[object Object],[object Object]
Modelado de Redes Neuronales Artificiales
Notación y modelo de una neurona ,[object Object]
Neurona de una entrada y Funciones de transferencia ,[object Object],[object Object],[object Object],[object Object]
Funciones de transferencia Esta función se utiliza en el  Perceptron   para crear neuronas las cuales toman decisiones de clasificación. Cuando este tipo de función ( hardlim ) toma en cuenta un cierto umbral  su salida se incrementará  de  0  a  1  cuando  p  exceda  un valor dado por  -b/w .
Funciones de transferencia ,[object Object]
Funciones de transferencia ,[object Object]
Neurona de Múltiples Entradas
Notación  usada en diagramas de múltiples entradas ,[object Object]
A RQUITECTURAS DE  RNA ,[object Object],Dos o más  neuronas pueden ser combinadas en una capa.  Una red  puede contener una o más capas.  A continuación  se presenta una  red con una capa que contiene  R   entradas y  S   neuronas:
[object Object]
[object Object]
[object Object],Una capa neuronal incluye  la matriz de ponderaciones, las operaciones de multiplicación, el vector de umbral  b, el sumador, y la  función de transferencia.
Arquitectura De Redes Neuronales ,[object Object],[object Object],[object Object],[object Object],[object Object]
Red neuronal de Múltiples Capas
Red neuronal con varias  capa de neuronas (forma condensada)
Redes Monocapa: l 1 l n l 2 Las  redes  monocapa  se utilizan típicamente en  en tareas relacionadas en lo que se conoce como autoasociación:  por  ejemplo,  para  regenerar  informaciones  de  entrada que se presentan a la red incompletas o distorsionadas . P/ejemplo  Hopfield, BSB, Learnig Matrix
Redes Multicapa: Redes con conexiones hacia delante (feedforward) Este tipo de redes son especialmente útiles en aplicaciones de reconocimiento o clasificación de patrones. En este tipo de redes, todas las señales neuronales se propagan hacia adelante a través de las capas de la red. No existen conexiones hacia atrás y normal- mente tampoco autorrecurrentes,  ni laterales.
Redes con conexiones  hacia adelante y hacia atrás   (feedforward / feedback): En  este  tipo  de  redes circula información tanto hacia adelante  como  hacia  atrás  durante el funcionamiento de la red. Para que esto sea posible, existen conexiones feedforward  y conexiones  feedback  entre las neuronas. P/ ejemplo:  ART, BAM, CABAM.
Redes Con Conexiones Hacia Adelante Y Hacia Atrás (feedforward / Feedback)  También existen algunas que tienen conexiones laterales entre  neuronas  de  la  misma  capa. Estas conexiones se diseñan  como  excitadores  (con  peso  positivo)  o inhibidoras  (con  peso  negativo),  estableciendose  una competencia entre las neuronas correspondientes.
Red neuronal  de tipo  feedforward .
Red neuronal  de tipo  feedforward .
Conexiones con propagación hacia atrás en RNA
Red neuronal  de tipo recurrente
... ,[object Object],[object Object]
... ,[object Object],[object Object]
MECANISMOS DE APRENDIZAJE (ajuste de pesos de interconexión) ,[object Object],[object Object]
¿Qué son las reglas de aprendizaje en RNA? ,[object Object],[object Object],[object Object]
Clasificación de RNA según  el aprendizaje que observan ,[object Object]
... ,[object Object],[object Object]
... ,[object Object],[object Object]
Redes con aprendizaje supervisado ,[object Object],[object Object],[object Object],[object Object]
El Aprendizaje Por Corrección De Error ,[object Object],[object Object]
Aprendizaje Por Reforzamiento
Aprendizaje por Reforzamiento Se basa en la idea de no disponer de un ejemplo completo del comportamiento deseado, es decir, la función del supervisor se reduce a indicar mediante una señal de refuerzo si la salida de la red se ajusta a la deseada (éxito=1, fracaso=-1) y en función de ello se ajustan los pesos basándose en un mecanismo de probabilidades.
Algoritmos de  Aprendizaje por Refuerzo ,[object Object],[object Object],[object Object]
El aprendizaje estocástico ,[object Object],[object Object]
Ejemplos de algoritmos de Aprendizaje Estocástico ,[object Object],[object Object],[object Object]
Redes con aprendizaje no supervisado ,[object Object],[object Object],[object Object]
El  aprendizaje  Hebbiano ,[object Object],[object Object]
... ,[object Object],[object Object],[object Object],[object Object],[object Object]
Aprendizaje competitivo y cooperativo ,[object Object],[object Object]
... ,[object Object],[object Object],[object Object]
... ,[object Object]
Ejemplos De Redes Con Aprendizaje Competitivo  Y  Cooperativo . ,[object Object],[object Object],[object Object],[object Object]
Ejemplos de Redes con Aprendizaje Competitivo y Cooperativo LVQ ART
[object Object],Modelo y  Arquitectura de un Perceptron
[object Object]
La matriz de pesos de la red es:
[object Object]
[object Object]
[object Object]
Recordando que la función de transferencia  hardlim   se define como: a n=Wp+b n
Unificación de la regla de aprendizaje
El umbral es un peso con una entrada de  1.
Perceptron de Múltiples-Neuronas Para actualizar la ith fila de la matriz de pesos: En forma de Matriz:
Capacidad de la regla de aprendizaje del  Perceptron La regla del Perceptron siempre convergirá a los pesos que cumplan con la clasificación deseada, asumiendo que tales pesos existan. NOTA:  Recordar que la longitud del vector de pesos no es importante, lo único importante es su dirección.
Limitaciones del Perceptron Frontera de decisión lineal  Problemas linealmente  No separables
UNIDAD VI Redes de propagación hacia delante  y aprendizaje supervisado RED ADALINE Adaline simple. Algoritmo  LMS .
Introducción ,[object Object]
[object Object],Introducción
[object Object],[object Object],Introducción
[object Object],[object Object],Diferencias Entre La Regla Del Perceptron Y El Algoritmo LMS
Diferencias entre . . . ,[object Object],[object Object]
Diferencias entre . . . PERCEPTRON ADALINE Función de Transferencia ESCALON LINEAL Resolución de problemas Linealmente Separables Linealmente Separables Comportamiento con respecto al RUIDO Sensible al Ruido Minimiza el Ruido Algoritmo de aprendizaje Regla de aprendizaje Del Perceptron LMS
Red  ADALINE a p u r e l i n W p b +   W p b + = = a i p u r e l i n n i   p u r e l i n w T i p b i +   w T i p b i + = = =  w i w i 1  w i 2  w i R  =
ADALINE de dos entradas a p u r e l i n n   p u r e l i n w T 1 p b +   w T 1 p b + = = = a w T 1 p b + w 1 1  p 1 w 1 2  p 2 b + + = =
Mínimo Error Cuadrático p 1 t 1 { , } p 2 t 2 { , }  p Q t Q { , }    Conjunto Entrenamiento: p q t q Entrada: Objetivo: x w 1 b = z p 1 = a w T 1 p b + = a x T z = F x   E e 2   = E t a –   2   E t x T z –   2   = = Notación: Mean Square Error: Donde:  E  es un valor esperado
Ecuaciones Importantes en el Algoritmo LMS W k 1 +   W k   2  e k   p T k   + = b k 1 +   b k   2  e k   + = En forma de Matriz: Donde:    es el parámetro de aprendizaje máximo w i k 1 +   w i k   2  e i k   p k   + = b i k 1 +   b i k   2  e i k   + =
Condiciones para la Estabilidad e i g I 2  R –     1 2   i – 1  = Resumiendo, las condiciones de estabilidad son:  i 0  Ya que , 1 2   i – 1  .  1   i para toda  i  0  1  m a x    (donde   i  es un  eigenvalor  de  R ) 1 2   i – 1 – 
Modelo de una neurona lineal en MATLAB p(1) p(2) p(3) p(R) W(1,1) W(1,R) 1 b n a  a = purelin(w*p+b) a = w*p+b 0 0 1 -1 a a b/w b/w p n a = purelin(n)
Regla de Aprendizaje en ADALINE · ADALINE utiliza un aprendizaje OFF LINE con supervisión.  · Este aprendizaje es la llamada  Regla de Widrow-Hoff  ( Regla Delta  o  Regla del Mínimo Error Cuadrático Medio   LMS Least Mean Square)
Regla de Widrow-Hoff Consiste en hallar el vector de pesos W deseado, único, que deberá asociar cada vector de entrada con su correspondiente valor de salida correcto o deseado. La regla minimiza el  error cuadrático medio  definido como: donde: es la función de error R R R a t       p R R R p 1 2 2 1  
Esta función de error está definida en el espacio de pesos multidimensional para un conjunto de entradas, y la regla de Widrow-Hoff busca el punto de este  espacio donde se encuentra el mínimo global. Con función de activación lineal  Con función de activación  sigmoidal
Se utiliza el método de gradiente decreciente para saber en qué dirección se encuentra el mínimo global de dicha superficie. Las modificaciones que se realizan a los pesos son proporcionales al gradiente decreciente de la función de error, por lo que cada nuevo punto calculado está más próximo al punto mínimo.             j R j w lr w 2 
a) ADALINE     b) PERCEPTRÓN
La regla de Widrow-Hoff es implementada realizando cambios a los pesos en la dirección opuesta en la que el error está incrementando y absorbiendo la constante -2 en  lr . En forma de matriz:  Transformando a la expresión del bias (considerando que el bias son pesos con entradas de 1): ) ( ) ( ) , ( j p j e lr j i W     T Ep lr W    E lr b   
Algoritmo de aprendizaje en ADALINE 1.   Se aplica un vector o patrón de entrada  P R  en las entradas del ADALINE. 2.   Se obtiene la salida lineal a R  = WP R  y se calcula la diferencia con respecto a la salida deseada: E R  =T R -a R 3.   Se actualizan los pesos: W( t+1 ) = W(t) + lrE R P R 4.   Se repiten los pasos 1 al 3 con todos los vectores de entrada. 5.   Si el error cuadrático  medio  es un valor reducido aceptable, termina el proceso de aprendizaje, sino, se repite otra vez desde el paso 1 con todos los patrones.
ENTRENAMIENTO ADALINE ,[object Object],[object Object]
ENTRENAMIENTO ADALINE ,[object Object],[object Object]
ENTRENAMIENTO ADALINE ,[object Object]
Ejercicio:  1 1.0  2 0.0  3 2.0 =  =  = R E p p T   1 2 - - - p 1 p 1 T 1 2 - - - p 2 p 2 T + = = R 1 2 - - - 1 – 1 1 – 1 – 1 1 – 1 2 - - - 1 1 1 – 1 1 1 – + 1 0 0 0 1 1 – 0 1 – 1 = =  1  m a x - - - - - - - - - - - -  1 2.0 - - - - - - - 0.5 = = p 1 1 – 1 1 – t 1  1 – = =           p 2 1 1 1 – t 2  1 = =           Plátano Manzana
Iteración: 1 e 0   t 0   a 0   t 1 a 0   1 – 0 1 – = – = – = – = W 1   W 0   2  e 0   p T 0   + = W 1   0 0 0 2 0.2   1 –   1 – 1 1 – T 0.4 0.4 – 0.4 = + = a 0   W 0   p 0   W 0   p 1 0 0 0 1 – 1 1 – 0 = = = = Plátano
Iteración:  2 Manzana a 1   W 1   p 1   W 1   p 2 0.4 0.4 – 0.4 1 1 1 – 0.4 – = = = = e 1   t 1   a 1   t 2 a 1   1 0.4 –   1.4 = – = – = – = W 2   0.4 0.4 – 0.4 2 0.2   1.4   1 1 1 – T 0.96 0.16 0.16 – = + =
Iteración:  3 e 2   t 2   a 2   t 1 a 2   1 – 0.64 –   0.36 – = – = – = – = W 3   W 2   2  e 2   p T 2   + 1.1040 0.0160 0.0160 – = = W    1 0 0 = a 2   W 2   p 2   W 2   p 1 0.96 0.16 0.16 – 1 – 1 1 – 0.64 – = = = =

Contenu connexe

Tendances

Análisis de CPU-Z
Análisis de CPU-ZAnálisis de CPU-Z
Análisis de CPU-Z
marifercruz6
 
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDASUNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
Eduardo S de Loera
 
Capa de enlace de datos y capa física del modelo osi.
Capa de enlace de datos y capa física del modelo osi.Capa de enlace de datos y capa física del modelo osi.
Capa de enlace de datos y capa física del modelo osi.
Deysi Sanchez Vazquez
 
REDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo CooperativoREDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo Cooperativo
ESCOM
 
Fundamentos de red: 8. La capa física del modelo osi
Fundamentos de red: 8. La capa física del modelo osiFundamentos de red: 8. La capa física del modelo osi
Fundamentos de red: 8. La capa física del modelo osi
Francesc Perez
 
REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
ESCOM
 
Redes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadasRedes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadas
UNIVERSIDAD SANTA MARIA
 

Tendances (20)

CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IPCUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
 
Análisis de CPU-Z
Análisis de CPU-ZAnálisis de CPU-Z
Análisis de CPU-Z
 
Las Redes de Hopfield
Las Redes de HopfieldLas Redes de Hopfield
Las Redes de Hopfield
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
 
ARQUITECTURA CLIENTE SERVIDOR.pdf
ARQUITECTURA CLIENTE SERVIDOR.pdfARQUITECTURA CLIENTE SERVIDOR.pdf
ARQUITECTURA CLIENTE SERVIDOR.pdf
 
sumadores, codificadores, decodificadores,multiplexores, demultiplexores
sumadores, codificadores, decodificadores,multiplexores, demultiplexoressumadores, codificadores, decodificadores,multiplexores, demultiplexores
sumadores, codificadores, decodificadores,multiplexores, demultiplexores
 
Teoría de grafos
Teoría de grafosTeoría de grafos
Teoría de grafos
 
Cuadro comparativo
Cuadro comparativoCuadro comparativo
Cuadro comparativo
 
Modelo OSI , protocolos que intervienen y componentes
Modelo OSI , protocolos que intervienen y componentesModelo OSI , protocolos que intervienen y componentes
Modelo OSI , protocolos que intervienen y componentes
 
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDASUNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
UNIDAD 2 DISEÑO DE LAS BASES DE DATOS DISTRIBUIDAS
 
Capa de enlace de datos y capa física del modelo osi.
Capa de enlace de datos y capa física del modelo osi.Capa de enlace de datos y capa física del modelo osi.
Capa de enlace de datos y capa física del modelo osi.
 
REDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo CooperativoREDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo Cooperativo
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Teletrafico
TeletraficoTeletrafico
Teletrafico
 
Fundamentos de red: 8. La capa física del modelo osi
Fundamentos de red: 8. La capa física del modelo osiFundamentos de red: 8. La capa física del modelo osi
Fundamentos de red: 8. La capa física del modelo osi
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
 
Estandares de Cableado Estructurado
Estandares de Cableado EstructuradoEstandares de Cableado Estructurado
Estandares de Cableado Estructurado
 
REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
 
Redes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadasRedes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadas
 
Dispositvos de entrada y salida
Dispositvos de entrada y salidaDispositvos de entrada y salida
Dispositvos de entrada y salida
 

En vedette (12)

Presentacion Art Gal
Presentacion Art GalPresentacion Art Gal
Presentacion Art Gal
 
SIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALESSIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALES
 
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTESPANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
 
Generalidades De Las Redes Neuronales Artificiales (RNA)
Generalidades De Las  Redes Neuronales Artificiales  (RNA)Generalidades De Las  Redes Neuronales Artificiales  (RNA)
Generalidades De Las Redes Neuronales Artificiales (RNA)
 
Neuronas Difusas
Neuronas DifusasNeuronas Difusas
Neuronas Difusas
 
Aprendizaje Asociativo Hebbiano
Aprendizaje Asociativo HebbianoAprendizaje Asociativo Hebbiano
Aprendizaje Asociativo Hebbiano
 
Introduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVAIntroduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVA
 
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJECUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMING
 
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOS
INTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOSINTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOS
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOS
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación Neuronal
 

Similaire à Introduccion redes neuronales artificiales

Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2
UNEFA
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
Luis Álamo
 
REDES NEURONALES
REDES NEURONALESREDES NEURONALES
REDES NEURONALES
guestbab2c8
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1
Gaston Liberman
 
Especializacion Ii Redes Neuronales Artificiales
Especializacion Ii  Redes Neuronales ArtificialesEspecializacion Ii  Redes Neuronales Artificiales
Especializacion Ii Redes Neuronales Artificiales
jose haar
 
Overview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its ApplicationsOverview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its Applications
Ramiro Aduviri Velasco
 

Similaire à Introduccion redes neuronales artificiales (20)

Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
redes neuronales
redes neuronalesredes neuronales
redes neuronales
 
REDES NEURONALES
REDES NEURONALESREDES NEURONALES
REDES NEURONALES
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
 
2º asignacion redes neuronales
2º asignacion redes neuronales2º asignacion redes neuronales
2º asignacion redes neuronales
 
Ap acompet
Ap acompetAp acompet
Ap acompet
 
Slidecats
SlidecatsSlidecats
Slidecats
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1
 
Especializacion Ii Redes Neuronales Artificiales
Especializacion Ii  Redes Neuronales ArtificialesEspecializacion Ii  Redes Neuronales Artificiales
Especializacion Ii Redes Neuronales Artificiales
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Tema3dm
Tema3dmTema3dm
Tema3dm
 
Overview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its ApplicationsOverview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its Applications
 

Plus de ESCOM

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
ESCOM
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
ESCOM
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
ESCOM
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
ESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
ESCOM
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
ESCOM
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
ESCOM
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
ESCOM
 
Art2
Art2Art2
Art2
ESCOM
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
ESCOM
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
ESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
ESCOM
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
ESCOM
 

Plus de ESCOM (20)

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
 
Art2
Art2Art2
Art2
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
 

Dernier

Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
RigoTito
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 

Dernier (20)

Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 

Introduccion redes neuronales artificiales

  • 1. Unidad 1 Repaso de Redes Neuronales Artificiales
  • 2.
  • 3.
  • 4. Estructura Típica De Una Neurona Biológica
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. Capas en una RNA.
  • 14.
  • 15.
  • 16. Niveles o capas de neuronas
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. Modelado de Redes Neuronales Artificiales
  • 29.
  • 30.
  • 31. Funciones de transferencia Esta función se utiliza en el Perceptron para crear neuronas las cuales toman decisiones de clasificación. Cuando este tipo de función ( hardlim ) toma en cuenta un cierto umbral su salida se incrementará de 0 a 1 cuando p exceda un valor dado por -b/w .
  • 32.
  • 33.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41. Red neuronal de Múltiples Capas
  • 42. Red neuronal con varias capa de neuronas (forma condensada)
  • 43. Redes Monocapa: l 1 l n l 2 Las redes monocapa se utilizan típicamente en en tareas relacionadas en lo que se conoce como autoasociación: por ejemplo, para regenerar informaciones de entrada que se presentan a la red incompletas o distorsionadas . P/ejemplo Hopfield, BSB, Learnig Matrix
  • 44. Redes Multicapa: Redes con conexiones hacia delante (feedforward) Este tipo de redes son especialmente útiles en aplicaciones de reconocimiento o clasificación de patrones. En este tipo de redes, todas las señales neuronales se propagan hacia adelante a través de las capas de la red. No existen conexiones hacia atrás y normal- mente tampoco autorrecurrentes, ni laterales.
  • 45. Redes con conexiones hacia adelante y hacia atrás (feedforward / feedback): En este tipo de redes circula información tanto hacia adelante como hacia atrás durante el funcionamiento de la red. Para que esto sea posible, existen conexiones feedforward y conexiones feedback entre las neuronas. P/ ejemplo: ART, BAM, CABAM.
  • 46. Redes Con Conexiones Hacia Adelante Y Hacia Atrás (feedforward / Feedback) También existen algunas que tienen conexiones laterales entre neuronas de la misma capa. Estas conexiones se diseñan como excitadores (con peso positivo) o inhibidoras (con peso negativo), estableciendose una competencia entre las neuronas correspondientes.
  • 47. Red neuronal de tipo feedforward .
  • 48. Red neuronal de tipo feedforward .
  • 49. Conexiones con propagación hacia atrás en RNA
  • 50. Red neuronal de tipo recurrente
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 61. Aprendizaje por Reforzamiento Se basa en la idea de no disponer de un ejemplo completo del comportamiento deseado, es decir, la función del supervisor se reduce a indicar mediante una señal de refuerzo si la salida de la red se ajusta a la deseada (éxito=1, fracaso=-1) y en función de ello se ajustan los pesos basándose en un mecanismo de probabilidades.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72. Ejemplos de Redes con Aprendizaje Competitivo y Cooperativo LVQ ART
  • 73.
  • 74.
  • 75. La matriz de pesos de la red es:
  • 76.
  • 77.
  • 78.
  • 79. Recordando que la función de transferencia hardlim se define como: a n=Wp+b n
  • 80. Unificación de la regla de aprendizaje
  • 81. El umbral es un peso con una entrada de 1.
  • 82. Perceptron de Múltiples-Neuronas Para actualizar la ith fila de la matriz de pesos: En forma de Matriz:
  • 83. Capacidad de la regla de aprendizaje del Perceptron La regla del Perceptron siempre convergirá a los pesos que cumplan con la clasificación deseada, asumiendo que tales pesos existan. NOTA: Recordar que la longitud del vector de pesos no es importante, lo único importante es su dirección.
  • 84. Limitaciones del Perceptron Frontera de decisión lineal Problemas linealmente No separables
  • 85. UNIDAD VI Redes de propagación hacia delante y aprendizaje supervisado RED ADALINE Adaline simple. Algoritmo LMS .
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91. Diferencias entre . . . PERCEPTRON ADALINE Función de Transferencia ESCALON LINEAL Resolución de problemas Linealmente Separables Linealmente Separables Comportamiento con respecto al RUIDO Sensible al Ruido Minimiza el Ruido Algoritmo de aprendizaje Regla de aprendizaje Del Perceptron LMS
  • 92. Red ADALINE a p u r e l i n W p b +   W p b + = = a i p u r e l i n n i   p u r e l i n w T i p b i +   w T i p b i + = = =  w i w i 1  w i 2  w i R  =
  • 93. ADALINE de dos entradas a p u r e l i n n   p u r e l i n w T 1 p b +   w T 1 p b + = = = a w T 1 p b + w 1 1  p 1 w 1 2  p 2 b + + = =
  • 94. Mínimo Error Cuadrático p 1 t 1 { , } p 2 t 2 { , }  p Q t Q { , }    Conjunto Entrenamiento: p q t q Entrada: Objetivo: x w 1 b = z p 1 = a w T 1 p b + = a x T z = F x   E e 2   = E t a –   2   E t x T z –   2   = = Notación: Mean Square Error: Donde: E es un valor esperado
  • 95. Ecuaciones Importantes en el Algoritmo LMS W k 1 +   W k   2  e k   p T k   + = b k 1 +   b k   2  e k   + = En forma de Matriz: Donde:  es el parámetro de aprendizaje máximo w i k 1 +   w i k   2  e i k   p k   + = b i k 1 +   b i k   2  e i k   + =
  • 96. Condiciones para la Estabilidad e i g I 2  R –     1 2   i – 1  = Resumiendo, las condiciones de estabilidad son:  i 0  Ya que , 1 2   i – 1  .  1   i para toda i  0  1  m a x    (donde  i es un eigenvalor de R ) 1 2   i – 1 – 
  • 97. Modelo de una neurona lineal en MATLAB p(1) p(2) p(3) p(R) W(1,1) W(1,R) 1 b n a  a = purelin(w*p+b) a = w*p+b 0 0 1 -1 a a b/w b/w p n a = purelin(n)
  • 98. Regla de Aprendizaje en ADALINE · ADALINE utiliza un aprendizaje OFF LINE con supervisión. · Este aprendizaje es la llamada Regla de Widrow-Hoff ( Regla Delta o Regla del Mínimo Error Cuadrático Medio LMS Least Mean Square)
  • 99. Regla de Widrow-Hoff Consiste en hallar el vector de pesos W deseado, único, que deberá asociar cada vector de entrada con su correspondiente valor de salida correcto o deseado. La regla minimiza el error cuadrático medio definido como: donde: es la función de error R R R a t       p R R R p 1 2 2 1  
  • 100. Esta función de error está definida en el espacio de pesos multidimensional para un conjunto de entradas, y la regla de Widrow-Hoff busca el punto de este espacio donde se encuentra el mínimo global. Con función de activación lineal Con función de activación sigmoidal
  • 101. Se utiliza el método de gradiente decreciente para saber en qué dirección se encuentra el mínimo global de dicha superficie. Las modificaciones que se realizan a los pesos son proporcionales al gradiente decreciente de la función de error, por lo que cada nuevo punto calculado está más próximo al punto mínimo.             j R j w lr w 2 
  • 102. a) ADALINE b) PERCEPTRÓN
  • 103. La regla de Widrow-Hoff es implementada realizando cambios a los pesos en la dirección opuesta en la que el error está incrementando y absorbiendo la constante -2 en lr . En forma de matriz: Transformando a la expresión del bias (considerando que el bias son pesos con entradas de 1): ) ( ) ( ) , ( j p j e lr j i W     T Ep lr W    E lr b   
  • 104. Algoritmo de aprendizaje en ADALINE 1. Se aplica un vector o patrón de entrada P R en las entradas del ADALINE. 2. Se obtiene la salida lineal a R = WP R y se calcula la diferencia con respecto a la salida deseada: E R =T R -a R 3. Se actualizan los pesos: W( t+1 ) = W(t) + lrE R P R 4. Se repiten los pasos 1 al 3 con todos los vectores de entrada. 5. Si el error cuadrático medio es un valor reducido aceptable, termina el proceso de aprendizaje, sino, se repite otra vez desde el paso 1 con todos los patrones.
  • 105.
  • 106.
  • 107.
  • 108. Ejercicio:  1 1.0  2 0.0  3 2.0 =  =  = R E p p T   1 2 - - - p 1 p 1 T 1 2 - - - p 2 p 2 T + = = R 1 2 - - - 1 – 1 1 – 1 – 1 1 – 1 2 - - - 1 1 1 – 1 1 1 – + 1 0 0 0 1 1 – 0 1 – 1 = =  1  m a x - - - - - - - - - - - -  1 2.0 - - - - - - - 0.5 = = p 1 1 – 1 1 – t 1  1 – = =           p 2 1 1 1 – t 2  1 = =           Plátano Manzana
  • 109. Iteración: 1 e 0   t 0   a 0   t 1 a 0   1 – 0 1 – = – = – = – = W 1   W 0   2  e 0   p T 0   + = W 1   0 0 0 2 0.2   1 –   1 – 1 1 – T 0.4 0.4 – 0.4 = + = a 0   W 0   p 0   W 0   p 1 0 0 0 1 – 1 1 – 0 = = = = Plátano
  • 110. Iteración: 2 Manzana a 1   W 1   p 1   W 1   p 2 0.4 0.4 – 0.4 1 1 1 – 0.4 – = = = = e 1   t 1   a 1   t 2 a 1   1 0.4 –   1.4 = – = – = – = W 2   0.4 0.4 – 0.4 2 0.2   1.4   1 1 1 – T 0.96 0.16 0.16 – = + =
  • 111. Iteración: 3 e 2   t 2   a 2   t 1 a 2   1 – 0.64 –   0.36 – = – = – = – = W 3   W 2   2  e 2   p T 2   + 1.1040 0.0160 0.0160 – = = W    1 0 0 = a 2   W 2   p 2   W 2   p 1 0.96 0.16 0.16 – 1 – 1 1 – 0.64 – = = = =