SlideShare une entreprise Scribd logo
1  sur  16
Kalman Filtering

Presented by
Muhammad Irfan Anjum
Outline
 Introduction
 Dynamical Signal Models
 Scalar Kalman Filter
 Vector Kalman Filter

 Extended Kalman Filter
 Simulation results
Introduction
• Uses a series of measurements over time, and produces estimates of
unknown variables that tend to be more precise than those based on a
single measurement alone.
• Operates recursively on streams of noisy input data to produce a
statistically optimal estimate of the underlying system state.
• Two step process
– Estimates of current state variables with their uncertainties.
– Estimates are updated using weighted average after observing
output.
• Operates on real time data, no additional past information is required.
Dynamical Signal Models

x[ n ]
x[ n ]

ˆ
A[ n ]

A

w[ n ]

A[ n ]

w[ n ]

x[ n ]
Gauss Markov Process
1st order Gauss Markov Process:

s[ n ]

as [ n

1]

u[ n ]

u [n ]

n

s[ n ]

a

n 1

k

s [ 1]

a u [ n 1]

s[n ]
B

k 0

E ( s [ n ])

a

n

1
s

Az

Vector Gauss-Markov Model:

s[ n ]

As [ n

1]

Bu [ n ], n

0

n

s[ n ]

A

n 1

k

s [ 1]

A Bu [ n
k 0

1]

1
Scalar Kalman Filter
s[n ]

u [n ]

az

1

(a) Dynamical Model
x[n ]

s[n ]

ˆ
u[ n ]

~[ n ]
x

ˆ
s[ n | n ]

K [n]

w[n ]

az
ˆ
s[ n | n 1]

(b) Kalman Filter

1
Scalar Kalman Filter
Transmitted Signal:

s[ n ]

as [ n

1]

Received Signal:

x[ n ]

Prediction:

ˆ
s[ n | n

1]

ˆ
a s[ n

M [n | n

1]

a M [n

s[ n ]

u[ n ]

w[ n ]
1| n

1]

Minimum Prediction MMSE:

Kalman Gain:

2

1| n

1]

M [n | n

K [n]

2

ˆ
s[ n | n ]

Minimum MSE:

M [n | n]

ˆ
s[ n | n
(1

1]

M [n | n

w

Correction:

2
u

1]

K [ n ]( x[ n ]

K [ n ]) M [ n | n

1]

ˆ
s[ n | n
1]

1])
Vector Kalman Filter
u [n ]

s[n ]
B

Az

x[n ]

s[n ]

1

ˆ
u[ n ]

~[ n ]
x

ˆ
s[ n | n ]

K [n ]

h[n ]

w[n ]

h[n ]

Az
ˆ
s[ n | n 1]

1
Scalar state Vector Kalman Filter
Transmitted Signal:

s[ n ]

As [ n

Received Signal:

x[ n ]

h [ n ] s[ n ]

Prediction:

ˆ
s[ n | n

Minimum Prediction MMSE:

Kalman Gain:

1]

Bu [ n ]

T

ˆ
A s[ n

1]

M [n | n

1]
2

n

ˆ
s[ n | n ]

Minimum MSE:

M [n | n]

1| n

AM [ n

M [n | n

K [n]

Correction:

w[ n ]

1| n

T

1]

1]

BQB

T

1] h [ n ]

h [ n ]M [ n | n

ˆ
s[ n | n
(I

1]

1] h [ n ]

K [ n ]( x [ n ]
T

ˆ
h [ n ] s[ n | n

K [ n ] h [ n ]) M [ n | n

T

1]

1])
Vector state Vector Kalman Filter
Transmitted Signal:

Received Signal:
Prediction:

s[ n ]

As [ n

x[ n ]

H [ n ] s[ n ]

ˆ
s[ n | n

Minimum Prediction MMSE:

Kalman Gain:

1]

w[ n ]

ˆ
A s[ n

1]

M [n | n

Bu [ n ]

1]

1| n

AM [ n
M [n | n

K [n]
C [n]

Correction:

ˆ
s[ n | n ]

Minimum MSE:

M [n | n]

1| n
1] H

H [ n ]M [ n | n

ˆ
s[ n | n
(I

1]

1]

T

1]

BQB

T

[n]
1] H

T

K [ n ]( x [ n ]

K [ n ] H [ n ]) M [ n | n

[n]

ˆ
H [ n ] s[ n | n
1]

1])
Extended Kalman Filter
s[ n ]

Extended Kalman Filter

As [ n

x[ n ]

Vector Kalman Filter

1]

Bu [ n ]

H [ n ] s[ n ]

w[ n ]

a ( s[ n

1])

x[ n ]

a ( s[ n

s[ n ]

h ( s[ n ])

w[ n ]

ˆ
a ( s[ n

1])

1| n

Bu [ n ]

a

1])

s[ n

ˆ
h ( s[ n | n

h ( s [ n ])

1])

h
s[ n ]

A[ n

1]

a
s[ n

1]

|s[ n

ˆ
1 ] s [ n 1| n 1 ]

H [n]

1]

|s[ n ]
h
s[ n ]

|s[ n

ˆ
1 ] s [ n 1| n 1 ]

ˆ
s [ n |n 1]

|s[ n ]

ˆ
s [ n 1| n 1 ]
Extended Kalman Filter

ˆ
s[ n | n

1]

ˆ
a ( s[ n

M [n | n

1]

A[ n

1| n

1] M [ n

1])
1| n

M [n | n

K [n]
C [n]

T

1] A [ n

1]

1] H

H [ n ]M [ n | n

ˆ
s[ n | n ]

ˆ
s[ n | n

M [n | n]

(I

1]

T

T

BQB

[n]
1] H

T

K [ n ]( x[ n ]

K [ n ] H [ n ]) M [ n | n

1]

[n]

ˆ
h ( s[ n | n

1]))
Particle Tracking using Scalar Kalman filter
MMSE in Scalar Kalman filter particle tracking
Particle Tracking using Vector Kalman filter
Particle Tracking using Extended Kalman filter

Contenu connexe

Similaire à Kalman filter partilce tracking

Equalization
EqualizationEqualization
Equalizationbhabendu
 
Report kalman filtering
Report kalman filteringReport kalman filtering
Report kalman filteringIrfan Anjum
 
Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm newIsrael Gbati
 
Paper id 26201483
Paper id 26201483Paper id 26201483
Paper id 26201483IJRAT
 
DSP2_slides_04_adaptievefiltering.pdf
DSP2_slides_04_adaptievefiltering.pdfDSP2_slides_04_adaptievefiltering.pdf
DSP2_slides_04_adaptievefiltering.pdfRakuoane
 
Lecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxLecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxHarisMasood20
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
talk_Universal Denoising and Approximate Message Passing.pdf
talk_Universal Denoising and Approximate Message Passing.pdftalk_Universal Denoising and Approximate Message Passing.pdf
talk_Universal Denoising and Approximate Message Passing.pdfssuserb56b36
 
Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Vinod Sharma
 
Chapter2.pptx
Chapter2.pptxChapter2.pptx
Chapter2.pptxSanjarBey
 

Similaire à Kalman filter partilce tracking (14)

Before quiz 2
Before quiz 2Before quiz 2
Before quiz 2
 
Equalization
EqualizationEqualization
Equalization
 
Report kalman filtering
Report kalman filteringReport kalman filtering
Report kalman filtering
 
Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
 
Paper id 26201483
Paper id 26201483Paper id 26201483
Paper id 26201483
 
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
 
DSP2_slides_04_adaptievefiltering.pdf
DSP2_slides_04_adaptievefiltering.pdfDSP2_slides_04_adaptievefiltering.pdf
DSP2_slides_04_adaptievefiltering.pdf
 
Av 738 - Adaptive Filtering - Kalman Filters
Av 738 - Adaptive Filtering - Kalman Filters Av 738 - Adaptive Filtering - Kalman Filters
Av 738 - Adaptive Filtering - Kalman Filters
 
Lecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxLecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptx
 
IARE_DSP_PPT.pptx
IARE_DSP_PPT.pptxIARE_DSP_PPT.pptx
IARE_DSP_PPT.pptx
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
talk_Universal Denoising and Approximate Message Passing.pdf
talk_Universal Denoising and Approximate Message Passing.pdftalk_Universal Denoising and Approximate Message Passing.pdf
talk_Universal Denoising and Approximate Message Passing.pdf
 
Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...
 
Chapter2.pptx
Chapter2.pptxChapter2.pptx
Chapter2.pptx
 

Plus de Irfan Anjum

DLD Lec 8 multiplexers.pptx
DLD Lec 8 multiplexers.pptxDLD Lec 8 multiplexers.pptx
DLD Lec 8 multiplexers.pptxIrfan Anjum
 
Control hazards MIPS pipeline.pptx
Control hazards MIPS pipeline.pptxControl hazards MIPS pipeline.pptx
Control hazards MIPS pipeline.pptxIrfan Anjum
 
BitCoin Price Predictor.pptx
BitCoin Price Predictor.pptxBitCoin Price Predictor.pptx
BitCoin Price Predictor.pptxIrfan Anjum
 
Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Irfan Anjum
 
Moore and Mealy machines
Moore and Mealy machinesMoore and Mealy machines
Moore and Mealy machinesIrfan Anjum
 

Plus de Irfan Anjum (6)

DLD Lec 8 multiplexers.pptx
DLD Lec 8 multiplexers.pptxDLD Lec 8 multiplexers.pptx
DLD Lec 8 multiplexers.pptx
 
Lec 04 DLD.pptx
Lec 04 DLD.pptxLec 04 DLD.pptx
Lec 04 DLD.pptx
 
Control hazards MIPS pipeline.pptx
Control hazards MIPS pipeline.pptxControl hazards MIPS pipeline.pptx
Control hazards MIPS pipeline.pptx
 
BitCoin Price Predictor.pptx
BitCoin Price Predictor.pptxBitCoin Price Predictor.pptx
BitCoin Price Predictor.pptx
 
Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)
 
Moore and Mealy machines
Moore and Mealy machinesMoore and Mealy machines
Moore and Mealy machines
 

Kalman filter partilce tracking

  • 2. Outline  Introduction  Dynamical Signal Models  Scalar Kalman Filter  Vector Kalman Filter  Extended Kalman Filter  Simulation results
  • 3. Introduction • Uses a series of measurements over time, and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone. • Operates recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system state. • Two step process – Estimates of current state variables with their uncertainties. – Estimates are updated using weighted average after observing output. • Operates on real time data, no additional past information is required.
  • 4. Dynamical Signal Models x[ n ] x[ n ] ˆ A[ n ] A w[ n ] A[ n ] w[ n ] x[ n ]
  • 5. Gauss Markov Process 1st order Gauss Markov Process: s[ n ] as [ n 1] u[ n ] u [n ] n s[ n ] a n 1 k s [ 1] a u [ n 1] s[n ] B k 0 E ( s [ n ]) a n 1 s Az Vector Gauss-Markov Model: s[ n ] As [ n 1] Bu [ n ], n 0 n s[ n ] A n 1 k s [ 1] A Bu [ n k 0 1] 1
  • 6. Scalar Kalman Filter s[n ] u [n ] az 1 (a) Dynamical Model x[n ] s[n ] ˆ u[ n ] ~[ n ] x ˆ s[ n | n ] K [n] w[n ] az ˆ s[ n | n 1] (b) Kalman Filter 1
  • 7. Scalar Kalman Filter Transmitted Signal: s[ n ] as [ n 1] Received Signal: x[ n ] Prediction: ˆ s[ n | n 1] ˆ a s[ n M [n | n 1] a M [n s[ n ] u[ n ] w[ n ] 1| n 1] Minimum Prediction MMSE: Kalman Gain: 2 1| n 1] M [n | n K [n] 2 ˆ s[ n | n ] Minimum MSE: M [n | n] ˆ s[ n | n (1 1] M [n | n w Correction: 2 u 1] K [ n ]( x[ n ] K [ n ]) M [ n | n 1] ˆ s[ n | n 1] 1])
  • 8. Vector Kalman Filter u [n ] s[n ] B Az x[n ] s[n ] 1 ˆ u[ n ] ~[ n ] x ˆ s[ n | n ] K [n ] h[n ] w[n ] h[n ] Az ˆ s[ n | n 1] 1
  • 9. Scalar state Vector Kalman Filter Transmitted Signal: s[ n ] As [ n Received Signal: x[ n ] h [ n ] s[ n ] Prediction: ˆ s[ n | n Minimum Prediction MMSE: Kalman Gain: 1] Bu [ n ] T ˆ A s[ n 1] M [n | n 1] 2 n ˆ s[ n | n ] Minimum MSE: M [n | n] 1| n AM [ n M [n | n K [n] Correction: w[ n ] 1| n T 1] 1] BQB T 1] h [ n ] h [ n ]M [ n | n ˆ s[ n | n (I 1] 1] h [ n ] K [ n ]( x [ n ] T ˆ h [ n ] s[ n | n K [ n ] h [ n ]) M [ n | n T 1] 1])
  • 10. Vector state Vector Kalman Filter Transmitted Signal: Received Signal: Prediction: s[ n ] As [ n x[ n ] H [ n ] s[ n ] ˆ s[ n | n Minimum Prediction MMSE: Kalman Gain: 1] w[ n ] ˆ A s[ n 1] M [n | n Bu [ n ] 1] 1| n AM [ n M [n | n K [n] C [n] Correction: ˆ s[ n | n ] Minimum MSE: M [n | n] 1| n 1] H H [ n ]M [ n | n ˆ s[ n | n (I 1] 1] T 1] BQB T [n] 1] H T K [ n ]( x [ n ] K [ n ] H [ n ]) M [ n | n [n] ˆ H [ n ] s[ n | n 1] 1])
  • 11. Extended Kalman Filter s[ n ] Extended Kalman Filter As [ n x[ n ] Vector Kalman Filter 1] Bu [ n ] H [ n ] s[ n ] w[ n ] a ( s[ n 1]) x[ n ] a ( s[ n s[ n ] h ( s[ n ]) w[ n ] ˆ a ( s[ n 1]) 1| n Bu [ n ] a 1]) s[ n ˆ h ( s[ n | n h ( s [ n ]) 1]) h s[ n ] A[ n 1] a s[ n 1] |s[ n ˆ 1 ] s [ n 1| n 1 ] H [n] 1] |s[ n ] h s[ n ] |s[ n ˆ 1 ] s [ n 1| n 1 ] ˆ s [ n |n 1] |s[ n ] ˆ s [ n 1| n 1 ]
  • 12. Extended Kalman Filter ˆ s[ n | n 1] ˆ a ( s[ n M [n | n 1] A[ n 1| n 1] M [ n 1]) 1| n M [n | n K [n] C [n] T 1] A [ n 1] 1] H H [ n ]M [ n | n ˆ s[ n | n ] ˆ s[ n | n M [n | n] (I 1] T T BQB [n] 1] H T K [ n ]( x[ n ] K [ n ] H [ n ]) M [ n | n 1] [n] ˆ h ( s[ n | n 1]))
  • 13. Particle Tracking using Scalar Kalman filter
  • 14. MMSE in Scalar Kalman filter particle tracking
  • 15. Particle Tracking using Vector Kalman filter
  • 16. Particle Tracking using Extended Kalman filter