SlideShare une entreprise Scribd logo
1  sur  37
Télécharger pour lire hors ligne
Section 6-4
e and Natural Logarithms
Begin by opening your books to page
389. Pair up with a partner to work on
  the In-Class Activity. Make sure to
record your observations on your note
                sheet.
e:
e:




Comes out to be approximately 2.7182818284590...
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1
          r
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              −1
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              − 1 ≈ .0762685367
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              − 1 ≈ .0762685367
         So the annual yield is about 7.63%
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              − 1 ≈ .0762685367
          So the annual yield is about 7.63%

b. The value of the investment after one year
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              − 1 ≈ .0762685367
          So the annual yield is about 7.63%

b. The value of the investment after one year

      10,000 + 10,000(e        .0735
                                       − 1)
Example 1
 If $10,000 is put into bonds that pay 7.35% interest
           compounded continuously, find:
a. The annual yield
        e −1= e
          r           .0735
                              − 1 ≈ .0762685367
          So the annual yield is about 7.63%

b. The value of the investment after one year

      10,000 + 10,000(e        .0735
                                       − 1) ≈ $10,762.69
Continuous Change Model
Continuous Change Model
When your principal P grows or decays continuously
and an annual rate r, the amount A(t) after t years is:
Continuous Change Model
When your principal P grows or decays continuously
and an annual rate r, the amount A(t) after t years is:


                    A(t) = Pe    rt
Continuous Change Model
When your principal P grows or decays continuously
and an annual rate r, the amount A(t) after t years is:


                    A(t) = Pe    rt



 This means we have a model we can work with for
continuous compounding, just like the other types of
      compounding we saw earlier in the year.
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe   rt
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
b. How does this compare with the balance if the
     interest were compounded annually?
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
b. How does this compare with the balance if the
     interest were compounded annually?
 A = P(1+ r )   t
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
b. How does this compare with the balance if the
     interest were compounded annually?
 A = P(1+ r ) = 10,000(1.0735)
             t                      5
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
b. How does this compare with the balance if the
     interest were compounded annually?
 A = P(1+ r ) = 10,000(1.0735) ≈ $14,256.41
             t                      5
Example 2
Suppose $10,000 is put into a 5-year certificate of
 deposit that pays 7.35% interest compounded
                  continuously.
a. What is the balance at the end of the period?
   A(t) = Pe = 10,000e
            rt           .0735(5)
                                    ≈ $14,441.20
b. How does this compare with the balance if the
     interest were compounded annually?
 A = P(1+ r ) = 10,000(1.0735) ≈ $14,256.41
             t                      5



                 About $185 more
The Exponential Function with Base e:
The Exponential Function with Base e:

            A function of the form f(x) = ex
The Exponential Function with Base e:

            A function of the form f(x) = ex


Natural Logarithm:
The Exponential Function with Base e:

            A function of the form f(x) = ex


Natural Logarithm:
      The logarithm to the base e; written as ln x
The Exponential Function with Base e:

            A function of the form f(x) = ex


Natural Logarithm:
      The logarithm to the base e; written as ln x
             In other words, ln x = loge x
The Exponential Function with Base e:

            A function of the form f(x) = ex


Natural Logarithm:
      The logarithm to the base e; written as ln x
             In other words, ln x = loge x

This means that the Exponential Function with Base e
and the Natural Logarithm are inverses of each other.
Example 3
Consider the region bounded by the following graphs:
 y = , the x-axis, the line x = a, the line x = b, x > 0.
      1
      x

 Using calculus, it can be proven that the area of that
region is ln b - ln a. What then is the area bounded by
                        the graphs:
 y=   1
      x
        ,   the x-axis, the line x = 1, the line x = 7, x > 0?
Example 3
Consider the region bounded by the following graphs:
 y = , the x-axis, the line x = a, the line x = b, x > 0.
      1
      x

 Using calculus, it can be proven that the area of that
region is ln b - ln a. What then is the area bounded by
                        the graphs:
 y=   1
      x
        ,   the x-axis, the line x = 1, the line x = 7, x > 0?


            ln7 − ln1
Example 3
Consider the region bounded by the following graphs:
 y = , the x-axis, the line x = a, the line x = b, x > 0.
      1
      x

 Using calculus, it can be proven that the area of that
region is ln b - ln a. What then is the area bounded by
                        the graphs:
 y=   1
      x
        ,   the x-axis, the line x = 1, the line x = 7, x > 0?


            ln7 − ln1 ≈ 1.945910149
Example 3
Consider the region bounded by the following graphs:
 y = , the x-axis, the line x = a, the line x = b, x > 0.
      1
      x

 Using calculus, it can be proven that the area of that
region is ln b - ln a. What then is the area bounded by
                        the graphs:
 y=   1
      x
        ,   the x-axis, the line x = 1, the line x = 7, x > 0?


            ln7 − ln1 ≈ 1.945910149           units 2
Homework
Homework


       p. 394 #1-20

Contenu connexe

Similaire à Notes 6-4

Similaire à Notes 6-4 (20)

4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
 
Calc 5.5b
Calc 5.5bCalc 5.5b
Calc 5.5b
 
Compoundinterestle
CompoundinterestleCompoundinterestle
Compoundinterestle
 
Ross7e ch04
Ross7e ch04Ross7e ch04
Ross7e ch04
 
6_Exponential_Models.pptx
6_Exponential_Models.pptx6_Exponential_Models.pptx
6_Exponential_Models.pptx
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chap005
Chap005Chap005
Chap005
 
6.1 Exponential Functions
6.1 Exponential Functions6.1 Exponential Functions
6.1 Exponential Functions
 
6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models
 
6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models
 
CFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdfCFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdf
 
Time Value of Money.doc
Time Value of Money.docTime Value of Money.doc
Time Value of Money.doc
 
Chapter 2 full slides to students
Chapter 2   full slides to studentsChapter 2   full slides to students
Chapter 2 full slides to students
 
10_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 1110_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 11
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Time Value of money
Time Value of moneyTime Value of money
Time Value of money
 
unit three.pdf
unit three.pdfunit three.pdf
unit three.pdf
 
Compund Interest
Compund InterestCompund Interest
Compund Interest
 
Lgr finite-ch5
Lgr finite-ch5Lgr finite-ch5
Lgr finite-ch5
 
Cal2 ba dinh_hai_slides_ch1
Cal2 ba dinh_hai_slides_ch1Cal2 ba dinh_hai_slides_ch1
Cal2 ba dinh_hai_slides_ch1
 

Plus de Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3Jimbo Lamb
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2Jimbo Lamb
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9Jimbo Lamb
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8Jimbo Lamb
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6Jimbo Lamb
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6Jimbo Lamb
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5Jimbo Lamb
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4Jimbo Lamb
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3Jimbo Lamb
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2Jimbo Lamb
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1Jimbo Lamb
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5Jimbo Lamb
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4Jimbo Lamb
 

Plus de Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 

Dernier

The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfGale Pooley
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Delhi Call girls
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfGale Pooley
 
20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdfAdnet Communications
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfGale Pooley
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...makika9823
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Pooja Nehwal
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxanshikagoel52
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptxFinTech Belgium
 
The Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfThe Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfGale Pooley
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Pooja Nehwal
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...shivangimorya083
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...ssifa0344
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...Call Girls in Nagpur High Profile
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyTyöeläkeyhtiö Elo
 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex
 
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsHigh Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Quarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingQuarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingMaristelaRamos12
 

Dernier (20)

The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdf
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdf
 
20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdf
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptx
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
 
The Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfThe Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdf
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
 
Veritas Interim Report 1 January–31 March 2024
Veritas Interim Report 1 January–31 March 2024Veritas Interim Report 1 January–31 March 2024
Veritas Interim Report 1 January–31 March 2024
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024
 
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsHigh Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Quarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingQuarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of Marketing
 

Notes 6-4

  • 1. Section 6-4 e and Natural Logarithms
  • 2. Begin by opening your books to page 389. Pair up with a partner to work on the In-Class Activity. Make sure to record your observations on your note sheet.
  • 3. e:
  • 4. e: Comes out to be approximately 2.7182818284590...
  • 5. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield
  • 6. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1 r
  • 7. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 −1
  • 8. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 − 1 ≈ .0762685367
  • 9. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 − 1 ≈ .0762685367 So the annual yield is about 7.63%
  • 10. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 − 1 ≈ .0762685367 So the annual yield is about 7.63% b. The value of the investment after one year
  • 11. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 − 1 ≈ .0762685367 So the annual yield is about 7.63% b. The value of the investment after one year 10,000 + 10,000(e .0735 − 1)
  • 12. Example 1 If $10,000 is put into bonds that pay 7.35% interest compounded continuously, find: a. The annual yield e −1= e r .0735 − 1 ≈ .0762685367 So the annual yield is about 7.63% b. The value of the investment after one year 10,000 + 10,000(e .0735 − 1) ≈ $10,762.69
  • 14. Continuous Change Model When your principal P grows or decays continuously and an annual rate r, the amount A(t) after t years is:
  • 15. Continuous Change Model When your principal P grows or decays continuously and an annual rate r, the amount A(t) after t years is: A(t) = Pe rt
  • 16. Continuous Change Model When your principal P grows or decays continuously and an annual rate r, the amount A(t) after t years is: A(t) = Pe rt This means we have a model we can work with for continuous compounding, just like the other types of compounding we saw earlier in the year.
  • 17. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period?
  • 18. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe rt
  • 19. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5)
  • 20. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20
  • 21. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20 b. How does this compare with the balance if the interest were compounded annually?
  • 22. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20 b. How does this compare with the balance if the interest were compounded annually? A = P(1+ r ) t
  • 23. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20 b. How does this compare with the balance if the interest were compounded annually? A = P(1+ r ) = 10,000(1.0735) t 5
  • 24. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20 b. How does this compare with the balance if the interest were compounded annually? A = P(1+ r ) = 10,000(1.0735) ≈ $14,256.41 t 5
  • 25. Example 2 Suppose $10,000 is put into a 5-year certificate of deposit that pays 7.35% interest compounded continuously. a. What is the balance at the end of the period? A(t) = Pe = 10,000e rt .0735(5) ≈ $14,441.20 b. How does this compare with the balance if the interest were compounded annually? A = P(1+ r ) = 10,000(1.0735) ≈ $14,256.41 t 5 About $185 more
  • 27. The Exponential Function with Base e: A function of the form f(x) = ex
  • 28. The Exponential Function with Base e: A function of the form f(x) = ex Natural Logarithm:
  • 29. The Exponential Function with Base e: A function of the form f(x) = ex Natural Logarithm: The logarithm to the base e; written as ln x
  • 30. The Exponential Function with Base e: A function of the form f(x) = ex Natural Logarithm: The logarithm to the base e; written as ln x In other words, ln x = loge x
  • 31. The Exponential Function with Base e: A function of the form f(x) = ex Natural Logarithm: The logarithm to the base e; written as ln x In other words, ln x = loge x This means that the Exponential Function with Base e and the Natural Logarithm are inverses of each other.
  • 32. Example 3 Consider the region bounded by the following graphs: y = , the x-axis, the line x = a, the line x = b, x > 0. 1 x Using calculus, it can be proven that the area of that region is ln b - ln a. What then is the area bounded by the graphs: y= 1 x , the x-axis, the line x = 1, the line x = 7, x > 0?
  • 33. Example 3 Consider the region bounded by the following graphs: y = , the x-axis, the line x = a, the line x = b, x > 0. 1 x Using calculus, it can be proven that the area of that region is ln b - ln a. What then is the area bounded by the graphs: y= 1 x , the x-axis, the line x = 1, the line x = 7, x > 0? ln7 − ln1
  • 34. Example 3 Consider the region bounded by the following graphs: y = , the x-axis, the line x = a, the line x = b, x > 0. 1 x Using calculus, it can be proven that the area of that region is ln b - ln a. What then is the area bounded by the graphs: y= 1 x , the x-axis, the line x = 1, the line x = 7, x > 0? ln7 − ln1 ≈ 1.945910149
  • 35. Example 3 Consider the region bounded by the following graphs: y = , the x-axis, the line x = a, the line x = b, x > 0. 1 x Using calculus, it can be proven that the area of that region is ln b - ln a. What then is the area bounded by the graphs: y= 1 x , the x-axis, the line x = 1, the line x = 7, x > 0? ln7 − ln1 ≈ 1.945910149 units 2
  • 37. Homework p. 394 #1-20