SlideShare une entreprise Scribd logo
1  sur  36
RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO  2010
RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico  2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de  x  para los que se cumple:  f ( x ) = 0  Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
RAÍCES DE ECUACIONES Para resolver ecuaciones no lineales existen varios métodos numéricos  que los podemos clasificar así: Método grafico   Cerrado o acotado:   (requiere de dos valores de x que encierren la raíz) ,[object Object],[object Object],Abierto:  ( requiere de uno o dos valores de x, pero no necesariamente encierran la raíz) ,[object Object],[object Object],[object Object]
RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En  y= f(x), establece el valor  de x para el cual f(x)=0. x 1.  Si en un intervalo {a,b} cerrado se cumple que :  no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias.  f(a).f(b)>0 f(x) a b
MÉTODO GRAFICO 2.  Si en un intervalo {a,b} cerrado se cumple que :  Entonces existen dos raíces reales  f(a).f(b)>0 f(x) a b x
MÉTODO GRAFICO 3.  Si en un intervalo {a,b} cerrado se cumple que :  da la certeza de encontrar una sola raíz real en el intervalo.  f(a).f(b)<0 x f(x) a b
MÉTODO GRAFICO 4.  Si en un intervalo {a,b} cerrado se cumple que :  hay más de dos raíces.  f(a).f(b)<0 f(x) a b x
MÉTODO GRAFICO 5.  También puede existir una función  , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico,  pues la ecuación es tangente al eje x .  f(x) a b x
MÉTODO DE BISECCIÓN   Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental  f ( x ) y un intervalo [ x i,  x s], tal que  f ( x i) y  f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
[object Object],[object Object],[object Object],[object Object],xi xs ,[object Object],Donde:  ∆x = longitud del intervalo  n= numero de iteraciones error
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz  f ( x ) = 0, es decir, dos puntos  x i y  x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación,  x r, se calcula como la intersección con el eje  X  de la recta que une ambos puntos empleando la ecuación  La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla  f ( xi ) f ( x r) < 0 ;  f ( xr ) f ( x s) < 0.
FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
MÉTODO DE   PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
MÉTODO DE   PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que  y solución monotónicamente convergente  (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 2. Que  y  solución oscilatoriamente convergente  (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 3. Que  y  solución monotónicamente divergente  (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 4. Que  y  solución oscilatoriamente divergente  (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
MÉTODO DE SECANTE   Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando.  Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
MÉTODO DE SECANTE   El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
MÉTODO DE SECANTE   X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
MÉTODO DE SECANTE   0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
F i n

Contenu connexe

Tendances

Presentacion integral definida (1)
Presentacion integral definida (1)Presentacion integral definida (1)
Presentacion integral definida (1)Mariana Azpeitia
 
Continuous functions
Continuous functionsContinuous functions
Continuous functionssumanmathews
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadenaAna Cristina
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfsFarhana Shaheen
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]indu thakur
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rulezahid6
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.Jan Plaza
 
Trigonometric Function
Trigonometric FunctionTrigonometric Function
Trigonometric FunctionZamzam660728
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Syed Ahmed Zaki
 

Tendances (20)

Functional analysis
Functional analysis Functional analysis
Functional analysis
 
Cálculo de Derivadas
Cálculo de DerivadasCálculo de Derivadas
Cálculo de Derivadas
 
Presentacion integral definida (1)
Presentacion integral definida (1)Presentacion integral definida (1)
Presentacion integral definida (1)
 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Extreme point
Extreme pointExtreme point
Extreme point
 
NUMERICAL METHOD
NUMERICAL METHODNUMERICAL METHOD
NUMERICAL METHOD
 
Trab logaritmos
Trab logaritmosTrab logaritmos
Trab logaritmos
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfs
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
 
Metric space
Metric spaceMetric space
Metric space
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.
 
Quantification
QuantificationQuantification
Quantification
 
Trigonometric Function
Trigonometric FunctionTrigonometric Function
Trigonometric Function
 
Fuzzy Set
Fuzzy SetFuzzy Set
Fuzzy Set
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
 

En vedette

En vedette (9)

metodos numericos
 metodos numericos metodos numericos
metodos numericos
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos Numericos
Metodos NumericosMetodos Numericos
Metodos Numericos
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
 
Metodos numericos tema 3
Metodos numericos tema 3Metodos numericos tema 3
Metodos numericos tema 3
 
el metodo
el metodoel metodo
el metodo
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -Chapra
 
Métodos de investigacion
Métodos de investigacionMétodos de investigacion
Métodos de investigacion
 

Similaire à Raíces ecuaciones métodos

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02wnorabuena
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosjorgeduardooo
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Xavier Davias
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESJenny López
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSAnahi Daza
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivadayicel abella
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptxCrisbelChvez
 
Método de Newton
Método de NewtonMétodo de Newton
Método de NewtonKike Prieto
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesluisrial15
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesDavid A. Baxin López
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALESsdiupg1
 

Similaire à Raíces ecuaciones métodos (20)

No lineales
No linealesNo lineales
No lineales
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericos
 
Derivadas. aplicaciones
Derivadas. aplicacionesDerivadas. aplicaciones
Derivadas. aplicaciones
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONES
 
Resumen de analisis_matii
Resumen de analisis_matiiResumen de analisis_matii
Resumen de analisis_matii
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivada
 
Metodos deber
Metodos deberMetodos deber
Metodos deber
 
Practica4 newton-raph-resuelta
Practica4 newton-raph-resueltaPractica4 newton-raph-resuelta
Practica4 newton-raph-resuelta
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Unidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccionUnidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccion
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De Ecuaciones
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALES
 

Plus de monica

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 

Plus de monica (11)

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 

Dernier

Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 

Dernier (20)

Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 

Raíces ecuaciones métodos

  • 1. RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO 2010
  • 2. RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico 2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
  • 3. RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de x para los que se cumple: f ( x ) = 0 Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
  • 4.
  • 5. RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
  • 6. MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En y= f(x), establece el valor de x para el cual f(x)=0. x 1. Si en un intervalo {a,b} cerrado se cumple que : no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias. f(a).f(b)>0 f(x) a b
  • 7. MÉTODO GRAFICO 2. Si en un intervalo {a,b} cerrado se cumple que : Entonces existen dos raíces reales f(a).f(b)>0 f(x) a b x
  • 8. MÉTODO GRAFICO 3. Si en un intervalo {a,b} cerrado se cumple que : da la certeza de encontrar una sola raíz real en el intervalo. f(a).f(b)<0 x f(x) a b
  • 9. MÉTODO GRAFICO 4. Si en un intervalo {a,b} cerrado se cumple que : hay más de dos raíces. f(a).f(b)<0 f(x) a b x
  • 10. MÉTODO GRAFICO 5. También puede existir una función , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico, pues la ecuación es tangente al eje x . f(x) a b x
  • 11. MÉTODO DE BISECCIÓN Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental f ( x ) y un intervalo [ x i, x s], tal que f ( x i) y f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
  • 12.
  • 13. MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
  • 14.
  • 15.
  • 16.
  • 17. MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
  • 18. FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f ( x ) = 0, es decir, dos puntos x i y x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación, x r, se calcula como la intersección con el eje X de la recta que une ambos puntos empleando la ecuación La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla f ( xi ) f ( x r) < 0 ; f ( xr ) f ( x s) < 0.
  • 19. FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
  • 20. FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
  • 21. MÉTODO DE PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
  • 22. MÉTODO DE PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que y solución monotónicamente convergente (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 23. MÉTODO DE PUNTO FIJO 2. Que y solución oscilatoriamente convergente (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 24. MÉTODO DE PUNTO FIJO 3. Que y solución monotónicamente divergente (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 25. MÉTODO DE PUNTO FIJO 4. Que y solución oscilatoriamente divergente (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 26. MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
  • 27. MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
  • 28. MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
  • 29.
  • 30. MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
  • 31. MÉTODO DE SECANTE Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando. Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
  • 32. MÉTODO DE SECANTE El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
  • 33. MÉTODO DE SECANTE X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
  • 34. MÉTODO DE SECANTE 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
  • 35.
  • 36. F i n