Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

数学的基礎から学ぶ Deep Learning (with Python) Vol. 1

4 605 vues

Publié le

第1回 Morning Project Samurai Yokohama (2016/02/27) 資料。

Publié dans : Logiciels
  • Login to see the comments

数学的基礎から学ぶ Deep Learning (with Python) Vol. 1

  1. 1. MPS Yokohama ☛1✆(2016/02/27) ✄ ✁✂☎✝ Deep Learning (with Python) Vol. 1 Morning Project Samurai ✞✟ ✠✡☞✌ ✍1✎(2016/2/27) MPS Yokohama ✏✑✒✓✔✕✖✗(c) Junya Kaneko
  2. 2. • ✍ ✁ ✂ • Deep Learning ✆ • Neural Network ✆ • TensorFlow ✄Deep Learning ☎ ✝✞✟! • ✠✡☛☞ ✌1✎(2016/2/27) MPS Yokohama ✏✑✒✓✔✕✖✗(c) Junya Kaneko
  3. 3. MPS • Morning! - ☞ ✁✂✄☎✆✝✞ • Project! - ✟✠✡☛✌✍✎✏ • Samurai! - ✑✒✞✓✔! - ✟✠✡☛✌✍✄✕✖✗✕✖✗! ✘✙✚✛✜✢ ✣✤✥✦✧★ ✩✪✫✪✬✭✣ ✮✯✰✪✬✭✣ ✱✲ ✳✴ UP! UP! UP! ✵✶✷✸ ✹✺✻✼✽ UP! UP! ✾1✿(2016/2/27) MPS Yokohama ❀❁❂❃❄❅❆❇(c) Junya Kaneko
  4. 4. Why Deep Learning? • • Mind of Engineers ☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂✄☎✝✞(c) Junya Kaneko
  5. 5. ✂✂✂ 2 ✆3 ✎ ✄ ✁ ✁ ☎ ✝✞✟✠✡☛✞ Facebook: http://bit.ly/mpsfbgroup Twitter ☞✌✍✏✑ : #mpsamurai ✒1✓(2016/2/27) MPS Yokohama ✔✕✖✗✘✙✚✛(c) Junya Kaneko
  6. 6. Python !! ☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂✄☎✝✞(c) Junya Kaneko
  7. 7. • ✍ ✁✂✄☎ • Deep Learning ✆ • Neural Network ✝ • TensorFlow ✞Deep Learning ✟ ✠✡☛! • ☞✌✎✏ ✑1✒(2016/2/27) MPS Yokohama ✓✔✕✖✗✘✙✚(c) Junya Kaneko
  8. 8. Deep Neural Network (DNN) • ✄ ✁✂☎ ✆Neural Network (NN) ✝ ! - NN ✞ ✟✠✡☛☞✌✍✠ ✎ ✏✑✒✠! - W. McCulloch ✓W. Pitts ✔ ✎ ✕✖(1943) [2] • ✆Deep Learning ✗ ✗DNN ✝ ✘ ✙✚! ✝ ✛✗ ✘( ✙ ) ✜1✢(2016/2/27) MPS Yokohama ✣✤✥✦✧★✩✪(c) Junya Kaneko
  9. 9. Deep Learning • Android OS ✄ (Google Brain Project) • Google ✄ Photo Search [3] • FB ✄ (DeepFace) [4] • ✟ [5] ☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂☎✝✞✠(c) Junya Kaneko
  10. 10. Deep Learning • ✝  ! - ✄✁✂ ☎✆ ✞ ✟✠✡☛☞✆ • ✌ ! - ✄✁✂ ☎✆ ✞ ✟✠✡☛☞✍☞ ! - ✎✏ ✑✒ ✓1✔(2016/2/27) MPS Yokohama ✕✖✗✘✙✚✛✜(c) Junya Kaneko
  11. 11. Deep Learning • ✝  ! - ✄✁✂ ☎✆ ✞ ✟✠✡☛☞✆ • ✌ ! - ✄✁✂ ☎✆ ✞ ✟✠✡☛☞✍☞ ! - ✎✏ ✑✒ ✓✔✕✖✗ ✘1✙(2016/2/27) MPS Yokohama ✚✛✜✢✣✤✥✦(c) Junya Kaneko
  12. 12. • ✍ ✁✂✄☎ • Deep Learning ✆ • Neural Network ✝ • TensorFlow ✞Deep Learning ✟ ✠✡☛! • ☞✌✎✏ ✑1✒(2016/2/27) MPS Yokohama ✓✔✕✖✗✘✙✚(c) Junya Kaneko
  13. 13. ✄ y0 0 w0,0 w0,1 w0,2 x0 x1 x2 f ☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂☎✝✞✟(c) Junya Kaneko
  14. 14. NN 1 2 0x0 x1 x2 y0 f f f y1 y2 wi,j ☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂✄☎✝✞(c) Junya Kaneko
  15. 15. • ✍ ✁✂✄☎ • Deep Learning ✆ • Neural Network ✆ • TensorFlow ✝Deep Learning ✞ ✟✠✡! • ☛☞✌✎ ✏1✑(2016/2/27) MPS Yokohama ✒✓✔✕✖✗✘✙(c) Junya Kaneko
  16. 16. NN softmax 1 2 0x0 x1 x2 y0 y1 y2 wi,j softmax softmax (784✟ ) (10✟ ) ☛1✆(2016/2/27) MPS Yokohama ☞✁✂✄☎✝✞✠(c) Junya Kaneko
  17. 17. TensorFlow Deep Learning ! ! ( ) 1. USB ✄Virtual Box  ✁✂☎✆✝ ✞PC ✟✠✡✝ 2. Virtual Box ✂☎☛☞✌✝✍ 3. ☎✆✝ ✂☎☛ ✝✌ 4. Virtual Box ✂ 5. ✎✏✑ ✄192.168.33.10:8888 ✟✒✓✔☞ ✕1✖(2016/2/27) MPS Yokohama ✗✘✙✚✛✜✢✣(c) Junya Kaneko
  18. 18. • Placeholder: ✄ ✁ ✂☎ ✆ • Variable: • nn: ✝✞✄✟ ✠✡☛✄☞ • matmul: ✌ ✍ ✎1✏(2016/2/27) MPS Yokohama ✑✒✓✔✕✖✗✘(c) Junya Kaneko
  19. 19. • ✍ ✁✂✄☎ • Deep Learning ✆ • Neural Network ✆ • TensorFlow ✝Deep Learning ✞ ✟✠✡! • ☛☞✌ ✎1✏(2016/2/27) MPS Yokohama ✑✒✓✔✕✖✗✘(c) Junya Kaneko
  20. 20. ✂  ✁ ✄ ☎ - Activation function - Step - Sigmoid - Softmax! - Cost function! - MSE (Mean Squared Error) - Cross-Entropy ☛1✆(2016/2/27) MPS Yokohama ☞✝✞✟✠✡✌✍(c) Junya Kaneko
  21. 21. 1. Neural networks and deep learning. ! http://neuralnetworksanddeeplearning.com/chap6.html 2. Neural Networks! https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/ History/history1.html 3. Improving Photo Search: A Step Across the Semantic Gap! http://googleresearch.blogspot.jp/2013/06/improving-photo-search-step-across.html 4. DeepFace: Closing the Gap to Human-Level Performance in Face Verification! http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/ Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf 5. Here’s How Deep Learning Will Accelerate Self-Driving Cars! http://blogs.nvidia.com/blog/2015/02/24/deep-learning-drive/ 6. COS 511: Theoretical Machine Learning. ! http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf 7. MNIST For ML Beginners. ! https://www.tensorflow.org/versions/r0.7/tutorials/mnist/beginners/index.html 8. Deep MNIST for Experts.! https://www.tensorflow.org/versions/r0.7/tutorials/mnist/pros/index.html☛1✆(2016/2/27) MPS Yokohama ☞ ✁✂✄☎✝✞(c) Junya Kaneko

×