SlideShare une entreprise Scribd logo
1  sur  29
Gases
-The volume of an individual gas molecule is negligible compared to the volume of the
container holding the gas. This means that individual gas molecules, with virtually no
volume of their own, are extremely far apart and most of the container
is “empty” space
-There are neither attractive nor repulsive forces between gas molecules
-Gas molecules have high translational energy. They move randomly in all directions, in
straight lines
-When gas molecules collide with each other or with a container wall, the collisions are
perfectly elastic. This means that when gas molecules collide, somewhat like billiard
balls, there is no loss of kinetic energy
-The average kinetic energy of gas molecules is directly related to the temperature. The
greater the temperature, the greater the average kinetic energy.
Kinetic Molecular Theory
Kinetic Molecular Theory
Gas molecules have high translational energy. They move randomly
in all directions, in straight lines
Kinetic Molecular Theory
Kinetic Molecular Theory
Molecular Motion and States of Matter
3 types of molecular motion:
-Solids cannot move through space so they can only vibrate.
-Liquids and gases are free to move around in space so they can have all three modes of motion.
Vibrational motion –
molecules vibrating (in all
three phases)
Translational motion –
molecules moving from one
place to another (in liquids
and gases)
Rotational motion –
molecule is rotating or the
parts of the molecule are
rotating (gas and liquid
phase)
Molecular Motion and States of Matter
Molecular vibrations:
Pressure
Volume
Temperature
ALL related to one
another.
If you change one,
you change the
other.
Three quantities involving gases
Pressure (P) is measured in kilopascals (kPa)
Pressure = Force
Area
The unit Pa is the same as N/m2
For example:
The standard atmospheric pressure at 0ºC is 101.3kPa
How to measure pressure in pascals (Pa)?
Converting common units: 760 mm Hg = 760 Torr = 1 atm = 101.3 kPa
Gases: Pressure
Volume (V) is measured in Litres (L)
Gases: Volume
Temperature (T) is measured in Kelvin (K)
These are the same degrees as ºC, but:
0ºC = 273.15K
To convert Celcius to Kelvin,
use the following formula:
T (in K) = ºC + 273
Gases: Temperature
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
Charles’ Law: Volume and temperature are directly proportional
Vi = Vf
Ti Tf
Gay-Lussac’s Law: Pressure and temperature are directly proportional
Pi = Pf
Ti Tf
(assuming constant temperature)
(assuming constant pressure)
(assuming constant volume)
Gases: Relationships
P
1
V
If a sample of gas
at initial conditions
has an increase of
pressure applied
to it, its volume
decreases
proportionally
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
Gases: Boyle’s Law
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
Gases: Boyle’s Law
Charles’ Law: Volume and temperature are directly proportional
Vi = Vf
Ti Tf
Gases: Charles’ Law
Gay-Lussac’s Law: Pressure and temperature are directly proportional
Pi = Pf
Ti Tf
Gases: Gay-Lussac’s Law
COMBINED GAS LAW
PiVi = PfVf
Ti Tf
Since pressure, volume, and temperature are all related, they
can all be combined together:
Gases: Combined Gas Law
STANDARD TEMPERATURE and PRESSURE (STP)
Pressure = 101.3 kPa Temperature = 273K (0°C)
STANDARD AMBIENT TEMPERATURE and PRESSURE (SATP)
Pressure = 100 kPa Temperature = 298K (25°C)
One of two conditions will be used for gas calculations:
STP and SATP
Sandra is having a birthday party on a mild winter’s day. The weather
changes and a higher pressure (103.0 kPa) cold front (-25°C) rushes into
town. The original air temperature was -2°C and the pressure was 100.8
kPa. What will happen to the volume of the 4.2 L balloons that were tied to
the front of the house?
Given:
Pi = 100.8 kPa Pf = 103.0 kPa
Vi = 4.2 L Vf = ?
Ti = -2°C = 271K Tf = -25°C = 248K
PiVi = PfVf
Ti Tf
(100.8 kPa) (4.2 L) = (103.0 kPa) Vf
(271 K) (248K)
Vf = 3.76 L
Therefore the volume of the balloons will decrease to 3.8 L
Gases: Calculations
Practice: Page 457 #19-21
Dalton’s Law of Partial Pressures:
The total pressure of a mixture of gases is the sum of the
pressures of each of the individual gases
Ptotal = P1 + P2 + P3 + P4 + P5 +… + Pn
Practice: Page 460 #22-23
Gases: Dalton’s Law of Partial Pressures
Gay-Lussac:
Mole ratios are the same as volume ratios
Avogadro’s Law:
Equal volumes of all ideal gases at the same temperature and pressure contain the
same number of molecules.
The volume of a gas is directly related to the number of moles of gas.
Gases: Avogadro’s Law
For example:
2H2(g) + O2(g)  2H2O(g)
2 mol + 1 mol  2 mol
2 volumes + 1 volume  2 volume
So if you react 2L of hydrogen gas with 1L of oxygen gas, you will get…
…2L of water vapour
Gases: Avogadro’s Law
Ideal Gas Law formula:
PV = nRT
Pressure (kPa)
Volume (L)
Number of moles (mol)
Universal gas constant
8.314 kPa∙L
mol∙K
Temperature (K)
Gases: Avogadro’s Law
Sulfuric acid reacts with iron metal to produce gas and an iron
compound. What volume of gas is produced when excess sulfuric
acid reacts with 40.0g of iron at 18°C and 100.3 kPa?
Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa
STEP 1: Write the balanced chemical equation
Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq)
n = m/M
= (40.0g) / (55.85g/mol)
= 0.716 mol Fe
STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!)
1 mol H2 = x
1 mol Fe 0.716 mol Fe
x = 0.716 mol H2
STEP 3: Use the ideal gas law to solve for the volume
Gases: Stoichiometry
Sulfuric acid reacts with iron metal to produce gas and an iron
compound. What volume of gas is produced when excess sulfuric
acid reacts with 40.0g of iron at 18°C and 100.3 kPa?
Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa
STEP 3: Use the ideal gas law to solve for the volume
PV = nRT
V = nRT
P
= (0.716 mol x 8.314 kPa∙L/mol∙K x 291 K)
(100.3 kPa)
= 17.3 L
Therefore 17.3 L of hydrogen gas are produced
Practice: Page 506 #30-34
Gases: Stoichiometry
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen gas. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa
?
Pressure of water vapour at 28°C = 3.78 kPa
(from page 596, Table 1)
Ptotal = PH2O + PH2
(101.8 kPa) = 3.78 kPa + PH2
Dalton’s Law of Partial Pressures
PH2
= 98.0 kPa
Gases: Stoichiometry
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen gas. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa
Gases: Stoichiometry
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen has. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa
STEP 1: Write the balanced chemical equation
Mg(s) + 2HCl(aq)  MgCl2(ag) + H2(g)
n = m/M
= (0.15g) / (24.31g/mol)
= 0.0062 mol
STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!)
1 mol H2 = x
1 mol Mg 0.0062 mol Mg
x = 0.0062 mol H2
STEP 3: Use the ideal gas law to solve for the volume
Gases: Stoichiometry
STEP 3: Use the ideal gas law to solve for the volume
PV = nRT
V = nRT
P
= (0.0062 mol x 8.314 kPa∙L/mol∙K x 301 K)
(98.0 kPa)
= 0.16 L
Therefore the student collects 0.16 L of dry hydrogen
Practice: Page 511 #37-39
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen gas. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 101.8 kPa
Gases: Stoichiometry

Contenu connexe

Tendances

Mole Concept
Mole ConceptMole Concept
Mole Concept
ffiala
 
06 dalton’s law of partial pressures
06 dalton’s law of partial pressures06 dalton’s law of partial pressures
06 dalton’s law of partial pressures
zehnerm2
 
Chemical Compounds
Chemical CompoundsChemical Compounds
Chemical Compounds
itutor
 
2.1 Chemical Formulas and Equations
2.1 Chemical Formulas and Equations2.1 Chemical Formulas and Equations
2.1 Chemical Formulas and Equations
Melinda MacDonald
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactions
Dr Ahmad Fahmi
 
Le Chatelier's Principle
Le Chatelier's Principle Le Chatelier's Principle
Le Chatelier's Principle
KellyAnnR
 

Tendances (20)

Mole Concept
Mole ConceptMole Concept
Mole Concept
 
Charles law
Charles lawCharles law
Charles law
 
06 dalton’s law of partial pressures
06 dalton’s law of partial pressures06 dalton’s law of partial pressures
06 dalton’s law of partial pressures
 
The mole concept
The mole conceptThe mole concept
The mole concept
 
Unit 12 Chemical Naming and Formulas
Unit 12 Chemical Naming and FormulasUnit 12 Chemical Naming and Formulas
Unit 12 Chemical Naming and Formulas
 
Concentration of Solutions.pptx
Concentration of Solutions.pptxConcentration of Solutions.pptx
Concentration of Solutions.pptx
 
Chapter 1-mole concept.ppt
Chapter 1-mole concept.pptChapter 1-mole concept.ppt
Chapter 1-mole concept.ppt
 
13 nuclear reactions
13 nuclear reactions13 nuclear reactions
13 nuclear reactions
 
Hess's law
Hess's lawHess's law
Hess's law
 
Chemistry ppt
Chemistry pptChemistry ppt
Chemistry ppt
 
Charles’ Law.pptx
Charles’ Law.pptxCharles’ Law.pptx
Charles’ Law.pptx
 
Workbook for General Chemistry II
Workbook for General Chemistry IIWorkbook for General Chemistry II
Workbook for General Chemistry II
 
Chemical Structure: Chemical Nomenclature. Inorganic Compounds
Chemical Structure: Chemical Nomenclature. Inorganic CompoundsChemical Structure: Chemical Nomenclature. Inorganic Compounds
Chemical Structure: Chemical Nomenclature. Inorganic Compounds
 
Chemical Compounds
Chemical CompoundsChemical Compounds
Chemical Compounds
 
2.1 Chemical Formulas and Equations
2.1 Chemical Formulas and Equations2.1 Chemical Formulas and Equations
2.1 Chemical Formulas and Equations
 
History of the atom
History of the atomHistory of the atom
History of the atom
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactions
 
Le Chatelier's Principle
Le Chatelier's Principle Le Chatelier's Principle
Le Chatelier's Principle
 
Branches of Chemistry
Branches of ChemistryBranches of Chemistry
Branches of Chemistry
 

En vedette (14)

17 stoichiometry
17 stoichiometry17 stoichiometry
17 stoichiometry
 
Gas laws
Gas lawsGas laws
Gas laws
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
Tang 01 organic chemistry and alkanes
Tang 01   organic chemistry and alkanesTang 01   organic chemistry and alkanes
Tang 01 organic chemistry and alkanes
 
Tang 02 lewis acids & bases 2
Tang 02   lewis acids & bases 2Tang 02   lewis acids & bases 2
Tang 02 lewis acids & bases 2
 
The Mole
The MoleThe Mole
The Mole
 
Tang 04 periodic trends
Tang 04   periodic trendsTang 04   periodic trends
Tang 04 periodic trends
 
22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
Mole Introduction PPT
Mole Introduction PPTMole Introduction PPT
Mole Introduction PPT
 
Chemistry - moles
Chemistry - molesChemistry - moles
Chemistry - moles
 
The gas laws complete
The gas laws completeThe gas laws complete
The gas laws complete
 
23 gases
23 gases23 gases
23 gases
 
The mole concept
The mole conceptThe mole concept
The mole concept
 
How Big Is A Mole
How Big Is A MoleHow Big Is A Mole
How Big Is A Mole
 

Similaire à 23 gases

Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
mikeebio1
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
jinprix
 
Gases theory and basics .. general chemistry
Gases theory and basics .. general chemistryGases theory and basics .. general chemistry
Gases theory and basics .. general chemistry
fuat8
 
Gas_Laws_powerpoint_notes presentation.ppt
Gas_Laws_powerpoint_notes presentation.pptGas_Laws_powerpoint_notes presentation.ppt
Gas_Laws_powerpoint_notes presentation.ppt
MaryJoyBAtendido
 
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptxIntro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
FrancesLeiOrtiz
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
blachman
 

Similaire à 23 gases (20)

22 gases
22 gases22 gases
22 gases
 
Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
 
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].pptG10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
 
gas_laws.ppt
gas_laws.pptgas_laws.ppt
gas_laws.ppt
 
gas_laws.ppt
gas_laws.pptgas_laws.ppt
gas_laws.ppt
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
 
Gases theory and basics .. general chemistry
Gases theory and basics .. general chemistryGases theory and basics .. general chemistry
Gases theory and basics .. general chemistry
 
Gas_Laws_powerpoint_notes presentation.ppt
Gas_Laws_powerpoint_notes presentation.pptGas_Laws_powerpoint_notes presentation.ppt
Gas_Laws_powerpoint_notes presentation.ppt
 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10
 
Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7Gas_Laws_powerpoint_notes.ppt. slides for grade 7
Gas_Laws_powerpoint_notes.ppt. slides for grade 7
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptxIntro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
Intro-to-Gases-and-Gas-Laws-Gen-Chem-1.pptx
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
gases_2.powerpointpresentation-pressure.
gases_2.powerpointpresentation-pressure.gases_2.powerpointpresentation-pressure.
gases_2.powerpointpresentation-pressure.
 
gaslaws-180210022037.pptx
gaslaws-180210022037.pptxgaslaws-180210022037.pptx
gaslaws-180210022037.pptx
 
Physical Characteristics Of Gases
Physical Characteristics Of GasesPhysical Characteristics Of Gases
Physical Characteristics Of Gases
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 

Plus de mrtangextrahelp

Plus de mrtangextrahelp (20)

Tang 02 wave quantum mechanic model
Tang 02   wave quantum mechanic modelTang 02   wave quantum mechanic model
Tang 02 wave quantum mechanic model
 
04 periodic trends v2
04 periodic trends v204 periodic trends v2
04 periodic trends v2
 
22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
22 solution stoichiometry new
22 solution stoichiometry new22 solution stoichiometry new
22 solution stoichiometry new
 
21 water treatment
21 water treatment21 water treatment
21 water treatment
 
20 concentration of solutions
20 concentration of solutions20 concentration of solutions
20 concentration of solutions
 
22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
19 solutions and solubility
19 solutions and solubility19 solutions and solubility
19 solutions and solubility
 
18 percentage yield
18 percentage yield18 percentage yield
18 percentage yield
 
17 stoichiometry
17 stoichiometry17 stoichiometry
17 stoichiometry
 
14 the mole!!!
14 the mole!!!14 the mole!!!
14 the mole!!!
 
01 significant digits
01 significant digits01 significant digits
01 significant digits
 
13 isotopes
13   isotopes13   isotopes
13 isotopes
 
12 types of chemical reactions
12 types of chemical reactions12 types of chemical reactions
12 types of chemical reactions
 
11 balancing chemical equations
11 balancing chemical equations11 balancing chemical equations
11 balancing chemical equations
 
10 naming and formula writing 2012
10 naming and formula writing 201210 naming and formula writing 2012
10 naming and formula writing 2012
 
09 polarity 2016
09 polarity 201609 polarity 2016
09 polarity 2016
 
08 lewis dot diagrams to 3 d diagrams
08 lewis dot diagrams to 3 d diagrams08 lewis dot diagrams to 3 d diagrams
08 lewis dot diagrams to 3 d diagrams
 
07 lewis dot diagrams
07 lewis dot diagrams07 lewis dot diagrams
07 lewis dot diagrams
 
06 intermolecular forces
06 intermolecular forces06 intermolecular forces
06 intermolecular forces
 

Dernier

SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 

Dernier (20)

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 

23 gases

  • 2. -The volume of an individual gas molecule is negligible compared to the volume of the container holding the gas. This means that individual gas molecules, with virtually no volume of their own, are extremely far apart and most of the container is “empty” space -There are neither attractive nor repulsive forces between gas molecules -Gas molecules have high translational energy. They move randomly in all directions, in straight lines -When gas molecules collide with each other or with a container wall, the collisions are perfectly elastic. This means that when gas molecules collide, somewhat like billiard balls, there is no loss of kinetic energy -The average kinetic energy of gas molecules is directly related to the temperature. The greater the temperature, the greater the average kinetic energy. Kinetic Molecular Theory
  • 4. Gas molecules have high translational energy. They move randomly in all directions, in straight lines Kinetic Molecular Theory
  • 6. Molecular Motion and States of Matter 3 types of molecular motion: -Solids cannot move through space so they can only vibrate. -Liquids and gases are free to move around in space so they can have all three modes of motion. Vibrational motion – molecules vibrating (in all three phases) Translational motion – molecules moving from one place to another (in liquids and gases) Rotational motion – molecule is rotating or the parts of the molecule are rotating (gas and liquid phase)
  • 7. Molecular Motion and States of Matter Molecular vibrations:
  • 8. Pressure Volume Temperature ALL related to one another. If you change one, you change the other. Three quantities involving gases
  • 9. Pressure (P) is measured in kilopascals (kPa) Pressure = Force Area The unit Pa is the same as N/m2 For example: The standard atmospheric pressure at 0ºC is 101.3kPa How to measure pressure in pascals (Pa)? Converting common units: 760 mm Hg = 760 Torr = 1 atm = 101.3 kPa Gases: Pressure
  • 10. Volume (V) is measured in Litres (L) Gases: Volume
  • 11. Temperature (T) is measured in Kelvin (K) These are the same degrees as ºC, but: 0ºC = 273.15K To convert Celcius to Kelvin, use the following formula: T (in K) = ºC + 273 Gases: Temperature
  • 12. Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf Charles’ Law: Volume and temperature are directly proportional Vi = Vf Ti Tf Gay-Lussac’s Law: Pressure and temperature are directly proportional Pi = Pf Ti Tf (assuming constant temperature) (assuming constant pressure) (assuming constant volume) Gases: Relationships
  • 13. P 1 V If a sample of gas at initial conditions has an increase of pressure applied to it, its volume decreases proportionally Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf Gases: Boyle’s Law
  • 14. Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf Gases: Boyle’s Law
  • 15. Charles’ Law: Volume and temperature are directly proportional Vi = Vf Ti Tf Gases: Charles’ Law
  • 16. Gay-Lussac’s Law: Pressure and temperature are directly proportional Pi = Pf Ti Tf Gases: Gay-Lussac’s Law
  • 17. COMBINED GAS LAW PiVi = PfVf Ti Tf Since pressure, volume, and temperature are all related, they can all be combined together: Gases: Combined Gas Law
  • 18. STANDARD TEMPERATURE and PRESSURE (STP) Pressure = 101.3 kPa Temperature = 273K (0°C) STANDARD AMBIENT TEMPERATURE and PRESSURE (SATP) Pressure = 100 kPa Temperature = 298K (25°C) One of two conditions will be used for gas calculations: STP and SATP
  • 19. Sandra is having a birthday party on a mild winter’s day. The weather changes and a higher pressure (103.0 kPa) cold front (-25°C) rushes into town. The original air temperature was -2°C and the pressure was 100.8 kPa. What will happen to the volume of the 4.2 L balloons that were tied to the front of the house? Given: Pi = 100.8 kPa Pf = 103.0 kPa Vi = 4.2 L Vf = ? Ti = -2°C = 271K Tf = -25°C = 248K PiVi = PfVf Ti Tf (100.8 kPa) (4.2 L) = (103.0 kPa) Vf (271 K) (248K) Vf = 3.76 L Therefore the volume of the balloons will decrease to 3.8 L Gases: Calculations Practice: Page 457 #19-21
  • 20. Dalton’s Law of Partial Pressures: The total pressure of a mixture of gases is the sum of the pressures of each of the individual gases Ptotal = P1 + P2 + P3 + P4 + P5 +… + Pn Practice: Page 460 #22-23 Gases: Dalton’s Law of Partial Pressures
  • 21. Gay-Lussac: Mole ratios are the same as volume ratios Avogadro’s Law: Equal volumes of all ideal gases at the same temperature and pressure contain the same number of molecules. The volume of a gas is directly related to the number of moles of gas. Gases: Avogadro’s Law
  • 22. For example: 2H2(g) + O2(g)  2H2O(g) 2 mol + 1 mol  2 mol 2 volumes + 1 volume  2 volume So if you react 2L of hydrogen gas with 1L of oxygen gas, you will get… …2L of water vapour Gases: Avogadro’s Law
  • 23. Ideal Gas Law formula: PV = nRT Pressure (kPa) Volume (L) Number of moles (mol) Universal gas constant 8.314 kPa∙L mol∙K Temperature (K) Gases: Avogadro’s Law
  • 24. Sulfuric acid reacts with iron metal to produce gas and an iron compound. What volume of gas is produced when excess sulfuric acid reacts with 40.0g of iron at 18°C and 100.3 kPa? Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa STEP 1: Write the balanced chemical equation Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq) n = m/M = (40.0g) / (55.85g/mol) = 0.716 mol Fe STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!) 1 mol H2 = x 1 mol Fe 0.716 mol Fe x = 0.716 mol H2 STEP 3: Use the ideal gas law to solve for the volume Gases: Stoichiometry
  • 25. Sulfuric acid reacts with iron metal to produce gas and an iron compound. What volume of gas is produced when excess sulfuric acid reacts with 40.0g of iron at 18°C and 100.3 kPa? Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa STEP 3: Use the ideal gas law to solve for the volume PV = nRT V = nRT P = (0.716 mol x 8.314 kPa∙L/mol∙K x 291 K) (100.3 kPa) = 17.3 L Therefore 17.3 L of hydrogen gas are produced Practice: Page 506 #30-34 Gases: Stoichiometry
  • 26. A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen gas. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa ? Pressure of water vapour at 28°C = 3.78 kPa (from page 596, Table 1) Ptotal = PH2O + PH2 (101.8 kPa) = 3.78 kPa + PH2 Dalton’s Law of Partial Pressures PH2 = 98.0 kPa Gases: Stoichiometry
  • 27. A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen gas. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa Gases: Stoichiometry
  • 28. A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen has. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa STEP 1: Write the balanced chemical equation Mg(s) + 2HCl(aq)  MgCl2(ag) + H2(g) n = m/M = (0.15g) / (24.31g/mol) = 0.0062 mol STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!) 1 mol H2 = x 1 mol Mg 0.0062 mol Mg x = 0.0062 mol H2 STEP 3: Use the ideal gas law to solve for the volume Gases: Stoichiometry
  • 29. STEP 3: Use the ideal gas law to solve for the volume PV = nRT V = nRT P = (0.0062 mol x 8.314 kPa∙L/mol∙K x 301 K) (98.0 kPa) = 0.16 L Therefore the student collects 0.16 L of dry hydrogen Practice: Page 511 #37-39 A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen gas. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 101.8 kPa Gases: Stoichiometry