SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
SOLAR THERMAL POWER!
           GEEN 4830 – ECEN 5007!




3. Brief Review of Basic Thermodynamic Topics!



               Manuel A. Silva Pérez
                                   !
                 silva@esi.us.es !
Contents
       }    Thermodynamic Laws
       }    First and Second Law Efficiencies
       }    Thermodynamics of Heat Engines




1	

                          GEEN 4830 – ECEN 5007	

   07/07/11
First Law of Thermodynamics
       }    Energy
             }    of a system
             }    Work
             }    Heat
       }    Energy is conserved in any non-relativistic process
       }    For a closed system:
                                   U = Q +W
                                         Where
                                 U : internal energy (J)
                                       Q: heat (J)
                                      W: work (J)
2	

                             GEEN 4830 – ECEN 5007	

   07/07/11
First Law of Thermodynamics
}       For an open system:
                        UCV = Q + W +         (mi·hi) –        (mo·ho)
}       For a stationary open system:
                         0 = Q +W +         (mi·hi) –      (mo·ho)

             Where                              Subscripts and superscripts:
               U : internal energy (J)                     CV: Control volume
              h: specific enthalpy (J/kg)                        i: input
                        m: mass                                 o: output
                      Q: heat (J)
                    W: work (J)
      3	

                                    GEEN 4830 – ECEN 5007	

   07/07/11
First Law efficiencies
}      Ratio of useful energy output to input energy of a
        device

        Example. For a steam turbine cycle

                           N=   -Wdelivered/Qinput

}      First Law Efficiencies can be > 100 %!




 4	

                         GEEN 4830 – ECEN 5007	

   07/07/11
Second Law of Thermodynamics
       }  Different forms of energy have different quality
       }  The 2nd Law of >Thermodynamics provides a means of
           assigning a quality index to energy: exergy or availability
       }  Work is the most valuable form of energy
       }  The quality of Heat depends on temperature
       }  The quality of thermal energy depends on the state of
           the system




5	

                         GEEN 4830 – ECEN 5007	

       07/07/11
Second Law efficiencies
}      Ratio of useful exergy output to input exergy of a
        device

        Example. For a steam turbine cycle

                     X=   -Wdelivered/(Qinput·(1-Tc/Th))

           Where Tc and Th are the heat sink and heat source
                         temperatures, resp.

}  2nd    Law efficiencies are always ≤ 1

 6	

                          GEEN 4830 – ECEN 5007	

    07/07/11
Heat engines
}  Heat engines produce
    mechanical work (shaft
    work) from heat
}  The maximum 1st Law
    efficency (Carnot cycle
    efficiency) for a heat engine
    is
                 N=   1-Tc/Th
}      The 2nd Law efficiency of the
        Carnot Cycle is
                    X=   1

      7	

                              GEEN 4830 – ECEN 5007	

   07/07/11
Relevant heat engines
}       Carnot Cycle
}       Brayton (Gas Turbine) Cycle
}       Rankine (Steam Turbine) Cycle
}       Stirling Cycle




      8	

                     GEEN 4830 – ECEN 5007	

   07/07/11
Carnot Cycle
}  2 isentropic processes + 2
    isothermal processes
}  Maximum 1st and 2nd Law
    efficiencies
}  Cannot be realized in
    practice




      9	

                       GEEN 4830 – ECEN 5007	

   07/07/11
Brayton Cycle
}  2 isentropic + 2 isobaric
    processes
}  Normally operated as an
    open cycle
}  Working fluid is a gas (air)
}  Efficiencies depend on the
    pressure ratio
}  Normally operate at high
    temperatures



      10	

                        GEEN 4830 – ECEN 5007	

   07/07/11
Rankine Cycle
}      2 isentropic + 2 isobaric processes
}      Working fluid is water/steam (phase changes)
}      Operating temperatures limited by materials




      11	

                    GEEN 4830 – ECEN 5007	

   07/07/11
Combined Cycle
}  Brayton + Rankine
}  Heat input to Rankine is gas
    turbine exhausts
}  High efficiencies




      12	

                        GEEN 4830 – ECEN 5007	

   07/07/11
Stirling Cycle
}      2 isothermal + 2 isochoric processes
}      Working fluid is gas (H2, He)
}      High operating temperatures
}      High efficiency




      13	

                    GEEN 4830 – ECEN 5007	

   07/07/11

Contenu connexe

Tendances

Second Law of Thermodynamics
Second Law of Thermodynamics Second Law of Thermodynamics
Second Law of Thermodynamics
cordialswap
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
fsnexuss
 
Exergy analysis - a tool for sustainable technology - in engineering education
Exergy analysis - a tool for sustainable technology - in engineering educationExergy analysis - a tool for sustainable technology - in engineering education
Exergy analysis - a tool for sustainable technology - in engineering education
Patrick VanSchijndel
 
Chapter10[1]
Chapter10[1]Chapter10[1]
Chapter10[1]
comforths
 
Prof. beck 'renewable energy- a short (and cynical) approach
Prof. beck  'renewable energy- a short (and cynical) approachProf. beck  'renewable energy- a short (and cynical) approach
Prof. beck 'renewable energy- a short (and cynical) approach
The Sheffield Colloqouium
 
Cairo 2nd Petrol Lecture 7
Cairo 2nd Petrol Lecture 7Cairo 2nd Petrol Lecture 7
Cairo 2nd Petrol Lecture 7
Esmail Bialy
 

Tendances (20)

Thermodynamics 2
Thermodynamics 2 Thermodynamics 2
Thermodynamics 2
 
Carnot theorem
Carnot theorem Carnot theorem
Carnot theorem
 
Exergy
ExergyExergy
Exergy
 
Chapter 6 availability
Chapter 6 availabilityChapter 6 availability
Chapter 6 availability
 
03 part3 availability irreversibility
03 part3 availability irreversibility03 part3 availability irreversibility
03 part3 availability irreversibility
 
Second Law of Thermodynamics
Second Law of Thermodynamics Second Law of Thermodynamics
Second Law of Thermodynamics
 
Exergy analysis of Power Plants
Exergy analysis of Power PlantsExergy analysis of Power Plants
Exergy analysis of Power Plants
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Exergy
ExergyExergy
Exergy
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
 
Exergy analysis - a tool for sustainable technology - in engineering education
Exergy analysis - a tool for sustainable technology - in engineering educationExergy analysis - a tool for sustainable technology - in engineering education
Exergy analysis - a tool for sustainable technology - in engineering education
 
Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics
 
Ch.6
Ch.6Ch.6
Ch.6
 
Chapter10[1]
Chapter10[1]Chapter10[1]
Chapter10[1]
 
Prof. beck 'renewable energy- a short (and cynical) approach
Prof. beck  'renewable energy- a short (and cynical) approachProf. beck  'renewable energy- a short (and cynical) approach
Prof. beck 'renewable energy- a short (and cynical) approach
 
Second law
Second lawSecond law
Second law
 
Simulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculationSimulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculation
 
P210 13b
P210 13bP210 13b
P210 13b
 
Cairo 2nd Petrol Lecture 7
Cairo 2nd Petrol Lecture 7Cairo 2nd Petrol Lecture 7
Cairo 2nd Petrol Lecture 7
 
Lecture 18 second law of thermodynamics. carnot's cycle
Lecture 18   second law of thermodynamics. carnot's cycleLecture 18   second law of thermodynamics. carnot's cycle
Lecture 18 second law of thermodynamics. carnot's cycle
 

Similaire à Cu stp 03_basics td

Chapter 10 Powerpoint
Chapter 10 PowerpointChapter 10 Powerpoint
Chapter 10 Powerpoint
Mrreynon
 
Physics P P Presentation Ch 10
Physics  P P  Presentation  Ch 10Physics  P P  Presentation  Ch 10
Physics P P Presentation Ch 10
josoborned
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Muhammad Surahman
 
Analytical model for predicting the effect of operating speed on shaft power
Analytical model for predicting the effect of operating speed on shaft powerAnalytical model for predicting the effect of operating speed on shaft power
Analytical model for predicting the effect of operating speed on shaft power
gargashrut91
 
Stirling Engine Report
Stirling Engine ReportStirling Engine Report
Stirling Engine Report
Robert Harding
 
J2006 termodinamik 1 unit9
J2006 termodinamik 1 unit9J2006 termodinamik 1 unit9
J2006 termodinamik 1 unit9
Malaysia
 

Similaire à Cu stp 03_basics td (20)

Chapter 10 Powerpoint
Chapter 10 PowerpointChapter 10 Powerpoint
Chapter 10 Powerpoint
 
Physics P P Presentation Ch 10
Physics  P P  Presentation  Ch 10Physics  P P  Presentation  Ch 10
Physics P P Presentation Ch 10
 
Hp 10 win
Hp 10 winHp 10 win
Hp 10 win
 
Lect31
Lect31Lect31
Lect31
 
ME6404 THERMAL ENGINEERING SHORT QUESTIONS AND ANSWERS
ME6404 THERMAL ENGINEERING SHORT QUESTIONS AND ANSWERSME6404 THERMAL ENGINEERING SHORT QUESTIONS AND ANSWERS
ME6404 THERMAL ENGINEERING SHORT QUESTIONS AND ANSWERS
 
Heat-Engine-Introduction 1121212323232.ppt
Heat-Engine-Introduction 1121212323232.pptHeat-Engine-Introduction 1121212323232.ppt
Heat-Engine-Introduction 1121212323232.ppt
 
Heat engine-introduction
Heat engine-introductionHeat engine-introduction
Heat engine-introduction
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of Thermodynamics
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9a
 
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singhUnit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singh
 
Analytical model for predicting the effect of operating speed on shaft power
Analytical model for predicting the effect of operating speed on shaft powerAnalytical model for predicting the effect of operating speed on shaft power
Analytical model for predicting the effect of operating speed on shaft power
 
kelompokppt.pptx
kelompokppt.pptxkelompokppt.pptx
kelompokppt.pptx
 
2nd law of thermodynamic
2nd law of thermodynamic2nd law of thermodynamic
2nd law of thermodynamic
 
Thermodynamics course notes
Thermodynamics course notesThermodynamics course notes
Thermodynamics course notes
 
Principles-of-Thermodynamics
Principles-of-ThermodynamicsPrinciples-of-Thermodynamics
Principles-of-Thermodynamics
 
Stirling Engine Report
Stirling Engine ReportStirling Engine Report
Stirling Engine Report
 
direct_energy_conversion.pptx
direct_energy_conversion.pptxdirect_energy_conversion.pptx
direct_energy_conversion.pptx
 
SECOND LAW OF THERMODYNAMICS
SECOND LAW OF THERMODYNAMICSSECOND LAW OF THERMODYNAMICS
SECOND LAW OF THERMODYNAMICS
 
J2006 termodinamik 1 unit9
J2006 termodinamik 1 unit9J2006 termodinamik 1 unit9
J2006 termodinamik 1 unit9
 
3
33
3
 

Plus de Manuel Silva

Ecen 5007 lecture 7
Ecen 5007   lecture 7Ecen 5007   lecture 7
Ecen 5007 lecture 7
Manuel Silva
 
Cu stp 07_crs(tower)
Cu stp 07_crs(tower)Cu stp 07_crs(tower)
Cu stp 07_crs(tower)
Manuel Silva
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
Manuel Silva
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
Manuel Silva
 
Cu stp 08_tes+hybrid
Cu stp 08_tes+hybridCu stp 08_tes+hybrid
Cu stp 08_tes+hybrid
Manuel Silva
 
Custp 06 parabolic_trough
Custp 06 parabolic_troughCustp 06 parabolic_trough
Custp 06 parabolic_trough
Manuel Silva
 
Cu stp 04_fundamentals
Cu stp 04_fundamentalsCu stp 04_fundamentals
Cu stp 04_fundamentals
Manuel Silva
 
Custp 05 stp_plants
Custp 05 stp_plantsCustp 05 stp_plants
Custp 05 stp_plants
Manuel Silva
 
Geen4830syllabus 11 01
Geen4830syllabus 11 01Geen4830syllabus 11 01
Geen4830syllabus 11 01
Manuel Silva
 
Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01
Manuel Silva
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
Manuel Silva
 

Plus de Manuel Silva (14)

Ecen 5007 lecture 7
Ecen 5007   lecture 7Ecen 5007   lecture 7
Ecen 5007 lecture 7
 
Cu stp 07_crs(tower)
Cu stp 07_crs(tower)Cu stp 07_crs(tower)
Cu stp 07_crs(tower)
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
 
Cu stp 10_clfr
Cu stp 10_clfrCu stp 10_clfr
Cu stp 10_clfr
 
Cstp project
Cstp projectCstp project
Cstp project
 
Cu stp 08_tes+hybrid
Cu stp 08_tes+hybridCu stp 08_tes+hybrid
Cu stp 08_tes+hybrid
 
Custp 06 parabolic_trough
Custp 06 parabolic_troughCustp 06 parabolic_trough
Custp 06 parabolic_trough
 
Cu stp 04_fundamentals
Cu stp 04_fundamentalsCu stp 04_fundamentals
Cu stp 04_fundamentals
 
Custp 05 stp_plants
Custp 05 stp_plantsCustp 05 stp_plants
Custp 05 stp_plants
 
Geen4830syllabus 11 01
Geen4830syllabus 11 01Geen4830syllabus 11 01
Geen4830syllabus 11 01
 
Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
Cu stp 01_intro
Cu stp 01_introCu stp 01_intro
Cu stp 01_intro
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 

Cu stp 03_basics td

  • 1. SOLAR THERMAL POWER! GEEN 4830 – ECEN 5007! 3. Brief Review of Basic Thermodynamic Topics! Manuel A. Silva Pérez ! silva@esi.us.es !
  • 2. Contents }  Thermodynamic Laws }  First and Second Law Efficiencies }  Thermodynamics of Heat Engines 1 GEEN 4830 – ECEN 5007 07/07/11
  • 3. First Law of Thermodynamics }  Energy }  of a system }  Work }  Heat }  Energy is conserved in any non-relativistic process }  For a closed system: U = Q +W Where U : internal energy (J) Q: heat (J) W: work (J) 2 GEEN 4830 – ECEN 5007 07/07/11
  • 4. First Law of Thermodynamics }  For an open system: UCV = Q + W + (mi·hi) – (mo·ho) }  For a stationary open system: 0 = Q +W + (mi·hi) – (mo·ho) Where Subscripts and superscripts: U : internal energy (J) CV: Control volume h: specific enthalpy (J/kg) i: input m: mass o: output Q: heat (J) W: work (J) 3 GEEN 4830 – ECEN 5007 07/07/11
  • 5. First Law efficiencies }  Ratio of useful energy output to input energy of a device Example. For a steam turbine cycle N= -Wdelivered/Qinput }  First Law Efficiencies can be > 100 %! 4 GEEN 4830 – ECEN 5007 07/07/11
  • 6. Second Law of Thermodynamics }  Different forms of energy have different quality }  The 2nd Law of >Thermodynamics provides a means of assigning a quality index to energy: exergy or availability }  Work is the most valuable form of energy }  The quality of Heat depends on temperature }  The quality of thermal energy depends on the state of the system 5 GEEN 4830 – ECEN 5007 07/07/11
  • 7. Second Law efficiencies }  Ratio of useful exergy output to input exergy of a device Example. For a steam turbine cycle X= -Wdelivered/(Qinput·(1-Tc/Th)) Where Tc and Th are the heat sink and heat source temperatures, resp. }  2nd Law efficiencies are always ≤ 1 6 GEEN 4830 – ECEN 5007 07/07/11
  • 8. Heat engines }  Heat engines produce mechanical work (shaft work) from heat }  The maximum 1st Law efficency (Carnot cycle efficiency) for a heat engine is N= 1-Tc/Th }  The 2nd Law efficiency of the Carnot Cycle is X= 1 7 GEEN 4830 – ECEN 5007 07/07/11
  • 9. Relevant heat engines }  Carnot Cycle }  Brayton (Gas Turbine) Cycle }  Rankine (Steam Turbine) Cycle }  Stirling Cycle 8 GEEN 4830 – ECEN 5007 07/07/11
  • 10. Carnot Cycle }  2 isentropic processes + 2 isothermal processes }  Maximum 1st and 2nd Law efficiencies }  Cannot be realized in practice 9 GEEN 4830 – ECEN 5007 07/07/11
  • 11. Brayton Cycle }  2 isentropic + 2 isobaric processes }  Normally operated as an open cycle }  Working fluid is a gas (air) }  Efficiencies depend on the pressure ratio }  Normally operate at high temperatures 10 GEEN 4830 – ECEN 5007 07/07/11
  • 12. Rankine Cycle }  2 isentropic + 2 isobaric processes }  Working fluid is water/steam (phase changes) }  Operating temperatures limited by materials 11 GEEN 4830 – ECEN 5007 07/07/11
  • 13. Combined Cycle }  Brayton + Rankine }  Heat input to Rankine is gas turbine exhausts }  High efficiencies 12 GEEN 4830 – ECEN 5007 07/07/11
  • 14. Stirling Cycle }  2 isothermal + 2 isochoric processes }  Working fluid is gas (H2, He) }  High operating temperatures }  High efficiency 13 GEEN 4830 – ECEN 5007 07/07/11