SlideShare une entreprise Scribd logo
1  sur  18
UNIT 1 INTRODUCTION
CE6451 FLUID MECHANICS &
MACHINERY
Prepared by
S. Muthu Natarajan M.E., (Ph.D.),
Assistant Professor
Kamaraj College of Engineering and Technology
Madurai
INTRODUCTION TO FLUID MECHANICS
• Fluid mechanics is the branch of science which deals with the
behaviour of fluids at rest and in motion
• Fluid mechanics is classified as
Fluid statics
Fluid dynamics is classified as
a. Fluid kinematics
b. Fluid kinetics
PROPERTIES OF FLUIDS
• Density or Mass density (ρ) : It is defined as the ration of the mass of the fluid
to the volume of the fluid
𝜌 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
𝜌 of water = 1000 kgm /m3
units : kgm /m3
• Specific weight or weight density (w) : It is defined as the weight of the fluid
volume of the fluid
w=
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
=
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 ×𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
w = 𝜌 ×g
units : N/m3 w of water = 9810 N/m3
PROPERTIES OF FLUIDS
• Specific volume : It is defined as the reciprocal of density of the fluid
specific volume =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
Units : m3/ kgm
• Specific gravity (S): It is defined as the ratio of the density of the liquid
to the density of water (OR) it is defined as the ratio of the weight
density of the liquid to the weight density of water.
S =
𝜌 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑
𝜌 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
(OR)
𝑤 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑
𝑤 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
PROPERTIES OF FLUIDS
• Viscosity : It is defined as the property of the fluid which offers resistance to the
movement of one layer of the fluid over another adjacent layer of the fluid.
• Newtons law of viscosity (µ) : It states that the shear stress (τ) on a fluid element
layer is directly proportional to the rate of shear strain. The constant of
proportionality is called the co-efficient of viscosity. Mathematically
τ = 𝜇
𝑑𝑢
𝑑𝑦
Units of dynamic viscosity = Ns/m2 , poise
1 poise = 0.1 Ns/m2
• Kinematic viscosity (ϒ)
ϒ=
𝜇
𝜌
It is defined as the ratio of dynamic viscosity of the
fluid to the density of the fluid.
Units of kinematic viscosity = m2 /s , stokes
I stoke = 1 cm2/s
PROPERTIES OF FLUIDS
• Compressibility and Bulk modulus :
Compressibility is defined as the reciprocal of bulk modulus.
Bulk modulus (K) is defined as the ratio of compressive stress to volumetric strain
K =
𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒐𝒇 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆
−𝒅𝒗/𝒗
Surface Tension (σ) = Surface tension is defined as the force acting on the surface
of a liquid in contact with a gas or on the surface between two immiscible fluids
such that the contact surface behaves like a membrane under tension.
Units : N/m
For liquid droplet h=
𝟒𝝈
𝒅
For soap bubble h=
𝟖𝝈
𝒅
Capillarity : It is defined as the phenomenon of rise or fall of a liquid surface in a
small tube relative to the adjacent general level of liquid when the tube is held
vertically in the liquid. The rise of the liquid surface is capillary rise while the fall in
the liquid surface is known as capillary depression
For capillary rise h=
𝟒𝝈
𝝆𝒈𝒅
For capillary depression
h=
𝟒𝝈𝒄𝒐𝒔𝜽
𝝆𝒈𝒅
Where θ = angle of contact between liquid and glass tube.
TYPES OF FLUIDS
• Ideal fluid : A fluid which is incompressible and is having no viscosity
is known as ideal fluid. Ideal fluid is an imaginary fluid
• Real fluid : A fluid which possess viscosity is known as real fluid. All
fluids in practice are known as real fluid
• Newtonian fluids : a real fluid in which the shear stress is directly
proportional to the rate of shear strain is called as Newtonian fluid
• Non – Newtonian fluid : a real fluid in which the shear stress is not
proportional to the rate of shear strain is known as non Newtonian
fluid
• Ideal plastic fluid : A fluid in which shear stress is more than the yield
value and shear stress is proportional to the rate of shear strain is
known as ideal plastic fluid
TYPES OF FLOW
• Steady flow : a steady flow is a flow in which the fluid characteristics
like pressure, density, etc does not vary with respect to time
• Un steady flow : a unsteady flow is a flow in which the fluid
characteristics like pressure, density, etc vary with respect to time
• Uniform flow : A flow in which the velocity at any given time does not
change with respect to distance
• Non uniform flow : A flow in which the velocity at any given time
change with respect to distance
• Compressible flow : The flow in which the density of the fluid changes
from point to point ρ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
• Incompressible flow : The flow in which the density of the fluid do not
change from point to point ρ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
RATE OF FLOW (OR) DISCHARGE
• It is defined as the quantity of a fluid flowing per second through a
section of a pipe or a channel. For an incompressible fluid the rate of
flow or discharge is expressed as the volume of the fluid flowing
across the section per second.
• For incompressible fluids (Q) = A × V
Where A = Cross sectional area of the pipe
V = average velocity of fluid across the section
CONTINUITY EQUATION
• The equation is based on the law of conservation of mass
• It states that for a fluid flowing through the pipe at all the cross section the quantity of the fluid
per second is a constant.
• Consider two cross sections of a pipe as shown in the fig
Let V1 be the velocity at cross section 1-1 Let V2 be the velocity at cross section 2-2
Let A1 be the velocity at cross section 1-1 Let A2 be the velocity at cross section 2-2
According to the law of conservation of mass
Rate of flow at section 1-1 = Rate of flow at section 2-2
𝝆 𝟏 𝑨 𝟏 𝑽 𝟏 = 𝝆 𝟐 𝑨 𝟐 𝑽 𝟐
this is the general expression for both compressible and incompressible fluids
For incompressible fluid the above equation is 𝑨 𝟏 𝑽 𝟏 = 𝑨 𝟐 𝑽 𝟐 because density is constant
1
1
2
2
BERNOULLIS THEOREM
• It states that in a steady, ideal flow of an incompressible fluid the total energy at any
point of the fluid is constant. The total energy consists of pressure energy, kinetic
energy and datum energy. Thus mathematically bernoullis equation is written as
𝒑
𝝆𝒈
+
𝒗 𝟐
𝟐𝒈
+ 𝒛 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝒑
𝝆𝒈
= Pressure energy
𝒗 𝟐
𝟐𝒈
= Kinetic energy
Z = datum energy
• Assumptions of Bernoulli's equation :
1. The fluid is ideal
2. The flow is steady
3. The flow is incompressible
4. The flow is irrotational
DERIVATION OF EULERS AND BERNOULLIS
EQUATION
APPLICATIONS OF BERNOULLIS EQUATION
• Venturimeter
• Orificemeter
• Pitot tube
Venturimeter :
The venturimeter is a device which is used to measure the rate of flow through a closed pipe
It consists of 3 parts
(a) A short converging part
(b) Throat
(c) Diverging part
Theoretical discharge
Cd =
𝑸 𝒂𝒄𝒕𝒖𝒂𝒍
𝑸 𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍
a1 = area of the pipe a2 = area of the throat
h= x
𝒔 𝒎
𝒔 𝒇
− 𝟏 𝒔 𝒎 = specific gravity of manometric fluid for mercury = 13.6
𝒔 𝒇 = 𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐠𝐫𝐚𝐯𝐢𝐭𝐲 𝐨𝐟 𝐰𝐚𝐭𝐞𝐫 for water = 1
ORIFICEMETER
• It is a device used for measuring the rate of flow of a fluid through a
pipe. It consists of a flat circular plate which has a circular sharp
edged hole called as orifice which is concentric to the pipe
DISCHARGE OF ORIFICEMETER
• Let a1 = area of the pipe a0 = area of the orifice
• Actual discharge
h= x
𝒔 𝒎
𝒔 𝒇
− 𝟏
𝒔 𝒎 = specific gravity of manometric fluid for mercury = 13.6
𝒔 𝒇 = 𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐠𝐫𝐚𝐯𝐢𝐭𝐲 𝐨𝐟 𝐰𝐚𝐭𝐞𝐫 for water = 1
PITOT TUBE
PITOT TUBE
MOMENTUM EQUATION

Contenu connexe

Tendances

Boundary layer equation
Boundary layer equationBoundary layer equation
Boundary layer equation
Justin Myint
 

Tendances (20)

Dynamics of Fluid Flow
Dynamics of Fluid FlowDynamics of Fluid Flow
Dynamics of Fluid Flow
 
Types of flow in fluid mechanics
Types of flow in fluid mechanicsTypes of flow in fluid mechanics
Types of flow in fluid mechanics
 
Manometer
ManometerManometer
Manometer
 
Pressure measuring devices
Pressure measuring devicesPressure measuring devices
Pressure measuring devices
 
pressure measuring device
pressure measuring devicepressure measuring device
pressure measuring device
 
Venturimeter : Working,Construction,Applications ,Numerical
Venturimeter : Working,Construction,Applications ,NumericalVenturimeter : Working,Construction,Applications ,Numerical
Venturimeter : Working,Construction,Applications ,Numerical
 
AFD - Incompressible Flow - Introduction
AFD - Incompressible Flow  - IntroductionAFD - Incompressible Flow  - Introduction
AFD - Incompressible Flow - Introduction
 
Friction factor
Friction factorFriction factor
Friction factor
 
Heat transfer by convection
Heat transfer by convectionHeat transfer by convection
Heat transfer by convection
 
Boundary layer equation
Boundary layer equationBoundary layer equation
Boundary layer equation
 
Thin Cylinders
Thin Cylinders Thin Cylinders
Thin Cylinders
 
Fluid kinematics
Fluid kinematics Fluid kinematics
Fluid kinematics
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
 
Separation of boundary layer
Separation of boundary layerSeparation of boundary layer
Separation of boundary layer
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
 
Introduction of Fluid Mechanics
Introduction of Fluid MechanicsIntroduction of Fluid Mechanics
Introduction of Fluid Mechanics
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
 

Similaire à Unit 1 CE8394 FMM

T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh
 
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154  Lect 1 Summer 2023.pdfFluid Mechanics MEC 154  Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
karamhmad
 

Similaire à Unit 1 CE8394 FMM (20)

22210003madhuraMahabal.pptxzsdrgzsrjdfjzdtj
22210003madhuraMahabal.pptxzsdrgzsrjdfjzdtj22210003madhuraMahabal.pptxzsdrgzsrjdfjzdtj
22210003madhuraMahabal.pptxzsdrgzsrjdfjzdtj
 
Fluid flow
Fluid flowFluid flow
Fluid flow
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
Mechanics of fluids note
Mechanics of fluids noteMechanics of fluids note
Mechanics of fluids note
 
Introduction to biofluid mechanics
Introduction to biofluid mechanicsIntroduction to biofluid mechanics
Introduction to biofluid mechanics
 
notch final.pdf
notch final.pdfnotch final.pdf
notch final.pdf
 
Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1
 
Lecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applicationsLecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applications
 
Flow of Fluids
Flow of FluidsFlow of Fluids
Flow of Fluids
 
Pharmaceutical Engineering: Flow of fluids
Pharmaceutical Engineering: Flow of fluidsPharmaceutical Engineering: Flow of fluids
Pharmaceutical Engineering: Flow of fluids
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
 
Fluidflowsb-160915165853 (1).pdf
Fluidflowsb-160915165853 (1).pdfFluidflowsb-160915165853 (1).pdf
Fluidflowsb-160915165853 (1).pdf
 
Liquid & electrochemistry
Liquid & electrochemistryLiquid & electrochemistry
Liquid & electrochemistry
 
Mechanics-of-Fluids.ppt
Mechanics-of-Fluids.pptMechanics-of-Fluids.ppt
Mechanics-of-Fluids.ppt
 
Fluid Mechanics - Introduction.pdf
Fluid Mechanics  - Introduction.pdfFluid Mechanics  - Introduction.pdf
Fluid Mechanics - Introduction.pdf
 
FMM Unit 1. Define the expression for Reynold's numberpptx
FMM Unit 1. Define the expression for Reynold's numberpptxFMM Unit 1. Define the expression for Reynold's numberpptx
FMM Unit 1. Define the expression for Reynold's numberpptx
 
unit 1 24erdgfgdhgvncfluid mechanics.pptx
unit 1 24erdgfgdhgvncfluid mechanics.pptxunit 1 24erdgfgdhgvncfluid mechanics.pptx
unit 1 24erdgfgdhgvncfluid mechanics.pptx
 
Basic Instrument Presentation ( Flow )
Basic Instrument Presentation ( Flow )Basic Instrument Presentation ( Flow )
Basic Instrument Presentation ( Flow )
 
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154  Lect 1 Summer 2023.pdfFluid Mechanics MEC 154  Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
 
Flow of fluid- Pharmaceutical Engineering
Flow of fluid- Pharmaceutical EngineeringFlow of fluid- Pharmaceutical Engineering
Flow of fluid- Pharmaceutical Engineering
 

Plus de Muthu Natarajan (8)

NDT.pptx
NDT.pptxNDT.pptx
NDT.pptx
 
Mechanical Tests.pptx
Mechanical Tests.pptxMechanical Tests.pptx
Mechanical Tests.pptx
 
Idea Generation.pptx
Idea Generation.pptxIdea Generation.pptx
Idea Generation.pptx
 
Introduction.pptx
Introduction.pptxIntroduction.pptx
Introduction.pptx
 
Domainwise.pptx
Domainwise.pptxDomainwise.pptx
Domainwise.pptx
 
Unit 2 - CE8394 FMM
Unit 2 - CE8394 FMMUnit 2 - CE8394 FMM
Unit 2 - CE8394 FMM
 
Just in time
Just in timeJust in time
Just in time
 
Me6703 cim systems
Me6703 cim systemsMe6703 cim systems
Me6703 cim systems
 

Dernier

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Dernier (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 

Unit 1 CE8394 FMM

  • 1. UNIT 1 INTRODUCTION CE6451 FLUID MECHANICS & MACHINERY Prepared by S. Muthu Natarajan M.E., (Ph.D.), Assistant Professor Kamaraj College of Engineering and Technology Madurai
  • 2. INTRODUCTION TO FLUID MECHANICS • Fluid mechanics is the branch of science which deals with the behaviour of fluids at rest and in motion • Fluid mechanics is classified as Fluid statics Fluid dynamics is classified as a. Fluid kinematics b. Fluid kinetics
  • 3. PROPERTIES OF FLUIDS • Density or Mass density (ρ) : It is defined as the ration of the mass of the fluid to the volume of the fluid 𝜌 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝜌 of water = 1000 kgm /m3 units : kgm /m3 • Specific weight or weight density (w) : It is defined as the weight of the fluid volume of the fluid w= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 ×𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 w = 𝜌 ×g units : N/m3 w of water = 9810 N/m3
  • 4. PROPERTIES OF FLUIDS • Specific volume : It is defined as the reciprocal of density of the fluid specific volume = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 Units : m3/ kgm • Specific gravity (S): It is defined as the ratio of the density of the liquid to the density of water (OR) it is defined as the ratio of the weight density of the liquid to the weight density of water. S = 𝜌 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝜌 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (OR) 𝑤 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑤 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
  • 5. PROPERTIES OF FLUIDS • Viscosity : It is defined as the property of the fluid which offers resistance to the movement of one layer of the fluid over another adjacent layer of the fluid. • Newtons law of viscosity (µ) : It states that the shear stress (τ) on a fluid element layer is directly proportional to the rate of shear strain. The constant of proportionality is called the co-efficient of viscosity. Mathematically τ = 𝜇 𝑑𝑢 𝑑𝑦 Units of dynamic viscosity = Ns/m2 , poise 1 poise = 0.1 Ns/m2 • Kinematic viscosity (ϒ) ϒ= 𝜇 𝜌 It is defined as the ratio of dynamic viscosity of the fluid to the density of the fluid. Units of kinematic viscosity = m2 /s , stokes I stoke = 1 cm2/s
  • 6. PROPERTIES OF FLUIDS • Compressibility and Bulk modulus : Compressibility is defined as the reciprocal of bulk modulus. Bulk modulus (K) is defined as the ratio of compressive stress to volumetric strain K = 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒐𝒇 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 −𝒅𝒗/𝒗 Surface Tension (σ) = Surface tension is defined as the force acting on the surface of a liquid in contact with a gas or on the surface between two immiscible fluids such that the contact surface behaves like a membrane under tension. Units : N/m For liquid droplet h= 𝟒𝝈 𝒅 For soap bubble h= 𝟖𝝈 𝒅 Capillarity : It is defined as the phenomenon of rise or fall of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid. The rise of the liquid surface is capillary rise while the fall in the liquid surface is known as capillary depression For capillary rise h= 𝟒𝝈 𝝆𝒈𝒅 For capillary depression h= 𝟒𝝈𝒄𝒐𝒔𝜽 𝝆𝒈𝒅 Where θ = angle of contact between liquid and glass tube.
  • 7. TYPES OF FLUIDS • Ideal fluid : A fluid which is incompressible and is having no viscosity is known as ideal fluid. Ideal fluid is an imaginary fluid • Real fluid : A fluid which possess viscosity is known as real fluid. All fluids in practice are known as real fluid • Newtonian fluids : a real fluid in which the shear stress is directly proportional to the rate of shear strain is called as Newtonian fluid • Non – Newtonian fluid : a real fluid in which the shear stress is not proportional to the rate of shear strain is known as non Newtonian fluid • Ideal plastic fluid : A fluid in which shear stress is more than the yield value and shear stress is proportional to the rate of shear strain is known as ideal plastic fluid
  • 8. TYPES OF FLOW • Steady flow : a steady flow is a flow in which the fluid characteristics like pressure, density, etc does not vary with respect to time • Un steady flow : a unsteady flow is a flow in which the fluid characteristics like pressure, density, etc vary with respect to time • Uniform flow : A flow in which the velocity at any given time does not change with respect to distance • Non uniform flow : A flow in which the velocity at any given time change with respect to distance • Compressible flow : The flow in which the density of the fluid changes from point to point ρ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, • Incompressible flow : The flow in which the density of the fluid do not change from point to point ρ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
  • 9. RATE OF FLOW (OR) DISCHARGE • It is defined as the quantity of a fluid flowing per second through a section of a pipe or a channel. For an incompressible fluid the rate of flow or discharge is expressed as the volume of the fluid flowing across the section per second. • For incompressible fluids (Q) = A × V Where A = Cross sectional area of the pipe V = average velocity of fluid across the section
  • 10. CONTINUITY EQUATION • The equation is based on the law of conservation of mass • It states that for a fluid flowing through the pipe at all the cross section the quantity of the fluid per second is a constant. • Consider two cross sections of a pipe as shown in the fig Let V1 be the velocity at cross section 1-1 Let V2 be the velocity at cross section 2-2 Let A1 be the velocity at cross section 1-1 Let A2 be the velocity at cross section 2-2 According to the law of conservation of mass Rate of flow at section 1-1 = Rate of flow at section 2-2 𝝆 𝟏 𝑨 𝟏 𝑽 𝟏 = 𝝆 𝟐 𝑨 𝟐 𝑽 𝟐 this is the general expression for both compressible and incompressible fluids For incompressible fluid the above equation is 𝑨 𝟏 𝑽 𝟏 = 𝑨 𝟐 𝑽 𝟐 because density is constant 1 1 2 2
  • 11. BERNOULLIS THEOREM • It states that in a steady, ideal flow of an incompressible fluid the total energy at any point of the fluid is constant. The total energy consists of pressure energy, kinetic energy and datum energy. Thus mathematically bernoullis equation is written as 𝒑 𝝆𝒈 + 𝒗 𝟐 𝟐𝒈 + 𝒛 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒑 𝝆𝒈 = Pressure energy 𝒗 𝟐 𝟐𝒈 = Kinetic energy Z = datum energy • Assumptions of Bernoulli's equation : 1. The fluid is ideal 2. The flow is steady 3. The flow is incompressible 4. The flow is irrotational
  • 12. DERIVATION OF EULERS AND BERNOULLIS EQUATION
  • 13. APPLICATIONS OF BERNOULLIS EQUATION • Venturimeter • Orificemeter • Pitot tube Venturimeter : The venturimeter is a device which is used to measure the rate of flow through a closed pipe It consists of 3 parts (a) A short converging part (b) Throat (c) Diverging part Theoretical discharge Cd = 𝑸 𝒂𝒄𝒕𝒖𝒂𝒍 𝑸 𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 a1 = area of the pipe a2 = area of the throat h= x 𝒔 𝒎 𝒔 𝒇 − 𝟏 𝒔 𝒎 = specific gravity of manometric fluid for mercury = 13.6 𝒔 𝒇 = 𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐠𝐫𝐚𝐯𝐢𝐭𝐲 𝐨𝐟 𝐰𝐚𝐭𝐞𝐫 for water = 1
  • 14. ORIFICEMETER • It is a device used for measuring the rate of flow of a fluid through a pipe. It consists of a flat circular plate which has a circular sharp edged hole called as orifice which is concentric to the pipe
  • 15. DISCHARGE OF ORIFICEMETER • Let a1 = area of the pipe a0 = area of the orifice • Actual discharge h= x 𝒔 𝒎 𝒔 𝒇 − 𝟏 𝒔 𝒎 = specific gravity of manometric fluid for mercury = 13.6 𝒔 𝒇 = 𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐠𝐫𝐚𝐯𝐢𝐭𝐲 𝐨𝐟 𝐰𝐚𝐭𝐞𝐫 for water = 1