SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
ParNcipaNon	
  costs	
  dismiss	
  the	
  
advantage	
  of	
  heterogeneous	
  
networks	
  in	
  evoluNon	
  of	
  cooperaNon
Naoki	
  Masuda	
  (University	
  of	
  Tokyo)
Ref:	
  Masuda.	
  Proc.	
  R.	
  Soc.	
  B,	
  274,	
  1815-­‐1821	
  (2007).
Also	
  see	
  Masuda	
  &	
  Aihara,	
  Phys.	
  LeK.	
  A,	
  313,	
  55-­‐61	
  (2003).
Prisoner’s	
  Dilemma
Opponent

Cooperate

Defect

Cooperate

(3,	
  3)

(0,	
  5)

Defect

(5,	
  0)

(1,	
  1)

Self

unique	
  Nash	
  equilibrium
C

D C
CD D
CD C
D

D

D D
CD D
DD C
D

D

D D
DD D
DD D
D
Mechanisms	
  for	
  cooperaNon
•
•
•
•
•
•
•

Kin	
  selecNon	
  (Hamilton,	
  1964)
Direct	
  reciprocity	
  (Trivers,	
  1971;	
  Axelrod	
  &	
  Hamilton	
  1981)

•

Iterated	
  Prisoner’s	
  dilemma

Group	
  selecNon	
  (Wilson,	
  1975;	
  Traulsen	
  &	
  Nowak,	
  2006)
SpaNal	
  reciprocity	
  (Axelrod,	
  1984;	
  Nowak	
  &	
  May,	
  1992)
Indirect	
  reciprocity	
  (Nowak	
  &	
  Sigmund,	
  1998)

•

Image	
  scoring

Network	
  reciprocity	
  (Lieberman,	
  Hauert	
  &	
  Nowak,	
  2005;	
  
Santos	
  et	
  al.,	
  2005,	
  2006;	
  Ohtsuki	
  et	
  al.,	
  2006)
Others	
  (punishment?,	
  voluntary	
  parNcipaNon	
  etc.)
Iterated	
  Prisoner’s	
  Dilemma
• Players	
  randomly	
  interact	
  with	
  others
• Discount	
  factor	
  w	
  (0	
  ≤	
  w	
  ≤	
  1)	
  to	
  specify	
  the	
  

prob.	
  that	
  the	
  next	
  game	
  is	
  played	
  in	
  a	
  round

A	
  plays

C

D

D

C

D

C

B	
  plays

C

C

D

C

D

D

A	
  gets

3

5

1

3

1

0

A’s	
  accumulated	
  payoff	
  
	
  =	
  3	
  +	
  5w	
  +	
  1w2	
  +	
  3w3	
  +	
  1w4	
  +	
  0w5	
  +	
  …

acNon

C

D

C

(3,	
  3)

(0,	
  5)

D

(5,	
  0)

(1,	
  1)
• SelecNon	
  based	
  on	
  accumulated	
  payoff	
  
aher	
  each	
  round

• Replicator	
  dynamics
• Best-­‐response	
  dynamics
• Nice,	
  retalitatory,	
  and	
  forgiving	
  strategies	
  
(e.g.	
  Tit-­‐for-­‐Tat)	
  are	
  generally	
  strong	
  (but	
  
not	
  the	
  strongest).
SpaNal	
  Prisoner’s	
  Dilemma
(Axelrod,	
  1984;	
  Nowak	
  &	
  May,	
  1992)
• e.g.	
  square	
  laice
• Either	
  cooperator	
  or	
   C:24 C:18 D:24 D:12
defector	
  on	
  each	
  
vertex

• Each	
  player	
  plays	
  

against	
  all	
  (4	
  or	
  8)	
  
neighbors.

C:24

C:21

C:12

D:16

C:24

C:21

C:12

D:16

C:21

C:15

D:20

D:16
•
•
•

Successful	
  strategies	
  propagate	
  aher	
  one	
  generaNon.
Result:	
  Cs	
  form	
  “clusters”	
  to	
  resist	
  invasion	
  by	
  Ds.
Note:	
  2-­‐neighbor	
  CA.	
  More	
  complex	
  than	
  1-­‐neighbor	
  
dynamics	
  such	
  as	
  spin	
  (opinion)	
  dynamics	
  and	
  disease	
  
dynamics
PD	
  on	
  the	
  WaKs-­‐Strogatz	
  small-­‐world	
  network
(Masuda	
  and	
  Aihara,	
  Phys.	
  LeK.	
  A,	
  2003)

acNon

C

D

C

(1,	
  1)

(0,	
  T)

D

(T,	
  0)

(0,	
  0)

p	
  =	
  0

p:	
  small

p	
  ≈	
  1

1
0.8
0.6
%C
0.4

Note:	
  The	
  degrees	
  of	
  all	
  the	
  
nodes	
  are	
  the	
  same	
  
regardless	
  of	
  the	
  rewiring.

0.2

p=0
p=0.01
p=0.9

0
1

1.5

T

2

2.5
large	
  p
1

• 	
  1-­‐dim	
  ring
• 	
  QualitaNvely	
  the	
  

0.8
0.6
%C
0.4

same	
  results	
  for	
  2-­‐dim	
  
networks
small	
  p

1

small	
  p

0.2
0
0

100

200
generation

T=1.1

300

400

1

0.8

0.8

0.6
%C
0.4

0.6
%C
0.4

0.2

0.2

0

large	
  p
0

100

200
generation

T=1.7
300

400

large	
  p
0

small	
  p
T=3.0

0

100

200
generation

300

400
more	
  C
slow

Clustering	
  helps	
  cooperaNon
Small	
  distance	
  (L)	
  accelerates	
  
whatever	
  propagaNon

more	
  D
fast
Social	
  dilemma	
  games	
  on	
  scale-­‐free	
  
networks?
Scale-­‐free	
  networks	
  promote	
  
cooperaNon
acNon

Cooperate

Defect

Cooperate

(1,	
  1)

(S,	
  T)

Defect

(T,	
  S)

(0,	
  0)

Regular	
  RG
(or	
  the	
  complete	
  graph)
1
(a)

no	
  dilemma

snowdrih

S

1
(b)
S

0

0

stag	
  hunt
-1

scale-­‐free

0

PD
1

T

2

-1

0

1

T

2

Originally	
  by	
  Santos,	
  Pacheco	
  &	
  Lenaerts,	
  PNAS	
  2006
Two	
  assumpNons	
  
underlie	
  the	
  enhanced	
  
coopraNon	
  in	
  SF	
  nets
AssumpNon	
  1:	
  addiNve	
  payoff	
  
scheme

• AddiNve:	
  add	
  the	
  payoffs	
  gained	
  via	
  all	
  the	
  
neighbors	
  

• Nowak,	
  Bonhoeffer	
  &	
  May	
  1994;	
  Abramson	
  &	
  

Kuperman	
  2001;	
  Ebel	
  &	
  Bornholdt,	
  2002;	
  Ihi,	
  
Killingback	
  &	
  Doebeli	
  2004;	
  Durán	
  &	
  Mulet,	
  2005;	
  
Santos	
  et	
  al.,	
  2005;	
  2006;	
  Ohtsuki	
  et	
  al.,	
  2006

• Average:	
  divide	
  the	
  summed	
  payoffs	
  by	
  the	
  number	
  
of	
  neighbors

• Kim	
  et	
  al.,	
  2002;	
  Holme	
  et	
  al.,	
  2003;	
  Vukov	
  &	
  
Szabó,	
  2005;	
  Taylor	
  &	
  Nowak,	
  2006
acNon

Cooperate

Defect

Cooperate

(3,	
  3)

(0,	
  5)

Defect

(5,	
  0)

(1,	
  1)

10

90

v1
k 1 = 100

v2
k2 = 2

=C
=D

payoff	
  scheme
addiNve

3×10+0×90	
  =	
  30

5×2	
  =	
  10

average

(3×10+0×90)/100	
  =	
  0.3

(5×2)/2	
  =	
  5
• Average	
  payoff	
  diminishes	
  cooperaNon	
  in	
  
heterogeneous	
  networks	
  (Santos	
  &	
  
Pacheco,	
  J.	
  Evol.	
  Biol.,	
  2006).
AssumpNon	
  2:	
  PosiNvely	
  biased	
  
payoffs
•
C

D

C

a

b

D

c

d

(

Originate	
  from	
  the	
  translaNon	
  invariance	
  of	
  replicator	
  dynamics
!

!

(

⇡C =
⇡D =

axC + bxD
cxC + dxD

h⇡i = ⇡C xC + ⇡D xD
xC =
˙
xD =
˙

xC (⇡C
xD (⇡D

✓

a b
c d

◆

✓

◆

h b h →	
  parNcipaNon	
  
h d h
cost
✓
◆ ✓
◆
a b
ka kb
!
→	
  Nme	
  rescaling
c d
kc kd
◆
◆ ✓
✓
a b
a+k b+k
!
c d
c
d
!

a
c

h⇡i)
h⇡i)

acNon

C

D

acNon

C

D

C

(1,	
  1)

(0,	
  T)

C

(1,	
  1)

(S,	
  T)

D

(T,	
  0)

(0,	
  0)

D

(T,	
  S)

(0,	
  0)
Reason	
  for	
  enhanced	
  cooperaNon
•

Hubs	
  earn	
  more	
  than	
  
leaves.

•

C	
  on	
  hubs	
  (with	
  at	
  least	
  
some	
  C	
  neighbors)	
  are	
  
stable.

•

C	
  spreads	
  from	
  hubs	
  to	
  
leaves.

10

acNon

C

D

C

(1,	
  1)

(0,	
  T)

D

(T,	
  0)

(0,	
  0)

90

v1
k 1 = 100

v2
k2 = 2

=C
=D
Payoff	
  matrix	
  is	
  not	
  invariant	
  on	
  
heterogeneous	
  networks
C

D

C

a

b

D

c

d

(

!

!

(

⇡C =
⇡D =

✓

h⇡i = ⇡C xC + ⇡D xD
xC =
˙
xD =
˙

xC (⇡C
xD (⇡D

✓

!

h⇡i)
h⇡i)
acNon

C

D

C

(1,	
  1)

(0,	
  T)

D

(T,	
  0)

(0,	
  0)

a
c

◆

h b h →	
  parNcipaNon	
  
h d NG
h
cost
✓
◆ ✓
◆
a b
ka kb
!
✔ →	
  Nme	
  rescaling
c d
kc kd
◆
◆ ✓
✓
a b
a+k b+k
!
NG
c d
c
d

axC + bxD
cxC + dxD

a b
c d

◆
Our	
  assumpNons
• AddiNve	
  payoff	
  scheme
• Introduce	
  the	
  parNcipaNon	
  cost
• Do	
  numerics
• N	
  =	
  5000	
  players
• Each	
  player	
  plays	
  against	
  all	
  the	
  neighbors.
• Replicator-­‐type	
  update	
  rule:	
  player	
  i	
  copies	
  
player	
  j’s	
  strategy	
  with	
  prob

	
  (πj-­‐πi)/[max(ki,kj)	
  *	
  (max	
  possible	
  
payoff	
  –	
  min	
  possible	
  payoff)]
Simplified	
  prisoner’s	
  dilemma
regular	
  random	
  net
(a)
3

1
cf
0.75

2

0.5

1

0.25

0

acNon

C

D

C

(1-h,	
  1-h) (-h,	
  T-h)

D

(T-h,	
  -h)

0

h

0.7

1 T 1.3

scale-­‐free	
  net

1.6

(-h,	
  -h)

3	
  (roughly	
  separated)	
  regimes
Strong	
  influence	
  of	
  iniNal	
  cnds	
  due	
  
1
to	
  long	
  transients

(a)
3
2

Somewhat	
  reduced	
  cooperaNon

h
1

2

Enhanced	
  cooperaNon	
  (prev	
  results) 3

0
0.7

1 T 1.3

1.6
T	
  =	
  1.5
(b)

h	
  =	
  0

100
50

h	
  =	
  0.2
h	
  =	
  0.23

0

h	
  =	
  0.24
h	
  =	
  0.25

-50

h	
  =	
  0.5
0

50

h	
  =	
  0.3

100
150
# neighbors

200

h	
  =	
  0.2 h	
  =	
  0
# flips

generation payoff

(a)

h	
  =	
  0.5

50

h	
  =	
  0.23

h	
  =	
  0.3

h	
  =	
  0.24
h	
  =	
  0.25
0

10

100
# neighbors

Strategy	
  spreads	
  from	
  stubborn	
  
leaves	
  to	
  hubs.

h
1
0
0.7

1 T 1.3

1.6

2

From	
  hub	
  cooperators	
  to	
  leaves.

2

1

From	
  leaves	
  to	
  hubs.	
  	
  PD	
  payoff	
  
structure	
  is	
  most	
  relevant.

(a)
3

3
General	
  matrix	
  game
• Homogeneous	
  (in	
  degree)	
  →	
  2	
  parameters	
  (S	
  
and	
  T)

• e.g.	
  well-­‐mixed,	
  square	
  laice,	
  regular	
  
random	
  graph

• Heterogeneous	
  →	
  3	
  parameters	
  (S,	
  T,	
  and	
  h)
• e.g.	
  ER	
  random	
  graph,	
  scale-­‐free
• PD,	
  snowdrih	
  game,	
  hawk-­‐dove	
  game	
  included
acNon

C

D

C

(1-h,	
  1-h) (S-h,	
  T-h)

D

(T-h,	
  S-h)

(-h,	
  -h)
consistent	
  with	
  Santos	
  et	
  al.,	
  PNAS	
  (2006)
Regular	
  RG	
  (h	
  =	
  0)
1
(a)

SF	
  (h	
  =	
  0.5)

snowdrih

0

1
(b)

1
(c)

S

no	
  dilemma

S

S

0

stag	
  hunt
-1

SF	
  (h	
  =	
  0)

0

PD
1

T

1
2

-1

0

1
0

SF	
  (h	
  =	
  1)

1

T

2

SF	
  (h	
  =	
  2)

1
(d)

-1

2
0

1

1
cf

1
(e)

0.75
S

S

0

-1

0.5

0

2
0

1

T

2

-1

3
0

1

T

2

0.25
0

T

2
Thoughts	
  about	
  the	
  payoff	
  bias	
  

• Naturally	
  understood	
  as	
  the	
  parNcipaNon	
  cost
• Payoffs	
  may	
  be	
  negaNve	
  in	
  many	
  pracNcal	
  
situaNons.

• Environmental	
  problems?
• InternaNonal	
  relaNons?
• When	
  one	
  is	
  ‘forced’	
  to	
  play	
  games
Conclusions
• Games	
  with	
  parNcipaNon	
  costs	
  on	
  networks	
  
• More	
  C	
  for	
  small	
  parNcipaNon	
  cost	
  h	
  
(previous	
  work).

• Networks	
  determine	
  dynamics	
  for	
  small	
  and	
  
large	
  h.

• Payoff	
  matrix	
  is	
  most	
  relevant	
  for	
  
intermediate	
  h.

• Think	
  twice	
  about	
  the	
  use	
  of	
  simplified	
  PD	
  
payoff	
  matrices.

Contenu connexe

Tendances

Tendances (10)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Objective Bayesian Ana...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Objective Bayesian Ana...MUMS: Bayesian, Fiducial, and Frequentist Conference - Objective Bayesian Ana...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Objective Bayesian Ana...
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithms
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
 
Pr083 Non-local Neural Networks
Pr083 Non-local Neural NetworksPr083 Non-local Neural Networks
Pr083 Non-local Neural Networks
 
main
mainmain
main
 
MLHEP 2015: Introductory Lecture #2
MLHEP 2015: Introductory Lecture #2MLHEP 2015: Introductory Lecture #2
MLHEP 2015: Introductory Lecture #2
 
Errata Factory Physics Second Edition
Errata Factory Physics Second EditionErrata Factory Physics Second Edition
Errata Factory Physics Second Edition
 
BS2506 tutorial 1
BS2506 tutorial 1BS2506 tutorial 1
BS2506 tutorial 1
 

En vedette

Magazine cover build up
Magazine cover build upMagazine cover build up
Magazine cover build up
DanHall1996
 
Bài phải nộp
Bài phải nộpBài phải nộp
Bài phải nộp
Thanh Huệ
 
Pengujian vigor benih
Pengujian vigor benihPengujian vigor benih
Pengujian vigor benih
Unhy Doel
 
Vigor dan viabilitas benih
Vigor dan viabilitas benihVigor dan viabilitas benih
Vigor dan viabilitas benih
Unhy Doel
 

En vedette (10)

Magazine cover build up
Magazine cover build upMagazine cover build up
Magazine cover build up
 
Bài phải nộp
Bài phải nộpBài phải nộp
Bài phải nộp
 
Global network structure of dominance hierarchy of ant workersAntnet slides-s...
Global network structure of dominance hierarchy of ant workersAntnet slides-s...Global network structure of dominance hierarchy of ant workersAntnet slides-s...
Global network structure of dominance hierarchy of ant workersAntnet slides-s...
 
Tag-based indirect reciprocity
Tag-based indirect reciprocityTag-based indirect reciprocity
Tag-based indirect reciprocity
 
10 common misconceptions in feng shui
10 common misconceptions in feng shui10 common misconceptions in feng shui
10 common misconceptions in feng shui
 
Preparing Students for Collaborative Leadership: Lowering the walls and cross...
Preparing Students for Collaborative Leadership: Lowering the walls and cross...Preparing Students for Collaborative Leadership: Lowering the walls and cross...
Preparing Students for Collaborative Leadership: Lowering the walls and cross...
 
Pengujian vigor benih
Pengujian vigor benihPengujian vigor benih
Pengujian vigor benih
 
Vigor dan viabilitas benih
Vigor dan viabilitas benihVigor dan viabilitas benih
Vigor dan viabilitas benih
 
Murtad Bukan Hak Asasi
Murtad Bukan Hak AsasiMurtad Bukan Hak Asasi
Murtad Bukan Hak Asasi
 
Maximizing the spectral gap of networks produced by node removal
Maximizing the spectral gap of networks produced by node removalMaximizing the spectral gap of networks produced by node removal
Maximizing the spectral gap of networks produced by node removal
 

Similaire à Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
The Statistical and Applied Mathematical Sciences Institute
 
TunUp final presentation
TunUp final presentationTunUp final presentation
TunUp final presentation
Gianmario Spacagna
 
Spatial patterns in evolutionary games on scale-free networks and multiplexes
Spatial patterns in evolutionary games on scale-free networks and multiplexesSpatial patterns in evolutionary games on scale-free networks and multiplexes
Spatial patterns in evolutionary games on scale-free networks and multiplexes
Kolja Kleineberg
 
Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...
Kolja Kleineberg
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
AjEcuacion
 

Similaire à Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation (20)

Interactive High-Dimensional Visualization of Social Graphs
Interactive High-Dimensional Visualization of Social GraphsInteractive High-Dimensional Visualization of Social Graphs
Interactive High-Dimensional Visualization of Social Graphs
 
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
 
Epidemic processes on switching networks
Epidemic processes on switching networksEpidemic processes on switching networks
Epidemic processes on switching networks
 
PhD defense talk slides
PhD  defense talk slidesPhD  defense talk slides
PhD defense talk slides
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Clustering coefficients for correlation networks
Clustering coefficients for correlation networksClustering coefficients for correlation networks
Clustering coefficients for correlation networks
 
TunUp final presentation
TunUp final presentationTunUp final presentation
TunUp final presentation
 
[Vldb 2013] skyline operator on anti correlated distributions
[Vldb 2013] skyline operator on anti correlated distributions[Vldb 2013] skyline operator on anti correlated distributions
[Vldb 2013] skyline operator on anti correlated distributions
 
Spatial patterns in evolutionary games on scale-free networks and multiplexes
Spatial patterns in evolutionary games on scale-free networks and multiplexesSpatial patterns in evolutionary games on scale-free networks and multiplexes
Spatial patterns in evolutionary games on scale-free networks and multiplexes
 
Decomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimizationDecomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimization
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
Paper study: Learning to solve circuit sat
Paper study: Learning to solve circuit satPaper study: Learning to solve circuit sat
Paper study: Learning to solve circuit sat
 
Composition of Clans for Solving Linear Systems on Parallel Architectures
Composition of Clans for Solving Linear Systems on Parallel ArchitecturesComposition of Clans for Solving Linear Systems on Parallel Architectures
Composition of Clans for Solving Linear Systems on Parallel Architectures
 
Allele Frequencies as Stochastic Processes: Mathematical & Statistical Approa...
Allele Frequencies as Stochastic Processes: Mathematical & Statistical Approa...Allele Frequencies as Stochastic Processes: Mathematical & Statistical Approa...
Allele Frequencies as Stochastic Processes: Mathematical & Statistical Approa...
 
Threshold network models
Threshold network modelsThreshold network models
Threshold network models
 
Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
 
Wereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsWereszczynski Molecular Dynamics
Wereszczynski Molecular Dynamics
 

Dernier

Dernier (20)

"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 

Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

  • 1. ParNcipaNon  costs  dismiss  the   advantage  of  heterogeneous   networks  in  evoluNon  of  cooperaNon Naoki  Masuda  (University  of  Tokyo) Ref:  Masuda.  Proc.  R.  Soc.  B,  274,  1815-­‐1821  (2007). Also  see  Masuda  &  Aihara,  Phys.  LeK.  A,  313,  55-­‐61  (2003).
  • 2. Prisoner’s  Dilemma Opponent Cooperate Defect Cooperate (3,  3) (0,  5) Defect (5,  0) (1,  1) Self unique  Nash  equilibrium C D C CD D CD C D D D D CD D DD C D D D D DD D DD D D
  • 3. Mechanisms  for  cooperaNon • • • • • • • Kin  selecNon  (Hamilton,  1964) Direct  reciprocity  (Trivers,  1971;  Axelrod  &  Hamilton  1981) • Iterated  Prisoner’s  dilemma Group  selecNon  (Wilson,  1975;  Traulsen  &  Nowak,  2006) SpaNal  reciprocity  (Axelrod,  1984;  Nowak  &  May,  1992) Indirect  reciprocity  (Nowak  &  Sigmund,  1998) • Image  scoring Network  reciprocity  (Lieberman,  Hauert  &  Nowak,  2005;   Santos  et  al.,  2005,  2006;  Ohtsuki  et  al.,  2006) Others  (punishment?,  voluntary  parNcipaNon  etc.)
  • 4. Iterated  Prisoner’s  Dilemma • Players  randomly  interact  with  others • Discount  factor  w  (0  ≤  w  ≤  1)  to  specify  the   prob.  that  the  next  game  is  played  in  a  round A  plays C D D C D C B  plays C C D C D D A  gets 3 5 1 3 1 0 A’s  accumulated  payoff    =  3  +  5w  +  1w2  +  3w3  +  1w4  +  0w5  +  … acNon C D C (3,  3) (0,  5) D (5,  0) (1,  1)
  • 5. • SelecNon  based  on  accumulated  payoff   aher  each  round • Replicator  dynamics • Best-­‐response  dynamics • Nice,  retalitatory,  and  forgiving  strategies   (e.g.  Tit-­‐for-­‐Tat)  are  generally  strong  (but   not  the  strongest).
  • 6. SpaNal  Prisoner’s  Dilemma (Axelrod,  1984;  Nowak  &  May,  1992) • e.g.  square  laice • Either  cooperator  or   C:24 C:18 D:24 D:12 defector  on  each   vertex • Each  player  plays   against  all  (4  or  8)   neighbors. C:24 C:21 C:12 D:16 C:24 C:21 C:12 D:16 C:21 C:15 D:20 D:16
  • 7. • • • Successful  strategies  propagate  aher  one  generaNon. Result:  Cs  form  “clusters”  to  resist  invasion  by  Ds. Note:  2-­‐neighbor  CA.  More  complex  than  1-­‐neighbor   dynamics  such  as  spin  (opinion)  dynamics  and  disease   dynamics
  • 8. PD  on  the  WaKs-­‐Strogatz  small-­‐world  network (Masuda  and  Aihara,  Phys.  LeK.  A,  2003) acNon C D C (1,  1) (0,  T) D (T,  0) (0,  0) p  =  0 p:  small p  ≈  1 1 0.8 0.6 %C 0.4 Note:  The  degrees  of  all  the   nodes  are  the  same   regardless  of  the  rewiring. 0.2 p=0 p=0.01 p=0.9 0 1 1.5 T 2 2.5
  • 9. large  p 1 •  1-­‐dim  ring •  QualitaNvely  the   0.8 0.6 %C 0.4 same  results  for  2-­‐dim   networks small  p 1 small  p 0.2 0 0 100 200 generation T=1.1 300 400 1 0.8 0.8 0.6 %C 0.4 0.6 %C 0.4 0.2 0.2 0 large  p 0 100 200 generation T=1.7 300 400 large  p 0 small  p T=3.0 0 100 200 generation 300 400
  • 10. more  C slow Clustering  helps  cooperaNon Small  distance  (L)  accelerates   whatever  propagaNon more  D fast
  • 11. Social  dilemma  games  on  scale-­‐free   networks?
  • 12. Scale-­‐free  networks  promote   cooperaNon acNon Cooperate Defect Cooperate (1,  1) (S,  T) Defect (T,  S) (0,  0) Regular  RG (or  the  complete  graph) 1 (a) no  dilemma snowdrih S 1 (b) S 0 0 stag  hunt -1 scale-­‐free 0 PD 1 T 2 -1 0 1 T 2 Originally  by  Santos,  Pacheco  &  Lenaerts,  PNAS  2006
  • 13. Two  assumpNons   underlie  the  enhanced   coopraNon  in  SF  nets
  • 14. AssumpNon  1:  addiNve  payoff   scheme • AddiNve:  add  the  payoffs  gained  via  all  the   neighbors   • Nowak,  Bonhoeffer  &  May  1994;  Abramson  &   Kuperman  2001;  Ebel  &  Bornholdt,  2002;  Ihi,   Killingback  &  Doebeli  2004;  Durán  &  Mulet,  2005;   Santos  et  al.,  2005;  2006;  Ohtsuki  et  al.,  2006 • Average:  divide  the  summed  payoffs  by  the  number   of  neighbors • Kim  et  al.,  2002;  Holme  et  al.,  2003;  Vukov  &   Szabó,  2005;  Taylor  &  Nowak,  2006
  • 15. acNon Cooperate Defect Cooperate (3,  3) (0,  5) Defect (5,  0) (1,  1) 10 90 v1 k 1 = 100 v2 k2 = 2 =C =D payoff  scheme addiNve 3×10+0×90  =  30 5×2  =  10 average (3×10+0×90)/100  =  0.3 (5×2)/2  =  5
  • 16. • Average  payoff  diminishes  cooperaNon  in   heterogeneous  networks  (Santos  &   Pacheco,  J.  Evol.  Biol.,  2006).
  • 17. AssumpNon  2:  PosiNvely  biased   payoffs • C D C a b D c d ( Originate  from  the  translaNon  invariance  of  replicator  dynamics ! ! ( ⇡C = ⇡D = axC + bxD cxC + dxD h⇡i = ⇡C xC + ⇡D xD xC = ˙ xD = ˙ xC (⇡C xD (⇡D ✓ a b c d ◆ ✓ ◆ h b h →  parNcipaNon   h d h cost ✓ ◆ ✓ ◆ a b ka kb ! →  Nme  rescaling c d kc kd ◆ ◆ ✓ ✓ a b a+k b+k ! c d c d ! a c h⇡i) h⇡i) acNon C D acNon C D C (1,  1) (0,  T) C (1,  1) (S,  T) D (T,  0) (0,  0) D (T,  S) (0,  0)
  • 18. Reason  for  enhanced  cooperaNon • Hubs  earn  more  than   leaves. • C  on  hubs  (with  at  least   some  C  neighbors)  are   stable. • C  spreads  from  hubs  to   leaves. 10 acNon C D C (1,  1) (0,  T) D (T,  0) (0,  0) 90 v1 k 1 = 100 v2 k2 = 2 =C =D
  • 19. Payoff  matrix  is  not  invariant  on   heterogeneous  networks C D C a b D c d ( ! ! ( ⇡C = ⇡D = ✓ h⇡i = ⇡C xC + ⇡D xD xC = ˙ xD = ˙ xC (⇡C xD (⇡D ✓ ! h⇡i) h⇡i) acNon C D C (1,  1) (0,  T) D (T,  0) (0,  0) a c ◆ h b h →  parNcipaNon   h d NG h cost ✓ ◆ ✓ ◆ a b ka kb ! ✔ →  Nme  rescaling c d kc kd ◆ ◆ ✓ ✓ a b a+k b+k ! NG c d c d axC + bxD cxC + dxD a b c d ◆
  • 20. Our  assumpNons • AddiNve  payoff  scheme • Introduce  the  parNcipaNon  cost • Do  numerics • N  =  5000  players • Each  player  plays  against  all  the  neighbors. • Replicator-­‐type  update  rule:  player  i  copies   player  j’s  strategy  with  prob  (πj-­‐πi)/[max(ki,kj)  *  (max  possible   payoff  –  min  possible  payoff)]
  • 21. Simplified  prisoner’s  dilemma regular  random  net (a) 3 1 cf 0.75 2 0.5 1 0.25 0 acNon C D C (1-h,  1-h) (-h,  T-h) D (T-h,  -h) 0 h 0.7 1 T 1.3 scale-­‐free  net 1.6 (-h,  -h) 3  (roughly  separated)  regimes Strong  influence  of  iniNal  cnds  due   1 to  long  transients (a) 3 2 Somewhat  reduced  cooperaNon h 1 2 Enhanced  cooperaNon  (prev  results) 3 0 0.7 1 T 1.3 1.6
  • 22. T  =  1.5 (b) h  =  0 100 50 h  =  0.2 h  =  0.23 0 h  =  0.24 h  =  0.25 -50 h  =  0.5 0 50 h  =  0.3 100 150 # neighbors 200 h  =  0.2 h  =  0 # flips generation payoff (a) h  =  0.5 50 h  =  0.23 h  =  0.3 h  =  0.24 h  =  0.25 0 10 100 # neighbors Strategy  spreads  from  stubborn   leaves  to  hubs. h 1 0 0.7 1 T 1.3 1.6 2 From  hub  cooperators  to  leaves. 2 1 From  leaves  to  hubs.    PD  payoff   structure  is  most  relevant. (a) 3 3
  • 23. General  matrix  game • Homogeneous  (in  degree)  →  2  parameters  (S   and  T) • e.g.  well-­‐mixed,  square  laice,  regular   random  graph • Heterogeneous  →  3  parameters  (S,  T,  and  h) • e.g.  ER  random  graph,  scale-­‐free • PD,  snowdrih  game,  hawk-­‐dove  game  included acNon C D C (1-h,  1-h) (S-h,  T-h) D (T-h,  S-h) (-h,  -h)
  • 24. consistent  with  Santos  et  al.,  PNAS  (2006) Regular  RG  (h  =  0) 1 (a) SF  (h  =  0.5) snowdrih 0 1 (b) 1 (c) S no  dilemma S S 0 stag  hunt -1 SF  (h  =  0) 0 PD 1 T 1 2 -1 0 1 0 SF  (h  =  1) 1 T 2 SF  (h  =  2) 1 (d) -1 2 0 1 1 cf 1 (e) 0.75 S S 0 -1 0.5 0 2 0 1 T 2 -1 3 0 1 T 2 0.25 0 T 2
  • 25. Thoughts  about  the  payoff  bias   • Naturally  understood  as  the  parNcipaNon  cost • Payoffs  may  be  negaNve  in  many  pracNcal   situaNons. • Environmental  problems? • InternaNonal  relaNons? • When  one  is  ‘forced’  to  play  games
  • 26. Conclusions • Games  with  parNcipaNon  costs  on  networks   • More  C  for  small  parNcipaNon  cost  h   (previous  work). • Networks  determine  dynamics  for  small  and   large  h. • Payoff  matrix  is  most  relevant  for   intermediate  h. • Think  twice  about  the  use  of  simplified  PD   payoff  matrices.