SlideShare une entreprise Scribd logo
1  sur  26
 4.1 The Atomic Models of Thomson and Rutherford
 4.2 Rutherford Scattering
 4.3 The Classic Atomic Model
 4.4 The Bohr Model of the Hydrogen Atom
 4.5 Successes and Failures of the Bohr Model
 4.6 Characteristic X-Ray Spectra and Atomic Number
 4.7 Atomic Excitation by Electrons
CHAPTER 4
Structure of the AtomStructure of the Atom
In the present first part of the paper the mechanism of the binding of
electrons by a positive nucleus is discussed in relation to Planck’s
theory. It will be shown that it is possible from the point of view taken to
account in a simple way for the law of the line spectrum of hydrogen.
- Niels Bohr, 1913
Structure of the Atom
Pieces of evidence that scientists had in 1900 to indicate that
the atom was not a fundamental unit:
1) There seemed to be too many kinds of atoms, each
belonging to a distinct chemical element.
2) Atoms and electromagnetic phenomena were intimately
related.
3) The problem of valence. Certain elements combine with
some elements but not with others, a characteristic that
hinted at an internal atomic structure.
4) The discoveries of radioactivity, of x rays, and of the
electron.
 Thomson’s “plum-pudding” model of the atom had the positive
charges spread uniformly throughout a sphere the size of the
atom, with electrons embedded in the uniform background.
 In Thomson’s view, when the atom was heated, the electrons
could vibrate about their equilibrium positions, thus producing
electromagnetic radiation.
Thomson’s Atomic Model
Experiments of Geiger and Marsden
 Rutherford, Geiger, and Marsden
conceived a new technique for
investigating the structure of matter
by scattering α particles from atoms.
 Geiger showed that many α particles
were scattered from thin gold-leaf
targets at backward angles greater
than 90°.
Example 4.1
 The maximum scattering angle corresponding to the maximum momentum
change.
 Maximum momentum change of the α particle is
or
 Determine θ by letting Δpmax be perpendicular to the direction of motion.
 If an α particle were scattered by many electrons and N electrons
results in .
 The number of atoms across the thin gold layer of 6 × 10−7
m:
 Assume the distance between atoms is
and there are .
That gives .
Multiple Scattering from Electrons
 even if the α particle scattered from all 79 electrons in
each atom of gold.
The experimental results were not consistent with Thomson’s
atomic model.
 Rutherford proposed that an atom has a positively charged core
(nucleus) surrounded by the negative electrons.
Rutherford’s Atomic Model
 Scattering experiments help us study matter too small to be
observed directly.
 There is a relationship between the impact parameter b and the
scattering angle θ.
When b is small,
r gets small.
Coulomb force gets large.
θ can be large and the particle can be repelled backward.
4.2: Rutherford Scattering
 Any particle inside the circle of area πb0
2
will be similarly scattered.
 The cross section σ = πb2
is related to the probability for a particle being
scattered by a nucleus.
 The fraction of incident particles scattered is
 The number of scattering nuclei per unit area .
Rutherford Scattering
 In actual experiment a detector is positioned from θ to θ + dθ that
corresponds to incident particles between b and b + db.
 The number of particles scattered per unit area is
Rutherford Scattering Equation
4.3: The Classical Atomic Model
Let’s consider atoms as a planetary model.
 The force of attraction on the electron by the nucleus and Newton’s
2nd law give
where v is the tangential velocity of the electron.
 The total energy is
The Planetary Model is Doomed
 From classical E&M theory, an accelerated electric charge
radiates energy (electromagnetic radiation) which means total
energy must decrease. Radius r must decrease!!
Electron crashes into the nucleus!?
 Physics had reached a turning point in 1900 with Planck’s
hypothesis of the quantum behavior of radiation.
4.4: The Bohr Model of the Hydrogen Atom
Bohr’s general assumptions:
1) “Stationary states” (orbiting electrons do not radiate energy) exist
in atoms.
2) E = E1 − E2 = hf
3) Classical laws of physics do not apply to transitions between
stationary states.
4) The mean kinetic energy of the electron-nucleus system is
K = nhforb/2, where forb is the frequency of rotation.
Bohr Radius
 The diameter of the hydrogen atom for stationary states is
Where the Bohr radius is given by
 The smallest diameter of the hydrogen atom is
 n = 1 gives its lowest energy state (called the “ground” state)
The Hydrogen Atom
 The energies of the stationary states
where E0 = 13.6 eV.
 Emission of light occurs when the atom is
in an excited state and decays to a lower
energy state (nu → nℓ).
where f is the frequency of a photon.
R∞ is the Rydberg constant.
Transitions in the Hydrogen Atom
Lyman series
The atom will remain in the
excited state for a short time
before emitting a photon and
returning to a lower stationary
state. All hydrogen atoms exist
in n = 1 (invisible).
Balmer series
When sunlight passes through
the atmosphere, hydrogen
atoms in water vapor absorb
the wavelengths (visible).
Fine Structure Constant
 The electron’s velocity in the Bohr model:
 On the ground state,
v1 = 2.2 × 106
m/s ~ less than 1% of the speed of light.
 The ratio of v1 to c is the fine structure constant.
The Correspondence Principle
Need a principle to relate the new modern results with classical
ones.
Classical electrodynamics Bohr’s atomic model
Determine the properties
of radiation
Bohr’s correspondence
principle
In the limits where classical and quantum
theories should agree, the quantum
theory must reduce the classical result.
+
The Correspondence Principle
 The frequency of the radiation emitted fclassical is equal to the orbital frequency
forb of the electron around the nucleus.
 The frequency of the transition from n + 1 to n is
 For large n,
Substitute E0:
4.5: Successes and Failures of the Bohr Model
 The electron and hydrogen nucleus actually revolved about their
mutual center of mass.
 The electron mass is replaced by its reduced mass.
 The Rydberg constant for infinite nuclear mass is replaced by R.
Limitations of the Bohr Model
The Bohr model was a great step of the new quantum theory,
but it had its limitations.
1) Works only to single-electron atoms.
2) Could not account for the intensities or the fine structure
of the spectral lines.
3) Could not explain the binding of atoms into molecules.
4.6: Characteristic X-Ray Spectra and
Atomic Number
 Shells have letter names:
K shell for n = 1
L shell for n = 2
 The atom is most stable in its ground state.
 When it occurs in a heavy atom, the radiation emitted is an x ray.
 It has the energy E (x ray) = Eu − Eℓ.
An electron from higher shells will fill the inner-
shell vacancy at lower energy.
Atomic Number
L shell to K shell Kα x ray
M shell to K shell Kβ x ray
 Atomic number Z = number of protons in the nucleus.
 Moseley found a relationship between the frequencies of the
characteristic x ray and Z.
This holds for the Kα x ray.
Moseley’s Empirical Results
 The x ray is produced from n = 2 to n = 1 transition.
 In general, the K series of x ray wavelengths are
Moseley’s research clarified the importance of the electron shells
for all the elements, not just for hydrogen.
4.7: Atomic Excitation by Electrons
 Franck and Hertz studied the phenomenon of ionization.
Accelerating voltage is below 5 V.
electrons did not lose energy.
Accelerating voltage is above 5 V.
sudden drop in the current.
Atomic Excitation by Electrons
 Ground state has E0 to be zero.
First excited state has E1.
The energy difference E1 − 0 = E1 is the excitation energy.
 Hg has an excitation energy of
4.88 eV in the first excited state
 No energy can be transferred to
Hg below 4.88 eV because not
enough energy is available to
excite an electron to the next
energy level
 Above 4.88 eV, the current drops because scattered electrons no longer
reach the collector until the accelerating voltage reaches 9.8 eV and so on.

Contenu connexe

Tendances

nuclear binding energy
 nuclear binding energy nuclear binding energy
nuclear binding energyZeeshan Khalid
 
Limitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum MechanicsLimitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum MechanicsCENTER FOR HIGH ENERGY PHYSICS
 
Atomic spectra,atomic excitation and de excitation
Atomic spectra,atomic excitation and de excitationAtomic spectra,atomic excitation and de excitation
Atomic spectra,atomic excitation and de excitationSyeda Hina Zainab
 
Chapter 5 spectral lines of hydrogen atom
Chapter 5  spectral lines of hydrogen atomChapter 5  spectral lines of hydrogen atom
Chapter 5 spectral lines of hydrogen atomMiza Kamaruzzaman
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetismduffieldj
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsZahid Mehmood
 
B.tech sem i engineering physics u iii chapter 2-superconductivity
B.tech sem i engineering physics u iii chapter 2-superconductivityB.tech sem i engineering physics u iii chapter 2-superconductivity
B.tech sem i engineering physics u iii chapter 2-superconductivityRai University
 
Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Halavath Ramesh
 
Bose einstein condensation
Bose einstein condensationBose einstein condensation
Bose einstein condensationBigil Gupta
 
Electromagnetic Waves presentation
Electromagnetic Waves presentationElectromagnetic Waves presentation
Electromagnetic Waves presentationInstitute of Physics
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard ModelDavid Young
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusionInga Teper
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a briefChaitanya Areti
 

Tendances (20)

nuclear binding energy
 nuclear binding energy nuclear binding energy
nuclear binding energy
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
Limitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum MechanicsLimitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum Mechanics
 
Specific Heat Capacity
Specific Heat CapacitySpecific Heat Capacity
Specific Heat Capacity
 
Atomic spectra,atomic excitation and de excitation
Atomic spectra,atomic excitation and de excitationAtomic spectra,atomic excitation and de excitation
Atomic spectra,atomic excitation and de excitation
 
Chapter 5 spectral lines of hydrogen atom
Chapter 5  spectral lines of hydrogen atomChapter 5  spectral lines of hydrogen atom
Chapter 5 spectral lines of hydrogen atom
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
B.tech sem i engineering physics u iii chapter 2-superconductivity
B.tech sem i engineering physics u iii chapter 2-superconductivityB.tech sem i engineering physics u iii chapter 2-superconductivity
B.tech sem i engineering physics u iii chapter 2-superconductivity
 
Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)
 
Origin of quantum mechanics
Origin of quantum mechanicsOrigin of quantum mechanics
Origin of quantum mechanics
 
Chapter 7 nuclear physics
Chapter 7 nuclear physicsChapter 7 nuclear physics
Chapter 7 nuclear physics
 
Bose einstein condensation
Bose einstein condensationBose einstein condensation
Bose einstein condensation
 
Electromagnetic Waves presentation
Electromagnetic Waves presentationElectromagnetic Waves presentation
Electromagnetic Waves presentation
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard Model
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Magnetism
MagnetismMagnetism
Magnetism
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusion
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 

En vedette (7)

บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะบทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
 
CHAPTER 3 The Experimental Basis of Quantum Theory
CHAPTER 3The Experimental Basis of Quantum TheoryCHAPTER 3The Experimental Basis of Quantum Theory
CHAPTER 3 The Experimental Basis of Quantum Theory
 
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
 
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics ICHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
 
CHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and SolidsCHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and Solids
 
Trm 7
Trm 7Trm 7
Trm 7
 
CHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics IICHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics II
 

Similaire à CHAPTER 4 Structure of the Atom

Atomic structure
Atomic structureAtomic structure
Atomic structureUmesh Gawas
 
Introduction of Atom
Introduction of Atom Introduction of Atom
Introduction of Atom Amol Kumbhar
 
Atomic structure & chemical bond
Atomic structure & chemical bondAtomic structure & chemical bond
Atomic structure & chemical bondSabbir Ahmed
 
Atomic structure 1
Atomic structure 1Atomic structure 1
Atomic structure 1Parul Jain
 
Emission spectrum of hydrogen
Emission spectrum of hydrogenEmission spectrum of hydrogen
Emission spectrum of hydrogenRaphaelZuela
 
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptx
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptxenc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptx
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptxrairishvesh
 
Atoms Class 12 NCERT chapter 12
Atoms Class 12 NCERT chapter 12Atoms Class 12 NCERT chapter 12
Atoms Class 12 NCERT chapter 12Lovedeep Singh
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notessaranyaHC1
 
Chem 1 unit 4 presentation
Chem 1 unit 4 presentationChem 1 unit 4 presentation
Chem 1 unit 4 presentationbobcatchemistry
 
Quantum Mechanics: Electrons, Transistors, & LASERS.
Quantum Mechanics: Electrons, Transistors, & LASERS. Quantum Mechanics: Electrons, Transistors, & LASERS.
Quantum Mechanics: Electrons, Transistors, & LASERS. Paul H. Carr
 
Chapter 4 electrons in atoms
Chapter 4 electrons in atomsChapter 4 electrons in atoms
Chapter 4 electrons in atomstanzmanj
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Cleophas Rwemera
 
Chemistry Basic understanding for LIKE WHAT?
Chemistry Basic understanding for LIKE WHAT?Chemistry Basic understanding for LIKE WHAT?
Chemistry Basic understanding for LIKE WHAT?ArafathIslam4
 
L3electronicstructureofatom 130906000837-
L3electronicstructureofatom 130906000837-L3electronicstructureofatom 130906000837-
L3electronicstructureofatom 130906000837-Cleophas Rwemera
 

Similaire à CHAPTER 4 Structure of the Atom (20)

Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Ap chem unit 7
Ap chem unit 7Ap chem unit 7
Ap chem unit 7
 
Introduction of Atom
Introduction of Atom Introduction of Atom
Introduction of Atom
 
Atomic structure & chemical bond
Atomic structure & chemical bondAtomic structure & chemical bond
Atomic structure & chemical bond
 
Structure of atom
Structure of atomStructure of atom
Structure of atom
 
Atomic structure 1
Atomic structure 1Atomic structure 1
Atomic structure 1
 
Emission spectrum of hydrogen
Emission spectrum of hydrogenEmission spectrum of hydrogen
Emission spectrum of hydrogen
 
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptx
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptxenc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptx
enc=encoded=PWW_dKfjbHrN9xq3SPtoL41DH0Bw5FrP4bCUo7yCo9hDDPhsJJZA_EXSSes=.pptx
 
Chem chapt 5
Chem chapt 5Chem chapt 5
Chem chapt 5
 
Atoms Class 12 NCERT chapter 12
Atoms Class 12 NCERT chapter 12Atoms Class 12 NCERT chapter 12
Atoms Class 12 NCERT chapter 12
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notes
 
Chem 1 unit 4 presentation
Chem 1 unit 4 presentationChem 1 unit 4 presentation
Chem 1 unit 4 presentation
 
Quantum Mechanics: Electrons, Transistors, & LASERS.
Quantum Mechanics: Electrons, Transistors, & LASERS. Quantum Mechanics: Electrons, Transistors, & LASERS.
Quantum Mechanics: Electrons, Transistors, & LASERS.
 
Chapter 4 electrons in atoms
Chapter 4 electrons in atomsChapter 4 electrons in atoms
Chapter 4 electrons in atoms
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02
 
Electrons in Atoms
Electrons in AtomsElectrons in Atoms
Electrons in Atoms
 
Chemistry Basic understanding for LIKE WHAT?
Chemistry Basic understanding for LIKE WHAT?Chemistry Basic understanding for LIKE WHAT?
Chemistry Basic understanding for LIKE WHAT?
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
L3electronicstructureofatom 130906000837-
L3electronicstructureofatom 130906000837-L3electronicstructureofatom 130906000837-
L3electronicstructureofatom 130906000837-
 
12.2
12.212.2
12.2
 

Plus de Thepsatri Rajabhat University

บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]Thepsatri Rajabhat University
 
กฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equationsกฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s EquationsThepsatri Rajabhat University
 
บทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนบทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนThepsatri Rajabhat University
 
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่ายThepsatri Rajabhat University
 
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติบทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติThepsatri Rajabhat University
 
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันบทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันThepsatri Rajabhat University
 
บทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนบทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนThepsatri Rajabhat University
 
บทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานบทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานThepsatri Rajabhat University
 
บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์Thepsatri Rajabhat University
 
บทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงบทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงThepsatri Rajabhat University
 
บทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารบทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารThepsatri Rajabhat University
 
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่ายThepsatri Rajabhat University
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆบทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆThepsatri Rajabhat University
 
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆบทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆThepsatri Rajabhat University
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงบทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงThepsatri Rajabhat University
 

Plus de Thepsatri Rajabhat University (20)

Timeline of atomic models
Timeline of atomic modelsTimeline of atomic models
Timeline of atomic models
 
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
 
กฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equationsกฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equations
 
บทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนบทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุน
 
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
 
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติบทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
 
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันบทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
 
บทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนบทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชน
 
บทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานบทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงาน
 
บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์
 
บทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงบทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียง
 
บทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารบทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสาร
 
บทที่ 5 โมเมนตัม
บทที่ 5 โมเมนตัมบทที่ 5 โมเมนตัม
บทที่ 5 โมเมนตัม
 
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆบทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
 
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆบทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงบทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรง
 

Dernier

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 

Dernier (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 

CHAPTER 4 Structure of the Atom

  • 1.  4.1 The Atomic Models of Thomson and Rutherford  4.2 Rutherford Scattering  4.3 The Classic Atomic Model  4.4 The Bohr Model of the Hydrogen Atom  4.5 Successes and Failures of the Bohr Model  4.6 Characteristic X-Ray Spectra and Atomic Number  4.7 Atomic Excitation by Electrons CHAPTER 4 Structure of the AtomStructure of the Atom In the present first part of the paper the mechanism of the binding of electrons by a positive nucleus is discussed in relation to Planck’s theory. It will be shown that it is possible from the point of view taken to account in a simple way for the law of the line spectrum of hydrogen. - Niels Bohr, 1913
  • 2. Structure of the Atom Pieces of evidence that scientists had in 1900 to indicate that the atom was not a fundamental unit: 1) There seemed to be too many kinds of atoms, each belonging to a distinct chemical element. 2) Atoms and electromagnetic phenomena were intimately related. 3) The problem of valence. Certain elements combine with some elements but not with others, a characteristic that hinted at an internal atomic structure. 4) The discoveries of radioactivity, of x rays, and of the electron.
  • 3.  Thomson’s “plum-pudding” model of the atom had the positive charges spread uniformly throughout a sphere the size of the atom, with electrons embedded in the uniform background.  In Thomson’s view, when the atom was heated, the electrons could vibrate about their equilibrium positions, thus producing electromagnetic radiation. Thomson’s Atomic Model
  • 4. Experiments of Geiger and Marsden  Rutherford, Geiger, and Marsden conceived a new technique for investigating the structure of matter by scattering α particles from atoms.  Geiger showed that many α particles were scattered from thin gold-leaf targets at backward angles greater than 90°.
  • 5. Example 4.1  The maximum scattering angle corresponding to the maximum momentum change.  Maximum momentum change of the α particle is or  Determine θ by letting Δpmax be perpendicular to the direction of motion.
  • 6.  If an α particle were scattered by many electrons and N electrons results in .  The number of atoms across the thin gold layer of 6 × 10−7 m:  Assume the distance between atoms is and there are . That gives . Multiple Scattering from Electrons
  • 7.  even if the α particle scattered from all 79 electrons in each atom of gold. The experimental results were not consistent with Thomson’s atomic model.  Rutherford proposed that an atom has a positively charged core (nucleus) surrounded by the negative electrons. Rutherford’s Atomic Model
  • 8.  Scattering experiments help us study matter too small to be observed directly.  There is a relationship between the impact parameter b and the scattering angle θ. When b is small, r gets small. Coulomb force gets large. θ can be large and the particle can be repelled backward. 4.2: Rutherford Scattering
  • 9.  Any particle inside the circle of area πb0 2 will be similarly scattered.  The cross section σ = πb2 is related to the probability for a particle being scattered by a nucleus.  The fraction of incident particles scattered is  The number of scattering nuclei per unit area . Rutherford Scattering
  • 10.  In actual experiment a detector is positioned from θ to θ + dθ that corresponds to incident particles between b and b + db.  The number of particles scattered per unit area is Rutherford Scattering Equation
  • 11. 4.3: The Classical Atomic Model Let’s consider atoms as a planetary model.  The force of attraction on the electron by the nucleus and Newton’s 2nd law give where v is the tangential velocity of the electron.  The total energy is
  • 12. The Planetary Model is Doomed  From classical E&M theory, an accelerated electric charge radiates energy (electromagnetic radiation) which means total energy must decrease. Radius r must decrease!! Electron crashes into the nucleus!?  Physics had reached a turning point in 1900 with Planck’s hypothesis of the quantum behavior of radiation.
  • 13. 4.4: The Bohr Model of the Hydrogen Atom Bohr’s general assumptions: 1) “Stationary states” (orbiting electrons do not radiate energy) exist in atoms. 2) E = E1 − E2 = hf 3) Classical laws of physics do not apply to transitions between stationary states. 4) The mean kinetic energy of the electron-nucleus system is K = nhforb/2, where forb is the frequency of rotation.
  • 14. Bohr Radius  The diameter of the hydrogen atom for stationary states is Where the Bohr radius is given by  The smallest diameter of the hydrogen atom is  n = 1 gives its lowest energy state (called the “ground” state)
  • 15. The Hydrogen Atom  The energies of the stationary states where E0 = 13.6 eV.  Emission of light occurs when the atom is in an excited state and decays to a lower energy state (nu → nℓ). where f is the frequency of a photon. R∞ is the Rydberg constant.
  • 16. Transitions in the Hydrogen Atom Lyman series The atom will remain in the excited state for a short time before emitting a photon and returning to a lower stationary state. All hydrogen atoms exist in n = 1 (invisible). Balmer series When sunlight passes through the atmosphere, hydrogen atoms in water vapor absorb the wavelengths (visible).
  • 17. Fine Structure Constant  The electron’s velocity in the Bohr model:  On the ground state, v1 = 2.2 × 106 m/s ~ less than 1% of the speed of light.  The ratio of v1 to c is the fine structure constant.
  • 18. The Correspondence Principle Need a principle to relate the new modern results with classical ones. Classical electrodynamics Bohr’s atomic model Determine the properties of radiation Bohr’s correspondence principle In the limits where classical and quantum theories should agree, the quantum theory must reduce the classical result. +
  • 19. The Correspondence Principle  The frequency of the radiation emitted fclassical is equal to the orbital frequency forb of the electron around the nucleus.  The frequency of the transition from n + 1 to n is  For large n, Substitute E0:
  • 20. 4.5: Successes and Failures of the Bohr Model  The electron and hydrogen nucleus actually revolved about their mutual center of mass.  The electron mass is replaced by its reduced mass.  The Rydberg constant for infinite nuclear mass is replaced by R.
  • 21. Limitations of the Bohr Model The Bohr model was a great step of the new quantum theory, but it had its limitations. 1) Works only to single-electron atoms. 2) Could not account for the intensities or the fine structure of the spectral lines. 3) Could not explain the binding of atoms into molecules.
  • 22. 4.6: Characteristic X-Ray Spectra and Atomic Number  Shells have letter names: K shell for n = 1 L shell for n = 2  The atom is most stable in its ground state.  When it occurs in a heavy atom, the radiation emitted is an x ray.  It has the energy E (x ray) = Eu − Eℓ. An electron from higher shells will fill the inner- shell vacancy at lower energy.
  • 23. Atomic Number L shell to K shell Kα x ray M shell to K shell Kβ x ray  Atomic number Z = number of protons in the nucleus.  Moseley found a relationship between the frequencies of the characteristic x ray and Z. This holds for the Kα x ray.
  • 24. Moseley’s Empirical Results  The x ray is produced from n = 2 to n = 1 transition.  In general, the K series of x ray wavelengths are Moseley’s research clarified the importance of the electron shells for all the elements, not just for hydrogen.
  • 25. 4.7: Atomic Excitation by Electrons  Franck and Hertz studied the phenomenon of ionization. Accelerating voltage is below 5 V. electrons did not lose energy. Accelerating voltage is above 5 V. sudden drop in the current.
  • 26. Atomic Excitation by Electrons  Ground state has E0 to be zero. First excited state has E1. The energy difference E1 − 0 = E1 is the excitation energy.  Hg has an excitation energy of 4.88 eV in the first excited state  No energy can be transferred to Hg below 4.88 eV because not enough energy is available to excite an electron to the next energy level  Above 4.88 eV, the current drops because scattered electrons no longer reach the collector until the accelerating voltage reaches 9.8 eV and so on.