Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Relationships Matter: Using Connected Data for Better Machine Learning

Relationships are highly predictive of behavior, yet most data science models overlook this information because it's difficult to extract network structure for use in machine learning (ML).

With graphs, relationships are embedded in the data itself, making it practical to add these predictive capabilities to your existing practices.

That’s why we’re presenting and demoing the use of graph-native ML to make breakthrough predictions. This will cover:

- Different approaches to graph feature engineering, from queries and algorithms to embeddings
- How ML techniques leverage everything from classical network science to deep learning and graph convolutional neural networks
- How to generate representations of your graph using graph embeddings, create ML models for link prediction or node classification, and apply these models to add missing information to an existing graph/incoming data
- Why no-code visualization and prototyping is important

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

    Soyez le premier à commenter

    Identifiez-vous pour voir les commentaires

  • MarcosColebrookSantamaria

    May. 27, 2021
  • hernandariorodriguezsanchez

    May. 27, 2021
  • elvesater

    May. 28, 2021
  • AlirezaEhiaei

    May. 28, 2021
  • SasankoSekharGantayat

    Jun. 25, 2021

Relationships are highly predictive of behavior, yet most data science models overlook this information because it's difficult to extract network structure for use in machine learning (ML). With graphs, relationships are embedded in the data itself, making it practical to add these predictive capabilities to your existing practices. That’s why we’re presenting and demoing the use of graph-native ML to make breakthrough predictions. This will cover: - Different approaches to graph feature engineering, from queries and algorithms to embeddings - How ML techniques leverage everything from classical network science to deep learning and graph convolutional neural networks - How to generate representations of your graph using graph embeddings, create ML models for link prediction or node classification, and apply these models to add missing information to an existing graph/incoming data - Why no-code visualization and prototyping is important

Vues

Nombre de vues

795

Sur Slideshare

0

À partir des intégrations

0

Nombre d'intégrations

0

Actions

Téléchargements

98

Partages

0

Commentaires

0

Mentions J'aime

5

×