SlideShare une entreprise Scribd logo
1  sur  213
Télécharger pour lire hors ligne
Vascularización
                        cerebral


                                 Laboratorio de Neurociencia
                                Clínica y Experimental (LaNCE)
                                 Euskal Herriko Unibertsitatea
                                  http://www.ehu.es/ehusfera/lance

viernes 29 de octubre de 2010
Vascularización
                        cerebral


                                Enrike G. Argandoña
                                 Laboratorio de Neurociencia
                                Clínica y Experimental (LaNCE)
                                 Euskal Herriko Unibertsitatea
                                  http://www.ehu.es/ehusfera/lance

viernes 29 de octubre de 2010
Vascularización cerebral




                                2
viernes 29 de octubre de 2010
Vascularización cerebral


                    Sistema arterial aferente



                                            2
viernes 29 de octubre de 2010
Vascularización cerebral


                    Sistema arterial aferente
                    Sistema venoso eferente

                                            2
viernes 29 de octubre de 2010
Vascularización cerebral




                                3
viernes 29 de octubre de 2010
Vascularización cerebral

                 1% volumen cerebral




                                       3
viernes 29 de octubre de 2010
Vascularización cerebral

                 1% volumen cerebral
                 20% Gasto cardiaco


                                       3
viernes 29 de octubre de 2010
Vascularización cerebral

                 1% volumen cerebral
                 20% Gasto cardiaco
                 65% consumo energía
                                       3
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Vascularización cerebral




                                5
viernes 29 de octubre de 2010
Vascularización cerebral

           Control de la circulación sistémica




                                                 5
viernes 29 de octubre de 2010
Vascularización cerebral

           Control de la circulación sistémica
           Autorregulación vascularización
           cerebral



                                                 5
viernes 29 de octubre de 2010
Vascularización cerebral

           Control de la circulación sistémica
           Autorregulación vascularización
           cerebral
           Distribución del flujo

                                                 5
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
14




 Vascularización cerebral




viernes 29 de octubre de 2010
14




 Vascularización cerebral




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
17




viernes 29 de octubre de 2010
17




viernes 29 de octubre de 2010
17




viernes 29 de octubre de 2010
17




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Vascularización intracerebral




                                     30
viernes 29 de octubre de 2010
Vascularización intracerebral


             Arteriolas (50-100 µm)




                                      30
viernes 29 de octubre de 2010
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)




                                                30
viernes 29 de octubre de 2010
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)
             Vénulas (± 30 µm)


                                                30
viernes 29 de octubre de 2010
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)
             Vénulas (± 30 µm)
             Capilares (<30 µm)

                                                30
viernes 29 de octubre de 2010
Vascularización cortical
                  Red capilar
                         640 km (reducida en Alzheimer)
                         Un capilar por neurona

                  Barrera hematoencefálica
                         Mecanismos estructurales
                         Mecanismos metabólicos




viernes 29 de octubre de 2010
Barreras cerebrales




viernes 29 de octubre de 2010
Barreras cerebrales




viernes 29 de octubre de 2010
33



    Barrera hematoencefálica




viernes 29 de octubre de 2010
33



    Barrera hematoencefálica




viernes 29 de octubre de 2010
33



    Barrera hematoencefálica




viernes 29 de octubre de 2010
34



    Barrera hematoencefálica




viernes 29 de octubre de 2010
34



    Barrera hematoencefálica




viernes 29 de octubre de 2010
Tipos de transporte




                                        Texto




viernes 29 de octubre de 2010
a
                           Tipos de transporte
                              b               c                                  d                         e
  Paracellular aqueous        Transcellular   Transport proteins                 Receptor-mediated         Adsorptive
  pathway                     lipophilic                                         transcytosis              transcytosis
                              pathway
      Water-soluble           Lipid-soluble   Glucose,        Vinca alkaloids,   Insulin,                  Albumin, other
      agents                  agents          amino acids,    Cyclosporin A,     transferrin               plasma proteins
                                              nucleosides     AZT
                                                                                                                +++
                                                                                                               + +
                                                                                                                +++
  Blood                                                                                                        –––– +
                                                                                                                    –+ + –
                                                                                                                     + +
                                                                                                                    –+ + –
                                                                                                                      +
                Tight
                junction
                                                                                                                   –+ + + –
                                                                                                                    + +
                                                             Texto                                                 –+ + + –


                                                                                                                  – –
                Endothelium                                                                                       – –
                                                                                                                   +++
  Brain                                                                                                            + +
                                                                                                                   +++




                              Astrocyte                                                        Astrocyte




   Figure 3 | Pathways across the blood–brain barrier. A schematic diagram of the endothelial cells that form the blood–
   brain barrier (BBB) and their associations with the perivascular endfeet of astrocytes. The main routes for molecular
   traffic across the BBB are shown. a | Normally, the tight junctions severely restrict penetration of water-soluble
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
at the BBB is observed in starvation and hypoxia53,54.


Blood                                              Ligand          Tight
                                                                   junction
                                                      Receptor

                                                        ↑Ca2+             ↑Ca2+
Endothelial cell
                                                                                   Pericyte
     Smooth muscle



  Basal                                                                       Microglia
  lamina

                                Neuron          Astrocyte                         Neuron



Figure 5 | Complex cell–cell signalling at the blood–brain barrier. A portion of a
brain capillary wall, showing the main cell types present with the potential to signal to
each other. Pericytes are enclosed within the endothelial basal lamina and form the
closest associations with endothelium. The endfeet of astrocytic glial cells are apposed
viernes 29 de octubre de 2010
Review




 Figure 3. A Simplified Molecular Atlas of the BBB
  (A) Tight junctions. Claudins (claudin-3, -5, and -12) and occludin have four transmembrane domains with two extracellular loops. The junctional adhesion m
  ecule A (JAM-A) and the endothelial cell-selective adhesion molecule (ESMA) are members of the Ig superfamily. Zonula occludens proteins (ZO-1, ZO-2, and ZO
  and the calcium-dependent serine protein kinase (CASK) are first-order cytoplasmic adaptor proteins that contain PDZ binding domains for the C terminus of
  intramembrane proteins. Cingulin, multi-PDZ protein 1 (MUPP1), and the membrane-associated guanylate kinase with an inverted orientation of protein-prot
viernes 29 de octubre de 2010
  interaction domain (MAGI) are examples of second-order adaptor molecules. The first- and second-order adaptor molecules together with signaling molecu
Barrera hematoencefálica




viernes 29 de octubre de 2010
Box 3 | Pathological states involving BBB breakdown or disorder                                permeability (little or no aquaporin)88–90, it is likely that
                                                                                                                                   the excess metabolic water joins the ISF being secreted
                                    Several pathologies of the CNS involve disturbance of blood–brain barrier (BBB)                into the pericapillary space by the endothelium5. ISF out-
                                    function, and, in many of these, astrocyte–endothelial cooperation is also abnormal.           flow involves perivascular spaces around large vessels,
                                    Stroke                                                                                         and clearance routes either through the CSF or following
                                    • Astrocytes secrete transforming growth factor-β (TGFβ), which downregulates brain            alternative pathways to neck lymphatics.
                                      capillary endothelial expression of fibrinolytic enzyme tissue plasminogen activator             Neurotransmitter recycling can also lead to local
                                      (tPA) and anticoagulant thrombomodulin (TM)150.                                              changes in ions and water. Glutamate is the major
                                                                                                                                   excitatory transmitter of the brain, and astrocyte proc-
         Barrera hematoencefálica   • Proteolysis of the vascular basement membrane/matrix151.
                                    • Induction of aquaporin 4 (AQP4) mRNA and protein at BBB disruption152.                       esses surrounding synapses can take up glutamate
                                    • Decrease in BBB permeability after treatment with arginine vasopressin V1 receptor           through transport proteins (particularly EAAT1 and 2);
                                      antagonist in a stroke model153.                                                             the transport is Na+-dependent and accompanied by
                                                                                                                                   net uptake of ions and water, again contributing to
                                    Trauma                                                                                         water clearance at the BBB85. Glutamate is converted
                                    • Bradykinin, a mediator of inflammation, is produced and stimulates production and            to glutamine within the astrocyte and recycled to the
                                      release of interleukin-6 (IL-6) from astrocytes, which leads to opening of the BBB102.       neurons. The slight astrocytic cell swelling that accom-
                                    Infectious or inflammatory processes                                                           panies neuronal activity, resulting from activation by
                                    Examples include bacterial infections, meningitis, encephalitis and sepsis.                    glutamate or ion uptake, leads to several cellular mech-
                                    • The bacterial protein lipopolysaccharide affects the permeability of BBB tight               anisms that contribute to the recovery of ionic balance
                                      junctions. This is mediated by the production of free radicals, IL-6 and IL-1β154.           and cell volume, some of which involve elevated intra-
                                    • Interferon-β prevents BBB disruption155.                                                     cellular Ca2+ concentration66,91,92. Hence, there are many
                                                                                                                                   links between the signalling and regulatory processes
                                    Multiple sclerosis                                                                             that occur in the neurovascular unit.
                                    • Breakdown of the BBB97.
                                    • Downregulation of laminin in the basement membrane156.                                       BBB changes in pathology
                                    • Selective loss of claudin 1/3 in experimental autoimmune encephalomyelitis94.                In a number of pathologies, the function of the BBB is
                                                                                                                                   altered (BOX 3), and several disorders appear to involve
                                    HIV
                                                                                                                                   disturbances of endothelial–glial interaction. Thus,
                                    • BBB tight junction disruption157,158.                                                        the capillaries of many glial tumours are more leaky
                                    Alzheimer’s disease                                                                            than those of normal brain tissue, either as a result
                                    • Increased glucose transport, upregulation of glucose transporter GLUT1, altered              of a lack of inductive factors, or owing to the release
                                      agrin levels, upregulation of AQP4 expression95,159.                                         of permeability factors such as vascular endothelial
                                    • Accumulation of amyloid-β, a key neuropathological feature of Alzheimer’s disease,
                                                                                                                                   growth factor (VEGF). Moreover, the tight junction
                                      by decreased levels of P-glycoprotein transporter expression160.                             protein claudin 1/3 is downregulated in some brain
                                                                                                                                   tumours93,94.
                                    • Altered cellular relations at the BBB, and changes in the basal lamina and amyloid-β
                                      clearance100.                                                                                    In BBB disruption, agrin is lost from the abluminal
                                                                                                                                   surface of the brain endothelial cells adjacent to astro-
                                    Parkinson’s disease                                                                            cytic endfeet11; this may contribute to BBB damage in
                                    • Dysfunction of the BBB by reduced efficacy of P-glycoprotein101.                             Alzheimer’s disease95, and to the redistribution of astro-
                                    Epilepsy
                                                                                                                                   cytic AQP4 in glioblastomas96. Astrocytic AQP4 expres-
                                                                                                                                   sion is upregulated in brain oedema triggered by BBB
                                    • Transient BBB opening in epileptogenic foci, and upregulated expression of
                                                                                                                                   breakdown. Such upregulation could be adaptive in
                                      P-glycoprotein and other drug efflux transporters in astrocytes and endothelium98,99.
                                                                                                                                   helping to clear the accumulating fluid, but the associ-
                                    Brain tumours                                                                                  ated cell swelling would tend to exacerbate the problem
                                    • Breakdown of the BBB161,162.                                                                 under extreme conditions. Indeed, AQP4–/– mice show
                                    • Downregulation of tight junction protein claudin 1/3; redistribution of astrocyte            protection against ischaemic brain oedema48. Some
                                      AQP4 and Kir4.1 (inwardly rectifying K+ channel)20,93,96.                                    chronic neuropathologies such as multiple sclerosis may
                                                                                                                                   involve an early phase of BBB disturbance (involving
                                    Pain
                                                                                                                                   the downregulation of claudin 1/3 (REF. 11)) that precedes
                                    • Inflammatory pain alters BBB tight junction protein expression and BBB                       neuronal damage, which suggests that vascular damage
                                      permeability108.
                                                                                                                                   can lead to secondary neuronal disorder97.
                                                                                                                                       In epilepsy, the normal pattern of brain ABC trans-
                                                                                                                                   porter expression may change, with upregulation of
viernes 29 de octubre de 2010                                     buffer) when neural activity ceases. Astrocytes can also         Pgp on astrocytes and brain endothelium98,99; this may
                                                                              +                                            +   +
ronal groups in the regulation of neuroendocrine                 three families: sel
                                    functions.                                                       related receptors
                                                                                                     lar inflammation
                                                                                                     PMN and other
                                                                                                     developing infarc
         Barrera hematoencefálica                                                                    the microvascula
                                                                                                     artery occlusion
                                                                                                     contribute to mic
                                                                                                     mation during t
                                                                                                     Adherence and
                                                                                                     through the po
                                                                                                     sequential intera
                                                                                                     sion molecule (I
                                                                                                     family consists
                                                                                                     endothelial cells
                                                                                                     L-selectin (leuko
                                                                                                     and platelets me
                                                                                                     cytes and monoc
                                                                                                     sion molecules
                                                                                                     adhesion proper
                                                                                                     leukocyte transm
                                                                                                     the interaction
                                                                                                     endothelial cell I
                                    Fig. 14. Midline sagittal schematic drawing of the brain show-   endothelial cell I
                                    ing circumventricular organs (dark shaded structures): NH,       LFA-1).
                                    neurohypophysis; ME, median eminence; OVLT, organum
                                    vasculosum of lamina terminales; SFO, subfornicial organ;        4.3.2. CYTOKINE
                                    PI, pineal gland or body; SCO, subcommissural organ; AP,
                                    area postrema; CP, choroid plexus; OC, optic chiasm; AC,           Ischemic cereb
                                    anterior commissure; CC, corpus callosum (lightly shaded         oxide free radic
                                    areas).                                                          These are stimula
viernes 29 de octubre de 2010
Barrera hematoencefálica




viernes 29 de octubre de 2010
1                                                                                  junctions, bradykini
                                                                                                                                                 leading to the releas
          Barrera hematoencefálica                           NF-κB
                                                                             B2
                                                                                              Bradykinin

                                                                                                                          3
                                                                                                                                                 amplify the effect by
                                                               ET-1                                                                              Tumour necrosis fa
                                                                              TNFα
                                                                                                                       Microglial cell           permeability by dir
                                                                                                                                                 and indirect effects
                                                     lL-6                                                                 2                      production and IL
                                                            TNFα                    •O2–
                                                                     lL-1β                     LPS                                               complex immunore
                                                                                                                                   Substance P   can exacerbate CNS
                                                                                                            [Ca2+]i↑               5-HT          multiple sclerosis b
                                                                                                                                   Histamine     activation of already
                                                                                                ATP
                                                                                                                                                 some mechanisms e
                                                                                              PGs
                                                                                   B2                                                            Indeed, the ability of
                                                                                                                                                 contribute to the lin
                                                                     tPA
                                                                                                                                                 disease106.
                                                                                        tPA                                                         It has recently be
                                      Capillary                                                                                                  cytes and microglia
                                                                  Tight                                                   4                      pain107. As astrocyt
                                                               junction                             TGFβ↓
                                                                                                                                                 connectivity and for
                                                                                                                                                 gested that glia ma
                                                                                                                                                 pain sensation. In in
                                                     Endothelial                                                                                 from central and pe
                                                     cell                                                                                        sue cells and blood
                                                                   Agrin?                                                                        such as substance P
                                                                                                        K+                                       (CGRP), serotonin,
                                                                                  AQP4                  Glu                                      BBB from both the b
                                                                                                                                                 For example, the re
                                            Basal lamina              Astrocyte                     5                                            concentration or alt
                                                                                                                                                 tion protein occludi
                                     Figure 6 | Astroglial–endothelial signalling under pathological conditions.                                 TNFα, histamine an
                                     Examples of astroglial–endothelial signalling in infection or inflammation, stroke or                       matory pain can also
                                     trauma, leading to opening of the blood–brain barrier (BBB) and disturbance of brain                        permeability108.
viernes 29 de octubre de 2010
                                     function. bradykinin, produced during inflammation in stroke or brain trauma, acts on
41




  Endotelio cerebral




viernes 29 de octubre de 2010
41




  Endotelio cerebral

                                Rico en mitocondrias




viernes 29 de octubre de 2010
41




  Endotelio cerebral

                                Rico en mitocondrias
                                Ausencia de pinocitosis




viernes 29 de octubre de 2010
41




  Endotelio cerebral

                                Rico en mitocondrias
                                Ausencia de pinocitosis
                                Ausencia de fenestraciones




viernes 29 de octubre de 2010
41




  Endotelio cerebral

                                Rico en mitocondrias
                                Ausencia de pinocitosis
                                Ausencia de fenestraciones




viernes 29 de octubre de 2010
l. Encircling the basal lamina of
     42
or the pericyte are numerous pro-
  joined to one another by gap

    Endotelio
d-Brain Barrier Refers to a

    cerebral
 of Physical, Metabolic, and
operties of the Capillary
Endothelium
barrier is a complex anatomic or
ogic and osmotic barrier protect-
ulating macromolecules, such as
min, do not cross the endothelial
 illaries. This contrasts with the
ulating macromolecules that nor-
  extracranial tissues. The original
blood-brain barrier is attributed
1885, observed that intravenous
blue, a dye that circulates bound
 the diffuse distribution of the dye
  n and tissue except the brain and

blood-brain barrier describes the
ing macromolecules to enter the
 or interstitial fluid of the brain
he mechanical component of the          Fig. 13. Normal rat brain capillary (original magnification
 ed primarily to structural charac-     Â7000). The inset shows a close-up view of the capillary wall
 helial capillary lining of the brain   to demonstrate a tight junction (arrows) (original magnifica-
at are lacking in the endothelial       tion Â32,200).
  viernes 29 de octubre de 2010
43




  Astroglia




viernes 29 de octubre de 2010
43




  Astroglia
                                Inducción de la
                                BHE




viernes 29 de octubre de 2010
43




  Astroglia
                                Inducción de la
                                BHE
                                Mantenimiento de
                                la BHE




viernes 29 de octubre de 2010
43




  Astroglia
                                Inducción de la
                                BHE
                                Mantenimiento de
                                la BHE
                                Control del tono
                                vascular




viernes 29 de octubre de 2010
43




  Astroglia
                                Inducción de la
                                BHE
                                Mantenimiento de
                                la BHE
                                Control del tono
                                vascular
                                Estructura de la
                                BHE?


viernes 29 de octubre de 2010
43




  Astroglia
                                Inducción de la
                                BHE
                                Mantenimiento de
                                la BHE
                                Control del tono
                                vascular
                                Estructura de la
                                BHE?


viernes 29 de octubre de 2010
44



                                Pericitos




viernes 29 de octubre de 2010
44



                                Pericitos




viernes 29 de octubre de 2010
44



                                Pericitos

                                            Identidad oscura
                                            Células
                                            pluripotenciales
                                            Participación en
                                            inducción y
                                            maduración de la
                                            BHE




viernes 29 de octubre de 2010
LETTER
    45
                                                                                                                                 doi:10.1038/nature09522




   Pericytes regulate the blood–brain barrier
   Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{,
                                   ´            ¨
   Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1


    The blood–brain barrier (BBB) consists of specific physical barriers,         (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent
    enzymes and transporters, which together maintain the necessary               dye cadaverine Alexa Fluor-555 accumulated significantly in the brain
    extracellular environment of the central nervous system (CNS)1.               parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen-
    The main physical barrier is found in the CNS endothelial cell,               tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa
    and depends on continuous complexes of tight junctions combined               dextran and IgG passed the BBB inPdgfbret/ret and R26P1/0 mice, but not
    with reduced vesicular transport2. Other possible constituents of the         in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g).
    BBB include extracellular matrix, astrocytes and pericytes3, but the          These experiments establish a close correlation between pericyte density
    relative contribution of these different components to the BBB                and permeability across the BBB for a range of tracers of different
    remains largely unknown1,3. Here we demonstrate a direct role of              molecular masses (Supplementary Table 1).
    pericytes at the BBB in vivo. Using a set of adult viable pericyte-              Permeability in CNS vessels is impeded by continuous complexes of
    deficient mouse mutants we show that pericyte deficiency increases            endothelial junctions13,14. We studied such complexes in adult pericyte-
    the permeability of the BBB to water and a range of low-molecular-            deficient mutants using markers for adherens (VE-cadherin) and tight
    mass and high-molecular-mass tracers. The increased permeability              (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls
    occurs by endothelial transcytosis, a process that is rapidly arrested        showed junctional marker expression at similar levels as judged by
    by the drug imatinib. Furthermore, we show that pericytes function            immunostaining and western blotting (Supplementary Fig. 6a–c and
    at the BBB in at least two ways: by regulating BBB-specific gene              data not shown). The junctional markers were distributed in a pattern
    expression patterns in endothelial cells, and by inducing polariza-           consistent with continuous junction complexes in both mutants and
    tion of astrocyte end-feet surrounding CNS blood vessels. Our                 controls; however, mutants displayed focally increased junctional width
    results indicate a novel and critical role for pericytes in the integ-        and undulation. These patterns were confirmed by transmission elec-
    ration of endothelial and astrocyte functions at the neurovascular            tron microscopy, which failed to reveal any apparent abnormalities in
    unit, and in the regulation of the BBB.                                       the ultrastructure of endothelial junctions, with the exception that
       Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR-            longer and irregular stretches of endothelial overlap were commonly
    b) signalling is necessary for pericyte recruitment during angiogenesis4,5.   found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e).
    Perinatal lethality precludes analysis of postnatal processes in Pdgfb or        Because continuity, ultrastructure and marker expression were con-
    Pdgfrb null mice6,7, but several other mouse mutants of this pathway are      sistent with retained integrity of endothelial junctions in the absence of
    viable postnatally. Two such mutants were used here: PDGF-B retention         pericytes, we took advantage of the fixable nature of the fluorescent
    motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul-           tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0
    phate proteoglycans was disrupted8; and mutants in which Pdgfb null           mice in more detail. Cadaverine Alexa Fluor-555 accumulated in
viernes 29 de complemented by one or two copies of a conditionally silent
    alleles were octubre de 2010                                                  endothelial cells and in the brain parenchyma in Pdgfbret/ret and
LETTER
    45
                                                                                                                                 doi:10.1038/nature09522




   Pericytes regulate the blood–brain barrier
   Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{,
                                   ´            ¨
   Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1


    The blood–brain barrier (BBB) consists of specific physical barriers,         (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent
    enzymes and transporters, which together maintain the necessary               dye cadaverine Alexa Fluor-555 accumulated significantly in the brain
    extracellular environment of the central nervous system (CNS)1.               parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen-
    The main physical barrier is found in the CNS endothelial cell,               tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa
    and depends on continuous complexes of tight junctions combined               dextran and IgG passed the BBB inPdgfbret/ret and R26P1/0 mice, but not
            Su deficit incrementa permeabilidad agua y otras moléculas
    with reduced vesicular transport2. Other possible constituents of the
    BBB include extracellular matrix, astrocytes and pericytes3, but the
                                                                                  in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g).
                                                                                  These experiments establish a close correlation between pericyte density
            mediante transcitosis
    relative contribution of these different components to the BBB
    remains largely unknown1,3. Here we demonstrate a direct role of
                                                                                  and permeability across the BBB for a range of tracers of different
                                                                                  molecular masses (Supplementary Table 1).
    pericytes at the BBB in vivo. Using a set of adult viable pericyte-              Permeability in CNS vessels is impeded by continuous complexes of
            Regula la expresión génica de genes endoteliales de BHE
    deficient mouse mutants we show that pericyte deficiency increases
    the permeability of the BBB to water and a range of low-molecular-
                                                                                  endothelial junctions13,14. We studied such complexes in adult pericyte-
                                                                                  deficient mutants using markers for adherens (VE-cadherin) and tight
    mass and high-molecular-mass tracers. The increased permeability              (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls

            Induce polarización de pies astrocitarios
    occurs by endothelial transcytosis, a process that is rapidly arrested        showed junctional marker expression at similar levels as judged by
    by the drug imatinib. Furthermore, we show that pericytes function            immunostaining and western blotting (Supplementary Fig. 6a–c and
    at the BBB in at least two ways: by regulating BBB-specific gene              data not shown). The junctional markers were distributed in a pattern
    expression patterns in endothelial cells, and by inducing polariza-           consistent with continuous junction complexes in both mutants and
            Participación en inducción y maduración de la BHE
    tion of astrocyte end-feet surrounding CNS blood vessels. Our
    results indicate a novel and critical role for pericytes in the integ-
                                                                                  controls; however, mutants displayed focally increased junctional width
                                                                                  and undulation. These patterns were confirmed by transmission elec-
            regulando la relación astrocito-endotelio
    ration of endothelial and astrocyte functions at the neurovascular
    unit, and in the regulation of the BBB.
                                                                                  tron microscopy, which failed to reveal any apparent abnormalities in
                                                                                  the ultrastructure of endothelial junctions, with the exception that
       Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR-            longer and irregular stretches of endothelial overlap were commonly
    b) signalling is necessary for pericyte recruitment during angiogenesis4,5.   found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e).
    Perinatal lethality precludes analysis of postnatal processes in Pdgfb or        Because continuity, ultrastructure and marker expression were con-
    Pdgfrb null mice6,7, but several other mouse mutants of this pathway are      sistent with retained integrity of endothelial junctions in the absence of
    viable postnatally. Two such mutants were used here: PDGF-B retention         pericytes, we took advantage of the fixable nature of the fluorescent
    motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul-           tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0
    phate proteoglycans was disrupted8; and mutants in which Pdgfb null           mice in more detail. Cadaverine Alexa Fluor-555 accumulated in
viernes 29 de complemented by one or two copies of a conditionally silent
    alleles were octubre de 2010                                                  endothelial cells and in the brain parenchyma in Pdgfbret/ret and
Uniones densas (TJ)




viernes 29 de octubre de 2010
Uniones densas (TJ)




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Apical membrane

      Cingulin, JACOP, PAR3/6,
      CASK, 7H6, Itch, MUPP1,                              Claudin 3, 5, 12
      MAGI-1–3, ZONAB                ZO-2                  Occludin
      AF6, RGS5                                                                Tight
                                                                               junction
                                                           JAMs,
                           ZO-3                            ESAM
                                            ZO-1
                                                         Basolateral
                                                         membrane

                                                         PECAM
                α-, β-, γ-Catenin,
                Desmoplakin,                                                  Adherens
                p120ctn, ZO-1                                                 junction
      Actin/vinculin-based                               VE-cadherin
      cytoskeleton



                                                        Basal lamina
 Figure 4 | Molecular composition of endothelial tight junctions. Simplified and
 incomplete scheme showing the molecular composition of endothelial tight
viernes 29 de octubre de 2010
Uniones densas (TJ)




viernes 29 de octubre de 2010
Uniones densas (TJ)




viernes 29 de octubre de 2010
Barrera hematoencefálica




viernes 29 de octubre de 2010
Barrera hematoencefálica




viernes 29 de octubre de 2010
Barrera hematoencefálica




viernes 29 de octubre de 2010
Barrera hematoencefálica




viernes 29 de octubre de 2010
50



                                Actina




viernes 29 de octubre de 2010
50



                                Actina




viernes 29 de octubre de 2010
51



            Barrera hematoencefálica
       Células




viernes 29 de octubre de 2010
51



                    Barrera hematoencefálicaS
                                        REVIEW



                                                               Basal lamina
                                                                                                                                             Neuron
                                                                              Interneuron


                                                               Tight
                                                               junction       Astrocyte
Tight junction
           Células




                                    Pericyte                Capillary
A belt-like region of adhesion                                                                                 Astrocyte
                                                       Endothelial
between adjacent cells. Tight
                                                              cell
junctions regulate paracellular
flux, and contribute to the                                                                                      b                             LIF
maintenance of cell polarity by
stopping molecules from                                                          a                                            Tight
diffusing within the plane of the                                                                                                                  TGFβ
                                                                                                                           junction
membrane.
                                                                                             Tight                                      ?            bFGF
                                                                                                      GLUT1
Abluminal membrane                                                                        junction
                                                                                                                  Capillary
The endothelial cell membrane                                                                                                                           ANG1
that faces away from the vessel
                                                                                  Capillary                      Endothelial
lumen, towards the brain.                      Microglia                                                LAT1
                                                                                                                        cell
Meninges
                                                                                Endothelial    Pgp                                                 GDNF
                                                                                       cell
The complex arrangement of
                                                                                                     EAAT1–3                                         Astrocyte
three protective membranes
surrounding the brain, with a                                                                                                         Basal
thick outer connective tissue                                                                                                         lamina
layer (dura) overlying the                                                                                           ET1       TIE2         P2Y2        5-HT
barrier layer (arachnoid), and
                        Figure 2 | Cellular constituents of the blood–brain barrier. The barrier is formed by capillary endothelial cells,
finally the thin layer covering
the glia limitans (pia). The sub-
                        surrounded by basal lamina and astrocytic perivascular endfeet. Astrocytes provide the cellular link to the neurons.
arachnoid layer has a sponge-
                        The figure also shows pericytes and microglial cells. a | Brain endothelial cell features observed in cell culture. The
like structure filled with CSF.
viernes 29 de octubre decells express a number of transporters and receptors, some of which are shown. EAAT1–3, excitatory amino acid
                         2010
52


             Regulación de la permeabilidad
             vascular




viernes 29 de octubre de 2010
52


             Regulación de la permeabilidad
             vascular




viernes 29 de octubre de 2010
53




 Unidad                                neurogliovascular
euron

Review




ure 4. Schematic of the Neurovascular Unit
Endothelial cells and pericytes are separated by the basement membrane. Pericyte processes sheathe most of the outer side of the basement membr
nts of contact, pericytes communicate directly with endothelial cells through the synapse-like peg-socket contacts. Astrocytic endfoot processes uns
 microvessel wall, which is made up of endothelial cells and pericytes. Resting microglia have a ‘‘ramified’’ shape. In cases of neuronal disorders th
imary vascular origin, circulating neurotoxins may cross the BBB to reach their neuronal targets, or proinflammatory signals from the vascular cells or r
 illary blood flow may disrupt normal synaptic transmission and trigger neuronal injury (arrow 1). Microglia recruited from the blood or within the brain
    viernes 29 de octubre de 2010
sel wall can sense signals from neurons (arrow 2). Activated endothelium, microglia, and astrocytes signal back to neurons, which in most cases agg
54



                                Red capilar




viernes 29 de octubre de 2010
54



                                Red capilar




viernes 29 de octubre de 2010
Desarrollo vascular

                   Extracraneal
                   Intracraneal
                       Troncos perpendiculares
                       Arborización



viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Desarrollo vascular




viernes 29 de octubre de 2010
Desarrollo vascular




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
0 dpn




                                60
viernes 29 de octubre de 2010
7 dpn




                                        61
viernes 29 de octubre de 2010
14 dpn




                                         62
viernes 29 de octubre de 2010
21 dpn




                                         63
viernes 29 de octubre de 2010
60 dpn




                                   64
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
VEGF
    Vascular Endothelial Growth Factor


   I. Inductor de:
        • Proliferación endotelial
        • Migración endotelial
        • Inhibición apotosis

   II. Efectos neurotróficos
   y neuroprotectores

   III. Permeabilidad
   vascular




viernes 29 de octubre de 2010
VEGF
   Vascular Endothelial Growth Factor




viernes 29 de octubre de 2010
VEGF en angiogénesis




                                68
viernes 29 de octubre de 2010
VEGF en angiogénesis




                                68
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
VEGF en angiogenesis




viernes 29 de octubre de 2010
Neuroproteccion
       VEGF en




viernes 29 de octubre de 2010
VEGF
                         Efectos neurotróficos




viernes 29 de octubre de 2010
VEGF
                                Hiperpermeabilidad
                    ZO-1             VEGF    Actina




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Angiogénesis




viernes 29 de octubre de 2010
Mechanism of BOLD Functional MRI
                                    Brain activity

                     Oxygen consumption         Cerebral blood flow

                                  Oxyhemoglobin
                                  Deoxyhemoglobin


                                Magnetic susceptibility

                                          T2*

                                  MRI signal intesity


viernes 29 de octubre de 2010
Oxyhemoglobin and
                Deoxyhemoglobin in Veins during
                       Brain Activation
                                Rest                Activation




                Normal blood flow                High blood flow


                                       Oxyhemoglobin
                                       Deoxyhemoglobin



viernes 29 de octubre de 2010
Signal Intensity
                                 Time Series and Activation Maps




                                   Off   On   Off    On       Off   On   Off   On

                                                    Scan Number




viernes 29 de octubre de 2010
Multi-Slice Spiral Images




viernes 29 de octubre de 2010
Multi-Slice EPI Images




viernes 29 de octubre de 2010
Activation Maps on Anatomical
                                 Images

  MS
  Spiral



  MS
  EPI



  3D
  Spiral




viernes 29 de octubre de 2010
Visual Activation Maps (ISI=12s)




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
                      All images courtesy of Johann Wolfgang G oethe University Hospital,
BOLD MRI MAPP

                                BrainLA B is the o
                                of B O LD MRI func
                                imaging (DTI) for u
                                integration of both
                                tion not only abou
                                white matter struc

                                The result is a com
                                completely new in
                                ning that sets the

                                MORE COMPRE
                                MRI DATA
                                West Virginia Universi
                                A. Puce, PhD, Profess
                                Center for Advanced I
                                W. Boling, MD, Neuros
                                M. Parson, PhD, Depa


                                Functional MRI pl
                                cedures in or nea
                                imaging based on
viernes 29 de octubre de 2010
Neural correlates of admiration and compassion.
    Immordino-Yang MH, McColl A, Damasio H, Damasio A. Proc Natl Acad Sci U S A. 2009 May
    12;106(19):8021-6.
viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Angiogénesis y
neurogénesis
       Dos caminos paralelos




viernes 29 de octubre de 2010
Desarrollo cortical


             Predeterminado genéticamente
             Mediado por experiencia



viernes 29 de octubre de 2010
Desarrollo cortical


             Predeterminado genéticamente
             Mediado por experiencia

                                PERIODO CRÍTICO
                                    3ª - 5ª semanas


viernes 29 de octubre de 2010
Neurogenesis             Angiogenesis




                                ?

viernes 29 de octubre de 2010
Neurogenesis             Angiogenesis




                                ?

viernes 29 de octubre de 2010
Neurogenesis             Angiogenesis




                                ?

viernes 29 de octubre de 2010
Neurogenesis                               Angiogenesis


                                Nicho vascular (neurogenesis). Palmer 2000.



                                Incremento demanda. Black 1987.



                                Coordinados. Carmeliet 2005.

viernes 29 de octubre de 2010
Desarrollo neurovascular
                 Evento coordinado
                 Respuesta común a señales
                 comunes
                         VEGF
                         Neurotrofinas (NGF, BDNF, NTs)
                         Neuropilinas (Nrp1, Nrp2)
                         Semaforinas (Sema3A)
                         Efrinas/Ephs (EphB-ephrinB)
                         Angiopoyetinas (Ang2)

viernes 29 de octubre de 2010
Neuroscience 171 (2010) 214 –226




    ANGIOGENESIS BUT NOT NEUROGENESIS IS CRITICAL et al. / Neuroscience 171 (2010) 214 –226
                                           A. L. Kerr FOR
    NORMAL LEARNING AND MEMORY ACQUISITION
    A. L. KERR,1 E. L. STEUER, V. POCHTAREV AND                      cognitive performance on a variety of tasks including the
    R. A. SWAIN*                                                     Morris water maze (MWM), contextual fear conditioning,
    University of Wisconsin-Milwaukee, Milwaukee, WI, USA            extinction of contextual fear, and radial arm maze (Ander-
                                                                     son et al., 2000; Baruch et al., 2004; Fordyce and Wehner,
                                                                     1993; Gobbo and O’Mara, 2004; Pietropaolo et al., 2006;
    Abstract—Aerobic exercise has been well established to pro-
    mote enhanced learning and memory in both human and              Powell, 2005; Vaynman et al., 2004). In humans, exercise
    non-human animals. Exercise regimens enhance blood per-          has been associated with improved cognitive performance in
    fusion, neo-vascularization, and neurogenesis in nervous         young adult, aging adult, and brain-injured populations
    system structures associated with learning and memory. The       (Churchill et al., 2002; Grealy et al., 1999; Kramer and Erick-
    impact of specific plastic changes to learning and memory         son, 2007; Kramer et al., 2006; Winter et al., 2007) and has
    performance in exercising animals are not well understood.       been shown to protect against the onset of various demen-
    The current experiment was designed to investigate the con-
                                                                     tias, including Alzheimer’s disease (Laurin et al., 2001).
    tributions of angiogenesis and neurogenesis to learning and
    memory performance by pharmacologically blocking each                 The means by which experience facilitates learning
    process in separate groups of exercising animals prior to        and memory are not fully understood. However, the sur-
    visual spatial memory assessment. Results from our experi-       vival of new neurons may contribute to learning and mem-
    ment indicate that angiogenesis is an important component        ory changes following exercise. It has been consistently
    of learning as animals receiving an angiogenesis inhibitor       shown that both enriched environments and exercise (vol-
    exhibit retarded Morris water maze (MWM) acquisition. Inter-     untary and forced) promote neurogenesis in the adult hip-
    estingly, our results also revealed that neurogenesis inhibi-
                                                                     pocampus, specifically in the dentate gyrus (DG) (Christie
    tion improves learning and memory performance in the
    MWM. Animals that received the neurogenesis inhibitor dis-
                                                                     et al., 2008; Kempermannn et al., 1997, 1998; Kim et al.,
    played the best overall MWM performance. These results           2002; Olson et al., 2006; Uysal et al., 2005; Van der Borght
    point to the importance of vascular plasticity in learning and   et al., 2006; van Praag et al., 2005), and exercise-induced
    memory function and provide empirical evidence to support        neurogenesis is correlated with improved learning and mem-
    the use of manipulations that enhance vascular plasticity to     ory performance (Uysal et al., 2005; van Praag et al., 2005).
    improve cognitive function and protect against natural cog-      However, there are also reports that manipulation of neuro-
    nitive decline. © 2010 IBRO. Published by Elsevier Ltd. All
                                                                     genesis does not impact learning and memory function in the
    rights reserved.
                                                                     MWM (Meshi et al., 2006; Shors et al., 2002) or contextual
    Key words: vascular plasticity, exercise-induced facilitation,   fear conditioning (Clark et al., 2008; Shors et al., 2002),
    Morris water maze.                                               indicating that neurogenesis may not be the sole supporter of
                                                                     enhanced cognitive performance following exercise.
                                                                          The contribution of neurogenesis to learning and mem-
    Aerobic exercise promotes enhanced learning and mem-             ory function is further complicated by recent evidence sug-
    ory in both human and non-human animals. At the cellular         gesting that newly proliferated neurons are not immedi-
    level, exercise is associated with increased angiogenesis        ately and functionally incorporated into existing learning
    (the sprouting of new capillaries from preexisting blood         networks. While it is clear that new neurons do become
    vessels) and/or neurogenesis in various areas of the brain       functionally integrated into the existing circuitry eventually,
    including the hippocampus, motor cortex and cerebellum           several recent reports indicate that this integration is a
    (Black et al., 1991; Clark et al., 2009; Isaacs et al., 1992;    somewhat delayed process taking between 3 and 4 weeks
    Kim et al., 2002; Sikorski et al., 2008; Swain et al., 2003;     to complete (Kee et al., 2007; Overstreet et al., 2004; van
    van Praag et al., 2005). Aerobic exercise in rodents is also     Praag et al., 2002). These data are supported by behav-
    associated with improved recovery following ischemic in-         ioral studies indicating that impaired neurogenesis does
    sult (Lee et al., 2003a,b; Sim et al., 2004) and improved        not affect visual spatial memory in the MWM immediately
    1
      Present address: University of Texas, Austin, TX, USA.         following treatment but impairs performance when memory
    *Corresponding author. Tel: 1-414-229-5883; fax: 1-414-229-5219. is tested 28 days later (Hu et al., 2008).
viernes 29 de rswain@uwm.edu (R. A. Swain). 4.AZT-injected vol-
    E-mail address:
                     octubre de 2010AZT-VX, BrdU quantification and NeuN colabel. Tissue was treated with immunohistochemical antibodies targeting BrdU to label dividing cells (indi
    Abbreviations: ABC, avidin-biotin complex; Fig.
                                                                          The current experiment investigated the relative con-
Neuroscience 171 (2010) 214 –226




       ANGIOGENESIS BUT NOT NEUROGENESIS IS CRITICAL FOR
       NORMAL LEARNING AND MEMORY ACQUISITION
       A. L. KERR,1 E. L. STEUER, V. POCHTAREV AND                      cognitive performance on a variety of tasks including the
       R. A. SWAIN*                                                     Morris water maze (MWM), contextual fear conditioning,
       University of Wisconsin-Milwaukee, Milwaukee, WI, USA            extinction of contextual fear, and radial arm maze (Ander-
                                                                        son et al., 2000; Baruch et al., 2004; Fordyce and Wehner,
                                                                        1993; Gobbo and O’Mara, 2004; Pietropaolo et al., 2006;
       Abstract—Aerobic exercise has been well established to pro-
       mote enhanced learning and memory in both human and              Powell, 2005; Vaynman et al., 2004). In humans, exercise
       non-human animals. Exercise regimens enhance blood per-          has been associated with improved cognitive performance in
       fusion, neo-vascularization, and neurogenesis in nervous         young adult, aging adult, and brain-injured populations
       system structures associated with learning and memory. The       (Churchill et al., 2002; Grealy et al., 1999; Kramer and Erick-
       impact of specific plastic changes to learning and memory         son, 2007; Kramer et al., 2006; Winter et al., 2007) and has
       performance in exercising animals are not well understood.       been shown to protect against the onset of various demen-
       The current experiment was designed to investigate the con-
                                                                        tias, including Alzheimer’s disease (Laurin et al., 2001).
       tributions of angiogenesis and neurogenesis to learning and
       memory performance by pharmacologically blocking each                 The means by which experience facilitates learning
       process in separate groups of exercising animals prior to        and memory are not fully understood. However, the sur-
       visual spatial memory assessment. Results from our experi-       vival of new neurons may contribute to learning and mem-
       ment indicate that angiogenesis is an important component        ory changes following exercise. It has been consistently
       of learning as animals receiving an angiogenesis inhibitor       shown that both enriched environments and exercise (vol-
       exhibit retarded Morris water maze (MWM) acquisition. Inter-     untary and forced) promote neurogenesis in the adult hip-
       estingly, our results also revealed that neurogenesis inhibi-
                                                                        pocampus, specifically in the dentate gyrus (DG) (Christie
       tion improves learning and memory performance in the
       MWM. Animals that received the neurogenesis inhibitor dis-
                                                                        et al., 2008; Kempermannn et al., 1997, 1998; Kim et al.,
       played the best overall MWM performance. These results           2002; Olson et al., 2006; Uysal et al., 2005; Van der Borght
       point to the importance of vascular plasticity in learning and   et al., 2006; van Praag et al., 2005), and exercise-induced
       memory function and provide empirical evidence to support        neurogenesis is correlated with improved learning and mem-
       the use of manipulations that enhance vascular plasticity to     ory performance (Uysal et al., 2005; van Praag et al., 2005).
       improve cognitive function and protect against natural cog-      However, there are also reports that manipulation of neuro-
       nitive decline. © 2010 IBRO. Published by Elsevier Ltd. All
                                                                        genesis does not impact learning and memory function in the
       rights reserved.
                                                                        MWM (Meshi et al., 2006; Shors et al., 2002) or contextual
       Key words: vascular plasticity, exercise-induced facilitation,   fear conditioning (Clark et al., 2008; Shors et al., 2002),
       Morris water maze.                                               indicating that neurogenesis may not be the sole supporter of
                                                                        enhanced cognitive performance following exercise.
                                                                             The contribution of neurogenesis to learning and mem-
       Aerobic exercise promotes enhanced learning and mem-             ory function is further complicated by recent evidence sug-
       ory in both human and non-human animals. At the cellular         gesting that newly proliferated neurons are not immedi-
       level, exercise is associated with increased angiogenesis        ately and functionally incorporated into existing learning
       (the sprouting of new capillaries from preexisting blood         networks. While it is clear that new neurons do become
       vessels) and/or neurogenesis in various areas of the brain       functionally integrated into the existing circuitry eventually,
       including the hippocampus, motor cortex and cerebellum           several recent reports indicate that this integration is a
       (Black et al., 1991; Clark et al., 2009; Isaacs et al., 1992;    somewhat delayed process taking between 3 and 4 weeks
       Kim et al., 2002; Sikorski et al., 2008; Swain et al., 2003;     to complete (Kee et al., 2007; Overstreet et al., 2004; van
       van Praag et al., 2005). Aerobic exercise in rodents is also     Praag et al., 2002). These data are supported by behav-
WM one probe trials. (A) All animals ischemic equivalentstudies indicating time in the correct quadrant during the first probe trial. (B) All animals
       associated with improved recovery following spent in-            ioral amounts of that impaired neurogenesis does
       sult (Lee et al., 2003a,b; Sim et al., 2004) and improved        not affect visual spatial memory in the MWM immediately
ilar amounts of time in the SW quadrant, which is directlytreatment but impairs performance when memory represents the greatest distance from the plat
       1
         Present address: University of Texas, Austin, TX, USA.         following
                                                                                    opposite the target quadrant and
als can search.author. Tel: 1-414-229-5883; fax: 1-414-229-5219. trial, SU5416-VX later (Hu et al., 2008).
       *Corresponding (C) During the remote probe                       is tested 28 days and VEH-IC animals spent significantly less time in the correct quadrant
  viernes 29 de octubre de 2010Swain).
       E-mail address: rswain@uwm.edu (R. A.
                                                                             The current experiment investigated the relative con-
Sistema visual
                                  Sistema Visual




viernes 29 de octubre de 2010
Periodo crítico
                                                                              4ª semana
       Cambios mediados por experiencia




                                          1º-3ª semanas    4ª-6ª semanas      7ª y 8ª semanas

                               Periodo precritico         Periodo crítico   Periodo postcrítico
                                                                Age




viernes 29 de octubre de 2010
Empobrecimiento ambiental

               Descenso densidades neuronal,
               glial y vascular
               Retraso maduración
               Anulación cierre periodo
               crítico

viernes 29 de octubre de 2010
Empobrecimiento ambiental




viernes 29 de octubre de 2010
Cortical parameters




viernes 29 de octubre de 2010
Cortical parameters




viernes 29 de octubre de 2010
Cortical parameters




viernes 29 de octubre de 2010
Vascular density




viernes 29 de octubre de 2010
Vascular density




viernes 29 de octubre de 2010
Results
     120
                                                             25
     100
                                                             20
       80
                                                             15
                                                                                                         Oscuridad
       60
                                                                                                         Controles
                                                             10
       40

                                                              5
       20


        0                                                     0
                                                                  0 DPN   7 DPN   14 DPN 21 DPN 60 DPN
                 0 DPN    7 DPN   14 DPN   21 DPN   60 DPN


                                                                  Number of
              Vascular Density                                perpendicular vessels


viernes 29 de octubre de 2010
Enriquecimiento ambiental
            Donald Hebb (1949)




      Kresh, Bennett, Rosenzweig, Diamond (60s)
      Combinación de complejidad de objetos
      inanimados y estimulación social.
viernes 29 de octubre de 2010
Enriquecimiento ambiental
               Cambios anatómicos
               Plasticidad neuronal
                    Sinaptogénesis
                    Morfología sináptica
                    Neurogénesis
                    Neurotrofinas (BDNF, NGF, NT-3,VEGF)

               Gliogénesis
viernes 29 de octubre de 2010
Enriquecimiento ambiental
                 Reduce el deficit de memoria tras ictus (Dahlqvist, 2004)
                 Mejora la recuperiación funcional tras lesión estriatal
                 (Dobrossy 2004)
                 Induce neurogenesis en hipocampo (Kempermann 1997)
                 Reduce los efectos del Hungtington (Spires 2004)
                 Madura y consolida la corteza visual en ratas privadas de
                 luz (Bertoletti 2004)
                 Revierte los efectos del stress prenatal (Morley-Fletcher
                 2003)
                 Acelera el desarrollo de la corteza visual (Cancedda 2004)


viernes 29 de octubre de 2010
Enriquecimiento ambiental




viernes 29 de octubre de 2010
Enriquecimiento ambiental




viernes 29 de octubre de 2010
Enriquecimiento ambiental




viernes 29 de octubre de 2010
Enriquecimiento ambiental


    Edades :

    . 14 dpn, 21 dpn            Pre-critical

    . 28 dpn, 35 dpn, 42 dpn    Critical period

    . 49 dpn, 56 dpn, 63 dpn      Postcritical


viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Estudio cualitativo




viernes 29 de octubre de 2010
                                Inmunohistoquimia   Histoquimia
                                                       LEA



                                              EBA



                                  GluT-1
LEA   EBA
        Estudio cualitativo




viernes 29 de octubre de 2010
Estudio cualitativo     EBA            GluT-1




                                EBA + GluT-1




viernes 29 de octubre de 2010
Enriquecimiento ambiental

       Angiogénesis




viernes 29 de octubre de 2010
Estudio cuantitativo




viernes 29 de octubre de 2010
VEGF




                                WESTERN BLOT




                                               ELISA


viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
ELISA




viernes 29 de octubre de 2010
VEGF levels
              6,0                                                                              CE
                                                                                               Control
                                                                                               DR
                                                                                               DR-CE
              4,5



              3,0



              1,5



                0
                14 dpn          21 dpn   28 dpn   35 dpn   42 dpn   49 dpn   56 dpn   63 dpn
viernes 29 de octubre de 2010
!! )! ! )!!#!#


   !"#$%&'"!"#$$%&                                                                              '()*!+$,++++-.,+/0%1234$,#$$%,$++$5,6




   !"#$%&'()*+*,&%$*)%$),*-.%,*/)01,)*23%,124*25'()
   Blackwell Publishing Ltd




   *2,%&"4*25)51)100$*5)5"*)-.'25%5'5%3*)*00*&5$)10)
                              β
   /',67,*',%28)12)5"*)97:;;β)'$5,1&#5%&)/*2$%5#)%2)5"*)
   ,'5)3%$.'()&1,5*+
   MA>)N:!J,!;>OBA'(PBQ+Q#QR!SB>NB)=T!K:AO(:=6:B#QR!BA'!@(?U!V,!WBI<:A=:#QR
   +
     ()*&+',)%'#-.#/0+12%3#4#&%5##6&7-+&'-+8#-.#9:2%2;&:#&%5#<=*)+2,)%'&:#/)0+-1;2)%;)#>6&/9<?@#()*&+',)%'#-.#/)0+-1;2)%;)@#
   A&;0:'8#-.#B)52;2%)#&%5#C5-%'-:-38@#D&1E0)#9-0%'+8#F%2G)+12'8@#D&++2-#H&++2)%&@#IJKIL#6)2-&@#H*&2%




   <=$5,'&5
   ;I=:>!X)>=9Q!:6F(?<>:!=(!Y)?<BC!)AF<=?!E('<CB=:?!D(>=)DBC!':Y:C(FE:A=Q!)A'<D)AO!A<E:>(<?!D9BAO:?!)A!BCC!(I!=9:
   D(EF(A:A=?!(I!=9:!Y)?<BC!D(>=:6,!Z(?=!(I!=9:!D(>=)DBC!D9BAO:?!=9<?!)A'<D:'!(DD<>!'<>)AO![9B=!)?!DBCC:'!=9:!D>)=)DBC
   F:>)(',!;?=>(DH=:?!FCBH!BA!)EF(>=BA=!>(C:!)A!=9:!':Y:C(FE:A=Q!EB)A=:ABAD:!BA'!FCB?=)D)=H!(I!=9:!D(>=:6!B?![:CC!B?
   )A!=9:!?=><D=<>:!BA'!I<AD=)(A!(I!=9:!YB?D<CB>!A:=[(>N,!V)?<BC!':F>)YB=)(A!)A'<D:?!B!':D>:B?:!)A!=9:!B?=>(OC)BC
   F(F<CB=)(AQ![9:>:B?!:A9BAD:'!:6F:>):AD:!)AD>:B?:?!)=,!M6F(?<>:!=(!BA!:A>)D9:'!:AY)>(AE:A=!9B?!X::A!?9([A
   =(!F>:Y:A=!=9:!:II:D=?!(I!'B>N1>:B>)AO!)A!=9:!Y)?<BC!D(>=:6,!<>!F<>F(?:![B?!=(!?=<'H!=9:!:II:D=?!(I!BA!:A>)D9:'
   :AY)>(AE:A=!(A!=9:!':A?)=H!(I!B?=>(DH=:?!F:>!>:I:>:AD:!?<>IBD:!B=!=9:!Y)?<BC!D(>=:6!(I!'B>N1>:B>:'!>B=?Q!)A!(>':>!=(
   ':=:>E)A:!)I!:A9BAD:'!:6F:>):AD:!)?!BXC:!=(!D(EF:A?B=:!=9:!]<BA=)=B=)Y:!:II:D=?!(I!Y)?<BC!':F>)YB=)(A!BA'!=9:!>(C:
   (I!F9H?)DBC!:6:>D)?:!(A!=9:!:A>)D9E:A=!FB>B')OE,!^>:OABA=!GF>BO<:1_B[C:H!>B=?![:>:!>B)?:'!)A!(A:!(I!=9:!I(CC([)AO
   >:B>)AO!D(A')=)(A?*!D(A=>(C!>B=?![)=9!?=BA'B>'!9(<?)AO!"+#19!C)O9=-'B>N!DHDC:&`!)A!=(=BC!'B>NA:??!I(>!=9:!'B>N1>:B>)AO
   :6F:>)E:A=?`! BA'! 'B>N1>:B>)AO! )A! D(A')=)(A?! (I! :A>)D9:'! :AY)>(AE:A=! [)=9(<=! BA'! [)=9! F9H?)DBC! :6:>D)?:,! 89:
   B?=>(DH=)D!':A?)=H![B?!:?=)EB=:'!XH!)EE<A(9)?=(D9:E)?=>H!I(>!G1+$$β!F>(=:)A,!a<BA=)I)DB=)(A?![:>:!F:>I(>E:'!)A
   CBH:>!LV,!89:!?(EB=(?:A?(>)BC!D(>=:6!XB>>:C!I):C'![B?!BC?(!?=<'):'!B?!D(A=>(C,!89:!Y(C<E:!(I!CBH:>!LV![B?!?=:>:(C(O)DBCCH
   DBCD<CB=:'!I(>!:BD9!>:O)(AQ!BO:!BA'!:6F:>)E:A=BC!D(A')=)(A,!b>(E!=9:!X:O)AA)AO!(I!=9:!D>)=)DBC!F:>)('Q!B?=>(DH=:
   ':A?)=H![B?!9)O9:>!)A!D(A=>(C!>B=?!=9BA!)A!=9:!:A>)D9:'!:AY)>(AE:A=!O>(<F![)=9(<=!F9H?)DBC!:6:>D)?:Q![)=9!':A?)=):?
   (I!B?=>(DH=:?!B>(<A'!#$c!9)O9:>!B=!BCC!(I!=9:!')II:>:A=!BO:?,!LA!D(A=>B?=Q![9:A!=9:!BA)EBC?!9B'!BDD:??!=(!Y(C<A=B>H
   :6:>D)?:Q!':A?)=):?![:>:!?)OA)I)DBA=CH!9)O9:>!=9BA!:Y:A!=9:!D(A=>(C!>B=?,!<>!EB)A!>:?<C=!?9([?!=9B=!?=>B=:O):?!=(
   BFFCH!:AY)>(AE:A=BC!:A>)D9E:A=!?9(<C'!BC[BH?!D(A?)':>!=9:!)AD(>F(>B=)(A!(I!F9H?)DBC!:6:>D)?:Q!:Y:A!I(>!?:A?(>)BC
   B>:B?!?<D9!B?!=9:!Y)?<BC!B>:BQ![9:>:!D(EFC:6!:A>)D9:'!:6F:>):AD:!XH!)=?:CI!)?!A(=!:A(<O9!=(!D(EF:A?B=:!=9:!:II:D=?
   (I!Y)?<BC!':F>)YB=)(A,
   >*#)?1,/$ B?=>(OC)B`!'B>N1>:B>)AO`!:AY)>(AE:A=BC!:A>)D9E:A=`!G1+$$β`!Y)?<BC!D(>=:6`![9::C!><AA)AO,




                                                                   Y)?<BC!D(>=:6!)?!X:=[::A!=9:!=9)>'!BA'!I)I=9!F(?=AB=BC![::N
   @25,1/.&5%12                                                    [)=9!B!F:BN!B=!=9:!I(<>=9![::N!"bBO)(C)A)!:=!BC,!+%%/&,!G(E:
   89:!F(?=AB=BC!':Y:C(FE:A=!(I!=9:!Y)?<BC!D(>=:6!)?!E('<1         B<=9(>?! 9BY:! ?=<'):'! =9:! :II:D=?! (I! =9:! )AD>:B?:! BA'-(>
   CB=:'!XH!:6F:>):AD:Q![9)D9!?9BF:?!I<AD=)(ABC!BA'!D(>=)DBC       ':F>)YB=)(A!(I!Y)?<BC!:6F:>):AD:!(A!=9:!A:<>(ABC!"K:AA:==
   B>D9)=:D=<>:,!M6F:>):AD:1E:')B=:'!D9BAO:?!B>:!B=!B!EB6)E<E      :=!BC,!+%0/`!dBAD:''B!:=!BC,!#$$/&Q!O:A:=)D!"eBEF(A!:=!BC,
   '<>)AO!B!F>:':=:>E)A:'!=)E:![)A'([!DBCC:'!=9:!D>)=)DBC          #$$$&Q! YB?D<CB>! "KCBDN! :=! BC,! +%42`! G)>:YBBO! :=!BC,! +%44`
   F:>)('!"K:>B>')!:=!BC,!#$$$`!S:A?D9Q!#$$3&Q![9)D9!)A!=9:!>B=    ;>OBA'(PB!f!WBI<:A=:Q!+%%0Q!#$$$`!;>OBA'(PB!:=!BC,!#$$3`
viernes 29 de octubre de 2010                                      K:AO(:=6:B!:=!BC,!#$$4&!BA'!B?=>(OC)BC!"d(>Y:==)!:=!BC,!#$$5Q
viernes 29 de octubre de 2010
Patología SNC
             TCE
             Ictus
             Tumores
             Patologías neurodegenerativas

viernes 29 de octubre de 2010
Patología SNC
             TCE
             Ictus
             Tumores
             Patologías neurodegenerativas
                                Vascularización

viernes 29 de octubre de 2010
Neuroprotección mediante
               enriquecimiento ambiental
                  Patologías neurodegenerativas
                        Parkinson
                        Alzheimer
                        Hungtinton
                  Ictus
                  TCE
viernes 29 de octubre de 2010
Objetivos terapeúticos


            Neuroprotección/neurorescate
            Incremento vascularización



viernes 29 de octubre de 2010
TCE en Desarrollo
               Mayor capacidad de plasticidad
                Interferencia en los
                mecanismos fisiológicos
                  Apoptosis
                  Plasticidad sináptica (NMDA)

viernes 29 de octubre de 2010
Current research

       Effects of VEGF
       administration and inhibition
       in the visual cortex of
       developing rats

viernes 29 de octubre de 2010
Current research

       Effects of VEGF
       administration and inhibition
       in the visual cortex of
       developing rats

viernes 29 de octubre de 2010
VEGF infusion

        18 dpn Long Evans rats
        Alzet minipumps for 1 week at a 1 µl /h rate.
             VEGF. 25 ng/ml.
             anti-VEGF. 25 µg/ml.
             PBS.

     Untreated rats.

viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Minipump placement




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
EBA




viernes 29 de octubre de 2010
HSP-70




viernes 29 de octubre de 2010
GFAP




viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
Vascular density




viernes 29 de octubre de 2010
Vascular density




viernes 29 de octubre de 2010
Vascular density
 50,0

                                                     46                                   46


  37,5                                                                              38
                                                35

                                                                            31
                                       30
                                29
 25,0             26                                        26     27




 12,5




      0
               18 dpn       PBS      aVEGF VEGF 25 dpn    18 dpn   PBS   aVEGF VEGF 25 dpn
                                Ipsilateral cortex                 Contralateral cortex
viernes 29 de octubre de 2010
Neuronal density




viernes 29 de octubre de 2010
Neuronal Density
                                 (Optical dissector)




viernes 29 de octubre de 2010
Neuronal Density
                                 (Optical dissector)




viernes 29 de octubre de 2010
Neuronal density
0.000
                                                                                            102.158
                                               95.775
               90.520                                            90.520
2.500                      86.608                                         86.542   85.839
                                                        82.161                                        82.161
                                      75.425


5.000



27.500



     0
               18 dpn       PBS       aVEGF VEGF 25 dpn          18 dpn    PBS     aVEGF VEGF 25 dpn
                                 Ipsilateral cortex                        Contralateral cortex

 viernes 29 de octubre de 2010
Caspase-3




viernes 29 de octubre de 2010
Caspase-3




viernes 29 de octubre de 2010
C   VEGF-SC-SC   VEGF-SC-EE        VEGF-EE-SC


                         110.000




                          82.500
      Neuronal Density




                          55.000
                                                         *
                                         *               *
                          27.500                                 *


                              0
                                             IL                      CL

viernes 29 de octubre de 2010
C       VEGF-SC-SC   VEGF-SC-EE        VEGF-EE-SC


                            22.000




                            16.500
        Apoptotic Density




                            11.000

                                              *
                                         *                     *
                             5.500       *                             *

                                0
                                                  IL                       CL

viernes 29 de octubre de 2010
Densidad vascular
2.000
                                 21.694                                       21.694
                                                                                                    20.075

                  18.149                               18.344     18.149                17.852
16.500                                      16.935




11.000



5.500



      0
                Control            EA       Lesion    Lesion EA   Control      EA      Lesion      Lesion EA
                                 Ipsilateral cortex                         Contralateral cortex

 viernes 29 de octubre de 2010
viernes 29 de octubre de 2010
[Cell Adhesion & Migration 3:2, 199-204; April/May/June 2009]; ©2009 Landes Bioscience



                        Special Focus: Angiogenesis in the Central Nervous System

                        Neurovascular development
                        The beginning of a beautiful friendship

                        Victoria L. Bautch1,2,* and Jennifer M. James1
                        1Department   of Biology; 2Carolina Cardiovascular Biology Center; The University of North Carolina at Chapel Hill; Chapel Hill, NC USA

                        Key words: neural development, vascular development, neural tube, spinal cord, central nervous system, peri-neural vascular plexus, vessel
                        sprouting, angiogenesis, neural stem cell, vascular niche
viernes 29 de octubre de 2010
Contacto

            www.slideshare.net/nfpguare

            www.ehu.es/ehusfera/lance

            eg.argandona@ehu.es

viernes 29 de octubre de 2010

Contenu connexe

En vedette

Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...
Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...
Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...drboon
 
Ley7345 chaco-residuos electronicos.pdf
 Ley7345 chaco-residuos electronicos.pdf Ley7345 chaco-residuos electronicos.pdf
Ley7345 chaco-residuos electronicos.pdfPedro Barrios
 
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kannSERKEM GmbH
 
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam air
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam airBuletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam air
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam airmuslimdocuments
 
revimca aplicaciones
revimca aplicacionesrevimca aplicaciones
revimca aplicacionesrevimca
 
Nutritionists Republic: Med Media - Features
Nutritionists Republic: Med Media - FeaturesNutritionists Republic: Med Media - Features
Nutritionists Republic: Med Media - Featuresnutritionistrepublic
 
Aparatos Medicos Computarizados
Aparatos Medicos ComputarizadosAparatos Medicos Computarizados
Aparatos Medicos ComputarizadosJaime Cham
 
Boletín Informativo Club Juventud Alcalá 6-02-14
Boletín Informativo Club Juventud Alcalá 6-02-14Boletín Informativo Club Juventud Alcalá 6-02-14
Boletín Informativo Club Juventud Alcalá 6-02-14k_andrieu
 
Vladimir Marković, Q-Voucher
Vladimir Marković, Q-VoucherVladimir Marković, Q-Voucher
Vladimir Marković, Q-VoucherbiZbuZZ
 
Caso Giesse Per Unindustria
Caso Giesse Per UnindustriaCaso Giesse Per Unindustria
Caso Giesse Per UnindustriaTwinergy
 
El circulo virtuoso de la creatividad
El circulo virtuoso de la creatividadEl circulo virtuoso de la creatividad
El circulo virtuoso de la creatividadMonica Giovanovich
 
Plasticidade e fisioterapia
Plasticidade e fisioterapiaPlasticidade e fisioterapia
Plasticidade e fisioterapiajuuliacarolina
 

En vedette (19)

Aws dealer testimonials
Aws dealer testimonialsAws dealer testimonials
Aws dealer testimonials
 
Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...
Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...
Shading and Extent of Sunlight Penetration on House Facades of the EarlyTerra...
 
Motivasi diri
Motivasi diriMotivasi diri
Motivasi diri
 
Ley7345 chaco-residuos electronicos.pdf
 Ley7345 chaco-residuos electronicos.pdf Ley7345 chaco-residuos electronicos.pdf
Ley7345 chaco-residuos electronicos.pdf
 
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann
6 Dinge, die man von Dabbawalas über Logistik in SAP lernen kann
 
Megamineria en el quindio cosmos-2012
Megamineria  en el quindio  cosmos-2012Megamineria  en el quindio  cosmos-2012
Megamineria en el quindio cosmos-2012
 
Inolution Inserat Boot
Inolution Inserat BootInolution Inserat Boot
Inolution Inserat Boot
 
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam air
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam airBuletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam air
Buletin jumat al furqon tahun 01 volume 07 nomor 03 macam macam air
 
revimca aplicaciones
revimca aplicacionesrevimca aplicaciones
revimca aplicaciones
 
Nutritionists Republic: Med Media - Features
Nutritionists Republic: Med Media - FeaturesNutritionists Republic: Med Media - Features
Nutritionists Republic: Med Media - Features
 
Aparatos Medicos Computarizados
Aparatos Medicos ComputarizadosAparatos Medicos Computarizados
Aparatos Medicos Computarizados
 
Boletín Informativo Club Juventud Alcalá 6-02-14
Boletín Informativo Club Juventud Alcalá 6-02-14Boletín Informativo Club Juventud Alcalá 6-02-14
Boletín Informativo Club Juventud Alcalá 6-02-14
 
Vladimir Marković, Q-Voucher
Vladimir Marković, Q-VoucherVladimir Marković, Q-Voucher
Vladimir Marković, Q-Voucher
 
Prosan
ProsanProsan
Prosan
 
Revista10 v3
Revista10 v3Revista10 v3
Revista10 v3
 
Leadership & entrepreneurship
Leadership & entrepreneurshipLeadership & entrepreneurship
Leadership & entrepreneurship
 
Caso Giesse Per Unindustria
Caso Giesse Per UnindustriaCaso Giesse Per Unindustria
Caso Giesse Per Unindustria
 
El circulo virtuoso de la creatividad
El circulo virtuoso de la creatividadEl circulo virtuoso de la creatividad
El circulo virtuoso de la creatividad
 
Plasticidade e fisioterapia
Plasticidade e fisioterapiaPlasticidade e fisioterapia
Plasticidade e fisioterapia
 

Plus de Enrike G. Argandoña

Beheko gorputzadarra/lower limb/membre inférieur
Beheko gorputzadarra/lower limb/membre inférieurBeheko gorputzadarra/lower limb/membre inférieur
Beheko gorputzadarra/lower limb/membre inférieurEnrike G. Argandoña
 
Vascularización cerebral (parte iii)
Vascularización cerebral (parte iii)Vascularización cerebral (parte iii)
Vascularización cerebral (parte iii)Enrike G. Argandoña
 
Vascularización cerebral (parte ii)
Vascularización cerebral (parte ii)Vascularización cerebral (parte ii)
Vascularización cerebral (parte ii)Enrike G. Argandoña
 
Vascularización cerebral (parte I)
Vascularización cerebral (parte I)Vascularización cerebral (parte I)
Vascularización cerebral (parte I)Enrike G. Argandoña
 
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...Enrike G. Argandoña
 
Efectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNCEfectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNCEnrike G. Argandoña
 
Neuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescateNeuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescateEnrike G. Argandoña
 
Mecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoriaMecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoriaEnrike G. Argandoña
 
Modelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En NeurocienciasModelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En NeurocienciasEnrike G. Argandoña
 

Plus de Enrike G. Argandoña (20)

Beheko gorputzadarra/lower limb/membre inférieur
Beheko gorputzadarra/lower limb/membre inférieurBeheko gorputzadarra/lower limb/membre inférieur
Beheko gorputzadarra/lower limb/membre inférieur
 
Vascularización cerebral (parte iii)
Vascularización cerebral (parte iii)Vascularización cerebral (parte iii)
Vascularización cerebral (parte iii)
 
Vascularización cerebral (parte ii)
Vascularización cerebral (parte ii)Vascularización cerebral (parte ii)
Vascularización cerebral (parte ii)
 
Vascularización cerebral (parte I)
Vascularización cerebral (parte I)Vascularización cerebral (parte I)
Vascularización cerebral (parte I)
 
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...
Effects of physical exercise in cerebrovascular mechanisms of adaptation to a...
 
Appareil digestif
Appareil digestifAppareil digestif
Appareil digestif
 
Appareil respiratoire
Appareil respiratoireAppareil respiratoire
Appareil respiratoire
 
Appareil cardio vasculaire
Appareil cardio vasculaireAppareil cardio vasculaire
Appareil cardio vasculaire
 
Paroi toracique et abdominale
Paroi toracique et abdominaleParoi toracique et abdominale
Paroi toracique et abdominale
 
Anatomie générale
Anatomie généraleAnatomie générale
Anatomie générale
 
Présentation SA 2011
Présentation SA 2011Présentation SA 2011
Présentation SA 2011
 
Nerbio ehuna
Nerbio ehunaNerbio ehuna
Nerbio ehuna
 
Efectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNCEfectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNC
 
Biologia zelularra
Biologia zelularraBiologia zelularra
Biologia zelularra
 
Garapen anatomia
Garapen anatomiaGarapen anatomia
Garapen anatomia
 
Aurkezpena 2010-2011
Aurkezpena 2010-2011Aurkezpena 2010-2011
Aurkezpena 2010-2011
 
Neuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescateNeuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescate
 
Mecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoriaMecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoria
 
Recensiones científicas
Recensiones científicasRecensiones científicas
Recensiones científicas
 
Modelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En NeurocienciasModelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En Neurociencias
 

Dernier

Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Serviceparulsinha
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptxDr.Nusrat Tariq
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowSonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowRiya Pathan
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Miss joya
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...saminamagar
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Gabriel Guevara MD
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 

Dernier (20)

Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptx
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowSonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Sonagachi Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 

Cerebral Vascularization Guide

  • 1. Vascularización cerebral Laboratorio de Neurociencia Clínica y Experimental (LaNCE) Euskal Herriko Unibertsitatea http://www.ehu.es/ehusfera/lance viernes 29 de octubre de 2010
  • 2. Vascularización cerebral Enrike G. Argandoña Laboratorio de Neurociencia Clínica y Experimental (LaNCE) Euskal Herriko Unibertsitatea http://www.ehu.es/ehusfera/lance viernes 29 de octubre de 2010
  • 3. Vascularización cerebral 2 viernes 29 de octubre de 2010
  • 4. Vascularización cerebral Sistema arterial aferente 2 viernes 29 de octubre de 2010
  • 5. Vascularización cerebral Sistema arterial aferente Sistema venoso eferente 2 viernes 29 de octubre de 2010
  • 6. Vascularización cerebral 3 viernes 29 de octubre de 2010
  • 7. Vascularización cerebral 1% volumen cerebral 3 viernes 29 de octubre de 2010
  • 8. Vascularización cerebral 1% volumen cerebral 20% Gasto cardiaco 3 viernes 29 de octubre de 2010
  • 9. Vascularización cerebral 1% volumen cerebral 20% Gasto cardiaco 65% consumo energía 3 viernes 29 de octubre de 2010
  • 10. viernes 29 de octubre de 2010
  • 11. viernes 29 de octubre de 2010
  • 12. Vascularización cerebral 5 viernes 29 de octubre de 2010
  • 13. Vascularización cerebral Control de la circulación sistémica 5 viernes 29 de octubre de 2010
  • 14. Vascularización cerebral Control de la circulación sistémica Autorregulación vascularización cerebral 5 viernes 29 de octubre de 2010
  • 15. Vascularización cerebral Control de la circulación sistémica Autorregulación vascularización cerebral Distribución del flujo 5 viernes 29 de octubre de 2010
  • 16. viernes 29 de octubre de 2010
  • 17. viernes 29 de octubre de 2010
  • 18. viernes 29 de octubre de 2010
  • 19. viernes 29 de octubre de 2010
  • 20. viernes 29 de octubre de 2010
  • 21. viernes 29 de octubre de 2010
  • 22. viernes 29 de octubre de 2010
  • 23. viernes 29 de octubre de 2010
  • 24. 14 Vascularización cerebral viernes 29 de octubre de 2010
  • 25. 14 Vascularización cerebral viernes 29 de octubre de 2010
  • 26. viernes 29 de octubre de 2010
  • 27. viernes 29 de octubre de 2010
  • 28. viernes 29 de octubre de 2010
  • 29. viernes 29 de octubre de 2010
  • 30. 17 viernes 29 de octubre de 2010
  • 31. 17 viernes 29 de octubre de 2010
  • 32. 17 viernes 29 de octubre de 2010
  • 33. 17 viernes 29 de octubre de 2010
  • 34. viernes 29 de octubre de 2010
  • 35. viernes 29 de octubre de 2010
  • 36. viernes 29 de octubre de 2010
  • 37. viernes 29 de octubre de 2010
  • 38. viernes 29 de octubre de 2010
  • 39. viernes 29 de octubre de 2010
  • 40. viernes 29 de octubre de 2010
  • 41. viernes 29 de octubre de 2010
  • 42. viernes 29 de octubre de 2010
  • 43. viernes 29 de octubre de 2010
  • 44. viernes 29 de octubre de 2010
  • 45. viernes 29 de octubre de 2010
  • 46. Vascularización intracerebral 30 viernes 29 de octubre de 2010
  • 47. Vascularización intracerebral Arteriolas (50-100 µm) 30 viernes 29 de octubre de 2010
  • 48. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) 30 viernes 29 de octubre de 2010
  • 49. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) Vénulas (± 30 µm) 30 viernes 29 de octubre de 2010
  • 50. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) Vénulas (± 30 µm) Capilares (<30 µm) 30 viernes 29 de octubre de 2010
  • 51. Vascularización cortical Red capilar 640 km (reducida en Alzheimer) Un capilar por neurona Barrera hematoencefálica Mecanismos estructurales Mecanismos metabólicos viernes 29 de octubre de 2010
  • 52. Barreras cerebrales viernes 29 de octubre de 2010
  • 53. Barreras cerebrales viernes 29 de octubre de 2010
  • 54. 33 Barrera hematoencefálica viernes 29 de octubre de 2010
  • 55. 33 Barrera hematoencefálica viernes 29 de octubre de 2010
  • 56. 33 Barrera hematoencefálica viernes 29 de octubre de 2010
  • 57. 34 Barrera hematoencefálica viernes 29 de octubre de 2010
  • 58. 34 Barrera hematoencefálica viernes 29 de octubre de 2010
  • 59. Tipos de transporte Texto viernes 29 de octubre de 2010
  • 60. a Tipos de transporte b c d e Paracellular aqueous Transcellular Transport proteins Receptor-mediated Adsorptive pathway lipophilic transcytosis transcytosis pathway Water-soluble Lipid-soluble Glucose, Vinca alkaloids, Insulin, Albumin, other agents agents amino acids, Cyclosporin A, transferrin plasma proteins nucleosides AZT +++ + + +++ Blood –––– + –+ + – + + –+ + – + Tight junction –+ + + – + + Texto –+ + + – – – Endothelium – – +++ Brain + + +++ Astrocyte Astrocyte Figure 3 | Pathways across the blood–brain barrier. A schematic diagram of the endothelial cells that form the blood– brain barrier (BBB) and their associations with the perivascular endfeet of astrocytes. The main routes for molecular traffic across the BBB are shown. a | Normally, the tight junctions severely restrict penetration of water-soluble viernes 29 de octubre de 2010
  • 61. viernes 29 de octubre de 2010
  • 62. at the BBB is observed in starvation and hypoxia53,54. Blood Ligand Tight junction Receptor ↑Ca2+ ↑Ca2+ Endothelial cell Pericyte Smooth muscle Basal Microglia lamina Neuron Astrocyte Neuron Figure 5 | Complex cell–cell signalling at the blood–brain barrier. A portion of a brain capillary wall, showing the main cell types present with the potential to signal to each other. Pericytes are enclosed within the endothelial basal lamina and form the closest associations with endothelium. The endfeet of astrocytic glial cells are apposed viernes 29 de octubre de 2010
  • 63. Review Figure 3. A Simplified Molecular Atlas of the BBB (A) Tight junctions. Claudins (claudin-3, -5, and -12) and occludin have four transmembrane domains with two extracellular loops. The junctional adhesion m ecule A (JAM-A) and the endothelial cell-selective adhesion molecule (ESMA) are members of the Ig superfamily. Zonula occludens proteins (ZO-1, ZO-2, and ZO and the calcium-dependent serine protein kinase (CASK) are first-order cytoplasmic adaptor proteins that contain PDZ binding domains for the C terminus of intramembrane proteins. Cingulin, multi-PDZ protein 1 (MUPP1), and the membrane-associated guanylate kinase with an inverted orientation of protein-prot viernes 29 de octubre de 2010 interaction domain (MAGI) are examples of second-order adaptor molecules. The first- and second-order adaptor molecules together with signaling molecu
  • 65. Box 3 | Pathological states involving BBB breakdown or disorder permeability (little or no aquaporin)88–90, it is likely that the excess metabolic water joins the ISF being secreted Several pathologies of the CNS involve disturbance of blood–brain barrier (BBB) into the pericapillary space by the endothelium5. ISF out- function, and, in many of these, astrocyte–endothelial cooperation is also abnormal. flow involves perivascular spaces around large vessels, Stroke and clearance routes either through the CSF or following • Astrocytes secrete transforming growth factor-β (TGFβ), which downregulates brain alternative pathways to neck lymphatics. capillary endothelial expression of fibrinolytic enzyme tissue plasminogen activator Neurotransmitter recycling can also lead to local (tPA) and anticoagulant thrombomodulin (TM)150. changes in ions and water. Glutamate is the major excitatory transmitter of the brain, and astrocyte proc- Barrera hematoencefálica • Proteolysis of the vascular basement membrane/matrix151. • Induction of aquaporin 4 (AQP4) mRNA and protein at BBB disruption152. esses surrounding synapses can take up glutamate • Decrease in BBB permeability after treatment with arginine vasopressin V1 receptor through transport proteins (particularly EAAT1 and 2); antagonist in a stroke model153. the transport is Na+-dependent and accompanied by net uptake of ions and water, again contributing to Trauma water clearance at the BBB85. Glutamate is converted • Bradykinin, a mediator of inflammation, is produced and stimulates production and to glutamine within the astrocyte and recycled to the release of interleukin-6 (IL-6) from astrocytes, which leads to opening of the BBB102. neurons. The slight astrocytic cell swelling that accom- Infectious or inflammatory processes panies neuronal activity, resulting from activation by Examples include bacterial infections, meningitis, encephalitis and sepsis. glutamate or ion uptake, leads to several cellular mech- • The bacterial protein lipopolysaccharide affects the permeability of BBB tight anisms that contribute to the recovery of ionic balance junctions. This is mediated by the production of free radicals, IL-6 and IL-1β154. and cell volume, some of which involve elevated intra- • Interferon-β prevents BBB disruption155. cellular Ca2+ concentration66,91,92. Hence, there are many links between the signalling and regulatory processes Multiple sclerosis that occur in the neurovascular unit. • Breakdown of the BBB97. • Downregulation of laminin in the basement membrane156. BBB changes in pathology • Selective loss of claudin 1/3 in experimental autoimmune encephalomyelitis94. In a number of pathologies, the function of the BBB is altered (BOX 3), and several disorders appear to involve HIV disturbances of endothelial–glial interaction. Thus, • BBB tight junction disruption157,158. the capillaries of many glial tumours are more leaky Alzheimer’s disease than those of normal brain tissue, either as a result • Increased glucose transport, upregulation of glucose transporter GLUT1, altered of a lack of inductive factors, or owing to the release agrin levels, upregulation of AQP4 expression95,159. of permeability factors such as vascular endothelial • Accumulation of amyloid-β, a key neuropathological feature of Alzheimer’s disease, growth factor (VEGF). Moreover, the tight junction by decreased levels of P-glycoprotein transporter expression160. protein claudin 1/3 is downregulated in some brain tumours93,94. • Altered cellular relations at the BBB, and changes in the basal lamina and amyloid-β clearance100. In BBB disruption, agrin is lost from the abluminal surface of the brain endothelial cells adjacent to astro- Parkinson’s disease cytic endfeet11; this may contribute to BBB damage in • Dysfunction of the BBB by reduced efficacy of P-glycoprotein101. Alzheimer’s disease95, and to the redistribution of astro- Epilepsy cytic AQP4 in glioblastomas96. Astrocytic AQP4 expres- sion is upregulated in brain oedema triggered by BBB • Transient BBB opening in epileptogenic foci, and upregulated expression of breakdown. Such upregulation could be adaptive in P-glycoprotein and other drug efflux transporters in astrocytes and endothelium98,99. helping to clear the accumulating fluid, but the associ- Brain tumours ated cell swelling would tend to exacerbate the problem • Breakdown of the BBB161,162. under extreme conditions. Indeed, AQP4–/– mice show • Downregulation of tight junction protein claudin 1/3; redistribution of astrocyte protection against ischaemic brain oedema48. Some AQP4 and Kir4.1 (inwardly rectifying K+ channel)20,93,96. chronic neuropathologies such as multiple sclerosis may involve an early phase of BBB disturbance (involving Pain the downregulation of claudin 1/3 (REF. 11)) that precedes • Inflammatory pain alters BBB tight junction protein expression and BBB neuronal damage, which suggests that vascular damage permeability108. can lead to secondary neuronal disorder97. In epilepsy, the normal pattern of brain ABC trans- porter expression may change, with upregulation of viernes 29 de octubre de 2010 buffer) when neural activity ceases. Astrocytes can also Pgp on astrocytes and brain endothelium98,99; this may + + +
  • 66. ronal groups in the regulation of neuroendocrine three families: sel functions. related receptors lar inflammation PMN and other developing infarc Barrera hematoencefálica the microvascula artery occlusion contribute to mic mation during t Adherence and through the po sequential intera sion molecule (I family consists endothelial cells L-selectin (leuko and platelets me cytes and monoc sion molecules adhesion proper leukocyte transm the interaction endothelial cell I Fig. 14. Midline sagittal schematic drawing of the brain show- endothelial cell I ing circumventricular organs (dark shaded structures): NH, LFA-1). neurohypophysis; ME, median eminence; OVLT, organum vasculosum of lamina terminales; SFO, subfornicial organ; 4.3.2. CYTOKINE PI, pineal gland or body; SCO, subcommissural organ; AP, area postrema; CP, choroid plexus; OC, optic chiasm; AC, Ischemic cereb anterior commissure; CC, corpus callosum (lightly shaded oxide free radic areas). These are stimula viernes 29 de octubre de 2010
  • 68. 1 junctions, bradykini leading to the releas Barrera hematoencefálica NF-κB B2 Bradykinin 3 amplify the effect by ET-1 Tumour necrosis fa TNFα Microglial cell permeability by dir and indirect effects lL-6 2 production and IL TNFα •O2– lL-1β LPS complex immunore Substance P can exacerbate CNS [Ca2+]i↑ 5-HT multiple sclerosis b Histamine activation of already ATP some mechanisms e PGs B2 Indeed, the ability of contribute to the lin tPA disease106. tPA It has recently be Capillary cytes and microglia Tight 4 pain107. As astrocyt junction TGFβ↓ connectivity and for gested that glia ma pain sensation. In in Endothelial from central and pe cell sue cells and blood Agrin? such as substance P K+ (CGRP), serotonin, AQP4 Glu BBB from both the b For example, the re Basal lamina Astrocyte 5 concentration or alt tion protein occludi Figure 6 | Astroglial–endothelial signalling under pathological conditions. TNFα, histamine an Examples of astroglial–endothelial signalling in infection or inflammation, stroke or matory pain can also trauma, leading to opening of the blood–brain barrier (BBB) and disturbance of brain permeability108. viernes 29 de octubre de 2010 function. bradykinin, produced during inflammation in stroke or brain trauma, acts on
  • 69. 41 Endotelio cerebral viernes 29 de octubre de 2010
  • 70. 41 Endotelio cerebral Rico en mitocondrias viernes 29 de octubre de 2010
  • 71. 41 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis viernes 29 de octubre de 2010
  • 72. 41 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis Ausencia de fenestraciones viernes 29 de octubre de 2010
  • 73. 41 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis Ausencia de fenestraciones viernes 29 de octubre de 2010
  • 74. l. Encircling the basal lamina of 42 or the pericyte are numerous pro- joined to one another by gap Endotelio d-Brain Barrier Refers to a cerebral of Physical, Metabolic, and operties of the Capillary Endothelium barrier is a complex anatomic or ogic and osmotic barrier protect- ulating macromolecules, such as min, do not cross the endothelial illaries. This contrasts with the ulating macromolecules that nor- extracranial tissues. The original blood-brain barrier is attributed 1885, observed that intravenous blue, a dye that circulates bound the diffuse distribution of the dye n and tissue except the brain and blood-brain barrier describes the ing macromolecules to enter the or interstitial fluid of the brain he mechanical component of the Fig. 13. Normal rat brain capillary (original magnification ed primarily to structural charac- Â7000). The inset shows a close-up view of the capillary wall helial capillary lining of the brain to demonstrate a tight junction (arrows) (original magnifica- at are lacking in the endothelial tion Â32,200). viernes 29 de octubre de 2010
  • 75. 43 Astroglia viernes 29 de octubre de 2010
  • 76. 43 Astroglia Inducción de la BHE viernes 29 de octubre de 2010
  • 77. 43 Astroglia Inducción de la BHE Mantenimiento de la BHE viernes 29 de octubre de 2010
  • 78. 43 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular viernes 29 de octubre de 2010
  • 79. 43 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular Estructura de la BHE? viernes 29 de octubre de 2010
  • 80. 43 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular Estructura de la BHE? viernes 29 de octubre de 2010
  • 81. 44 Pericitos viernes 29 de octubre de 2010
  • 82. 44 Pericitos viernes 29 de octubre de 2010
  • 83. 44 Pericitos Identidad oscura Células pluripotenciales Participación en inducción y maduración de la BHE viernes 29 de octubre de 2010
  • 84. LETTER 45 doi:10.1038/nature09522 Pericytes regulate the blood–brain barrier Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{, ´ ¨ Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1 The blood–brain barrier (BBB) consists of specific physical barriers, (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent enzymes and transporters, which together maintain the necessary dye cadaverine Alexa Fluor-555 accumulated significantly in the brain extracellular environment of the central nervous system (CNS)1. parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen- The main physical barrier is found in the CNS endothelial cell, tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa and depends on continuous complexes of tight junctions combined dextran and IgG passed the BBB inPdgfbret/ret and R26P1/0 mice, but not with reduced vesicular transport2. Other possible constituents of the in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g). BBB include extracellular matrix, astrocytes and pericytes3, but the These experiments establish a close correlation between pericyte density relative contribution of these different components to the BBB and permeability across the BBB for a range of tracers of different remains largely unknown1,3. Here we demonstrate a direct role of molecular masses (Supplementary Table 1). pericytes at the BBB in vivo. Using a set of adult viable pericyte- Permeability in CNS vessels is impeded by continuous complexes of deficient mouse mutants we show that pericyte deficiency increases endothelial junctions13,14. We studied such complexes in adult pericyte- the permeability of the BBB to water and a range of low-molecular- deficient mutants using markers for adherens (VE-cadherin) and tight mass and high-molecular-mass tracers. The increased permeability (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls occurs by endothelial transcytosis, a process that is rapidly arrested showed junctional marker expression at similar levels as judged by by the drug imatinib. Furthermore, we show that pericytes function immunostaining and western blotting (Supplementary Fig. 6a–c and at the BBB in at least two ways: by regulating BBB-specific gene data not shown). The junctional markers were distributed in a pattern expression patterns in endothelial cells, and by inducing polariza- consistent with continuous junction complexes in both mutants and tion of astrocyte end-feet surrounding CNS blood vessels. Our controls; however, mutants displayed focally increased junctional width results indicate a novel and critical role for pericytes in the integ- and undulation. These patterns were confirmed by transmission elec- ration of endothelial and astrocyte functions at the neurovascular tron microscopy, which failed to reveal any apparent abnormalities in unit, and in the regulation of the BBB. the ultrastructure of endothelial junctions, with the exception that Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR- longer and irregular stretches of endothelial overlap were commonly b) signalling is necessary for pericyte recruitment during angiogenesis4,5. found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e). Perinatal lethality precludes analysis of postnatal processes in Pdgfb or Because continuity, ultrastructure and marker expression were con- Pdgfrb null mice6,7, but several other mouse mutants of this pathway are sistent with retained integrity of endothelial junctions in the absence of viable postnatally. Two such mutants were used here: PDGF-B retention pericytes, we took advantage of the fixable nature of the fluorescent motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul- tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0 phate proteoglycans was disrupted8; and mutants in which Pdgfb null mice in more detail. Cadaverine Alexa Fluor-555 accumulated in viernes 29 de complemented by one or two copies of a conditionally silent alleles were octubre de 2010 endothelial cells and in the brain parenchyma in Pdgfbret/ret and
  • 85. LETTER 45 doi:10.1038/nature09522 Pericytes regulate the blood–brain barrier Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{, ´ ¨ Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1 The blood–brain barrier (BBB) consists of specific physical barriers, (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent enzymes and transporters, which together maintain the necessary dye cadaverine Alexa Fluor-555 accumulated significantly in the brain extracellular environment of the central nervous system (CNS)1. parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen- The main physical barrier is found in the CNS endothelial cell, tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa and depends on continuous complexes of tight junctions combined dextran and IgG passed the BBB inPdgfbret/ret and R26P1/0 mice, but not Su deficit incrementa permeabilidad agua y otras moléculas with reduced vesicular transport2. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes3, but the in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g). These experiments establish a close correlation between pericyte density mediante transcitosis relative contribution of these different components to the BBB remains largely unknown1,3. Here we demonstrate a direct role of and permeability across the BBB for a range of tracers of different molecular masses (Supplementary Table 1). pericytes at the BBB in vivo. Using a set of adult viable pericyte- Permeability in CNS vessels is impeded by continuous complexes of Regula la expresión génica de genes endoteliales de BHE deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular- endothelial junctions13,14. We studied such complexes in adult pericyte- deficient mutants using markers for adherens (VE-cadherin) and tight mass and high-molecular-mass tracers. The increased permeability (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls Induce polarización de pies astrocitarios occurs by endothelial transcytosis, a process that is rapidly arrested showed junctional marker expression at similar levels as judged by by the drug imatinib. Furthermore, we show that pericytes function immunostaining and western blotting (Supplementary Fig. 6a–c and at the BBB in at least two ways: by regulating BBB-specific gene data not shown). The junctional markers were distributed in a pattern expression patterns in endothelial cells, and by inducing polariza- consistent with continuous junction complexes in both mutants and Participación en inducción y maduración de la BHE tion of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integ- controls; however, mutants displayed focally increased junctional width and undulation. These patterns were confirmed by transmission elec- regulando la relación astrocito-endotelio ration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB. tron microscopy, which failed to reveal any apparent abnormalities in the ultrastructure of endothelial junctions, with the exception that Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR- longer and irregular stretches of endothelial overlap were commonly b) signalling is necessary for pericyte recruitment during angiogenesis4,5. found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e). Perinatal lethality precludes analysis of postnatal processes in Pdgfb or Because continuity, ultrastructure and marker expression were con- Pdgfrb null mice6,7, but several other mouse mutants of this pathway are sistent with retained integrity of endothelial junctions in the absence of viable postnatally. Two such mutants were used here: PDGF-B retention pericytes, we took advantage of the fixable nature of the fluorescent motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul- tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0 phate proteoglycans was disrupted8; and mutants in which Pdgfb null mice in more detail. Cadaverine Alexa Fluor-555 accumulated in viernes 29 de complemented by one or two copies of a conditionally silent alleles were octubre de 2010 endothelial cells and in the brain parenchyma in Pdgfbret/ret and
  • 86. Uniones densas (TJ) viernes 29 de octubre de 2010
  • 87. Uniones densas (TJ) viernes 29 de octubre de 2010
  • 88. viernes 29 de octubre de 2010
  • 89. Apical membrane Cingulin, JACOP, PAR3/6, CASK, 7H6, Itch, MUPP1, Claudin 3, 5, 12 MAGI-1–3, ZONAB ZO-2 Occludin AF6, RGS5 Tight junction JAMs, ZO-3 ESAM ZO-1 Basolateral membrane PECAM α-, β-, γ-Catenin, Desmoplakin, Adherens p120ctn, ZO-1 junction Actin/vinculin-based VE-cadherin cytoskeleton Basal lamina Figure 4 | Molecular composition of endothelial tight junctions. Simplified and incomplete scheme showing the molecular composition of endothelial tight viernes 29 de octubre de 2010
  • 90. Uniones densas (TJ) viernes 29 de octubre de 2010
  • 91. Uniones densas (TJ) viernes 29 de octubre de 2010
  • 96. 50 Actina viernes 29 de octubre de 2010
  • 97. 50 Actina viernes 29 de octubre de 2010
  • 98. 51 Barrera hematoencefálica Células viernes 29 de octubre de 2010
  • 99. 51 Barrera hematoencefálicaS REVIEW Basal lamina Neuron Interneuron Tight junction Astrocyte Tight junction Células Pericyte Capillary A belt-like region of adhesion Astrocyte Endothelial between adjacent cells. Tight cell junctions regulate paracellular flux, and contribute to the b LIF maintenance of cell polarity by stopping molecules from a Tight diffusing within the plane of the TGFβ junction membrane. Tight ? bFGF GLUT1 Abluminal membrane junction Capillary The endothelial cell membrane ANG1 that faces away from the vessel Capillary Endothelial lumen, towards the brain. Microglia LAT1 cell Meninges Endothelial Pgp GDNF cell The complex arrangement of EAAT1–3 Astrocyte three protective membranes surrounding the brain, with a Basal thick outer connective tissue lamina layer (dura) overlying the ET1 TIE2 P2Y2 5-HT barrier layer (arachnoid), and Figure 2 | Cellular constituents of the blood–brain barrier. The barrier is formed by capillary endothelial cells, finally the thin layer covering the glia limitans (pia). The sub- surrounded by basal lamina and astrocytic perivascular endfeet. Astrocytes provide the cellular link to the neurons. arachnoid layer has a sponge- The figure also shows pericytes and microglial cells. a | Brain endothelial cell features observed in cell culture. The like structure filled with CSF. viernes 29 de octubre decells express a number of transporters and receptors, some of which are shown. EAAT1–3, excitatory amino acid 2010
  • 100. 52 Regulación de la permeabilidad vascular viernes 29 de octubre de 2010
  • 101. 52 Regulación de la permeabilidad vascular viernes 29 de octubre de 2010
  • 102. 53 Unidad neurogliovascular euron Review ure 4. Schematic of the Neurovascular Unit Endothelial cells and pericytes are separated by the basement membrane. Pericyte processes sheathe most of the outer side of the basement membr nts of contact, pericytes communicate directly with endothelial cells through the synapse-like peg-socket contacts. Astrocytic endfoot processes uns microvessel wall, which is made up of endothelial cells and pericytes. Resting microglia have a ‘‘ramified’’ shape. In cases of neuronal disorders th imary vascular origin, circulating neurotoxins may cross the BBB to reach their neuronal targets, or proinflammatory signals from the vascular cells or r illary blood flow may disrupt normal synaptic transmission and trigger neuronal injury (arrow 1). Microglia recruited from the blood or within the brain viernes 29 de octubre de 2010 sel wall can sense signals from neurons (arrow 2). Activated endothelium, microglia, and astrocytes signal back to neurons, which in most cases agg
  • 103. 54 Red capilar viernes 29 de octubre de 2010
  • 104. 54 Red capilar viernes 29 de octubre de 2010
  • 105. Desarrollo vascular Extracraneal Intracraneal Troncos perpendiculares Arborización viernes 29 de octubre de 2010
  • 106. viernes 29 de octubre de 2010
  • 107. viernes 29 de octubre de 2010
  • 108. Desarrollo vascular viernes 29 de octubre de 2010
  • 109. Desarrollo vascular viernes 29 de octubre de 2010
  • 110. viernes 29 de octubre de 2010
  • 111. viernes 29 de octubre de 2010
  • 112. 0 dpn 60 viernes 29 de octubre de 2010
  • 113. 7 dpn 61 viernes 29 de octubre de 2010
  • 114. 14 dpn 62 viernes 29 de octubre de 2010
  • 115. 21 dpn 63 viernes 29 de octubre de 2010
  • 116. 60 dpn 64 viernes 29 de octubre de 2010
  • 117. viernes 29 de octubre de 2010
  • 118. VEGF Vascular Endothelial Growth Factor I. Inductor de: • Proliferación endotelial • Migración endotelial • Inhibición apotosis II. Efectos neurotróficos y neuroprotectores III. Permeabilidad vascular viernes 29 de octubre de 2010
  • 119. VEGF Vascular Endothelial Growth Factor viernes 29 de octubre de 2010
  • 120. VEGF en angiogénesis 68 viernes 29 de octubre de 2010
  • 121. VEGF en angiogénesis 68 viernes 29 de octubre de 2010
  • 122. viernes 29 de octubre de 2010
  • 123. viernes 29 de octubre de 2010
  • 124. VEGF en angiogenesis viernes 29 de octubre de 2010
  • 125. Neuroproteccion VEGF en viernes 29 de octubre de 2010
  • 126. VEGF Efectos neurotróficos viernes 29 de octubre de 2010
  • 127. VEGF Hiperpermeabilidad ZO-1 VEGF Actina viernes 29 de octubre de 2010
  • 128. Angiogénesis viernes 29 de octubre de 2010
  • 129. Angiogénesis viernes 29 de octubre de 2010
  • 130. Angiogénesis viernes 29 de octubre de 2010
  • 131. Angiogénesis viernes 29 de octubre de 2010
  • 132. Angiogénesis viernes 29 de octubre de 2010
  • 133. Angiogénesis viernes 29 de octubre de 2010
  • 134. Mechanism of BOLD Functional MRI Brain activity Oxygen consumption Cerebral blood flow Oxyhemoglobin Deoxyhemoglobin Magnetic susceptibility T2* MRI signal intesity viernes 29 de octubre de 2010
  • 135. Oxyhemoglobin and Deoxyhemoglobin in Veins during Brain Activation Rest Activation Normal blood flow High blood flow Oxyhemoglobin Deoxyhemoglobin viernes 29 de octubre de 2010
  • 136. Signal Intensity Time Series and Activation Maps Off On Off On Off On Off On Scan Number viernes 29 de octubre de 2010
  • 137. Multi-Slice Spiral Images viernes 29 de octubre de 2010
  • 138. Multi-Slice EPI Images viernes 29 de octubre de 2010
  • 139. Activation Maps on Anatomical Images MS Spiral MS EPI 3D Spiral viernes 29 de octubre de 2010
  • 140. Visual Activation Maps (ISI=12s) viernes 29 de octubre de 2010
  • 141. viernes 29 de octubre de 2010 All images courtesy of Johann Wolfgang G oethe University Hospital,
  • 142. BOLD MRI MAPP BrainLA B is the o of B O LD MRI func imaging (DTI) for u integration of both tion not only abou white matter struc The result is a com completely new in ning that sets the MORE COMPRE MRI DATA West Virginia Universi A. Puce, PhD, Profess Center for Advanced I W. Boling, MD, Neuros M. Parson, PhD, Depa Functional MRI pl cedures in or nea imaging based on viernes 29 de octubre de 2010
  • 143. Neural correlates of admiration and compassion. Immordino-Yang MH, McColl A, Damasio H, Damasio A. Proc Natl Acad Sci U S A. 2009 May 12;106(19):8021-6. viernes 29 de octubre de 2010
  • 144. viernes 29 de octubre de 2010
  • 145. Angiogénesis y neurogénesis Dos caminos paralelos viernes 29 de octubre de 2010
  • 146. Desarrollo cortical Predeterminado genéticamente Mediado por experiencia viernes 29 de octubre de 2010
  • 147. Desarrollo cortical Predeterminado genéticamente Mediado por experiencia PERIODO CRÍTICO 3ª - 5ª semanas viernes 29 de octubre de 2010
  • 148. Neurogenesis Angiogenesis ? viernes 29 de octubre de 2010
  • 149. Neurogenesis Angiogenesis ? viernes 29 de octubre de 2010
  • 150. Neurogenesis Angiogenesis ? viernes 29 de octubre de 2010
  • 151. Neurogenesis Angiogenesis Nicho vascular (neurogenesis). Palmer 2000. Incremento demanda. Black 1987. Coordinados. Carmeliet 2005. viernes 29 de octubre de 2010
  • 152. Desarrollo neurovascular Evento coordinado Respuesta común a señales comunes VEGF Neurotrofinas (NGF, BDNF, NTs) Neuropilinas (Nrp1, Nrp2) Semaforinas (Sema3A) Efrinas/Ephs (EphB-ephrinB) Angiopoyetinas (Ang2) viernes 29 de octubre de 2010
  • 153. Neuroscience 171 (2010) 214 –226 ANGIOGENESIS BUT NOT NEUROGENESIS IS CRITICAL et al. / Neuroscience 171 (2010) 214 –226 A. L. Kerr FOR NORMAL LEARNING AND MEMORY ACQUISITION A. L. KERR,1 E. L. STEUER, V. POCHTAREV AND cognitive performance on a variety of tasks including the R. A. SWAIN* Morris water maze (MWM), contextual fear conditioning, University of Wisconsin-Milwaukee, Milwaukee, WI, USA extinction of contextual fear, and radial arm maze (Ander- son et al., 2000; Baruch et al., 2004; Fordyce and Wehner, 1993; Gobbo and O’Mara, 2004; Pietropaolo et al., 2006; Abstract—Aerobic exercise has been well established to pro- mote enhanced learning and memory in both human and Powell, 2005; Vaynman et al., 2004). In humans, exercise non-human animals. Exercise regimens enhance blood per- has been associated with improved cognitive performance in fusion, neo-vascularization, and neurogenesis in nervous young adult, aging adult, and brain-injured populations system structures associated with learning and memory. The (Churchill et al., 2002; Grealy et al., 1999; Kramer and Erick- impact of specific plastic changes to learning and memory son, 2007; Kramer et al., 2006; Winter et al., 2007) and has performance in exercising animals are not well understood. been shown to protect against the onset of various demen- The current experiment was designed to investigate the con- tias, including Alzheimer’s disease (Laurin et al., 2001). tributions of angiogenesis and neurogenesis to learning and memory performance by pharmacologically blocking each The means by which experience facilitates learning process in separate groups of exercising animals prior to and memory are not fully understood. However, the sur- visual spatial memory assessment. Results from our experi- vival of new neurons may contribute to learning and mem- ment indicate that angiogenesis is an important component ory changes following exercise. It has been consistently of learning as animals receiving an angiogenesis inhibitor shown that both enriched environments and exercise (vol- exhibit retarded Morris water maze (MWM) acquisition. Inter- untary and forced) promote neurogenesis in the adult hip- estingly, our results also revealed that neurogenesis inhibi- pocampus, specifically in the dentate gyrus (DG) (Christie tion improves learning and memory performance in the MWM. Animals that received the neurogenesis inhibitor dis- et al., 2008; Kempermannn et al., 1997, 1998; Kim et al., played the best overall MWM performance. These results 2002; Olson et al., 2006; Uysal et al., 2005; Van der Borght point to the importance of vascular plasticity in learning and et al., 2006; van Praag et al., 2005), and exercise-induced memory function and provide empirical evidence to support neurogenesis is correlated with improved learning and mem- the use of manipulations that enhance vascular plasticity to ory performance (Uysal et al., 2005; van Praag et al., 2005). improve cognitive function and protect against natural cog- However, there are also reports that manipulation of neuro- nitive decline. © 2010 IBRO. Published by Elsevier Ltd. All genesis does not impact learning and memory function in the rights reserved. MWM (Meshi et al., 2006; Shors et al., 2002) or contextual Key words: vascular plasticity, exercise-induced facilitation, fear conditioning (Clark et al., 2008; Shors et al., 2002), Morris water maze. indicating that neurogenesis may not be the sole supporter of enhanced cognitive performance following exercise. The contribution of neurogenesis to learning and mem- Aerobic exercise promotes enhanced learning and mem- ory function is further complicated by recent evidence sug- ory in both human and non-human animals. At the cellular gesting that newly proliferated neurons are not immedi- level, exercise is associated with increased angiogenesis ately and functionally incorporated into existing learning (the sprouting of new capillaries from preexisting blood networks. While it is clear that new neurons do become vessels) and/or neurogenesis in various areas of the brain functionally integrated into the existing circuitry eventually, including the hippocampus, motor cortex and cerebellum several recent reports indicate that this integration is a (Black et al., 1991; Clark et al., 2009; Isaacs et al., 1992; somewhat delayed process taking between 3 and 4 weeks Kim et al., 2002; Sikorski et al., 2008; Swain et al., 2003; to complete (Kee et al., 2007; Overstreet et al., 2004; van van Praag et al., 2005). Aerobic exercise in rodents is also Praag et al., 2002). These data are supported by behav- associated with improved recovery following ischemic in- ioral studies indicating that impaired neurogenesis does sult (Lee et al., 2003a,b; Sim et al., 2004) and improved not affect visual spatial memory in the MWM immediately 1 Present address: University of Texas, Austin, TX, USA. following treatment but impairs performance when memory *Corresponding author. Tel: 1-414-229-5883; fax: 1-414-229-5219. is tested 28 days later (Hu et al., 2008). viernes 29 de rswain@uwm.edu (R. A. Swain). 4.AZT-injected vol- E-mail address: octubre de 2010AZT-VX, BrdU quantification and NeuN colabel. Tissue was treated with immunohistochemical antibodies targeting BrdU to label dividing cells (indi Abbreviations: ABC, avidin-biotin complex; Fig. The current experiment investigated the relative con-
  • 154. Neuroscience 171 (2010) 214 –226 ANGIOGENESIS BUT NOT NEUROGENESIS IS CRITICAL FOR NORMAL LEARNING AND MEMORY ACQUISITION A. L. KERR,1 E. L. STEUER, V. POCHTAREV AND cognitive performance on a variety of tasks including the R. A. SWAIN* Morris water maze (MWM), contextual fear conditioning, University of Wisconsin-Milwaukee, Milwaukee, WI, USA extinction of contextual fear, and radial arm maze (Ander- son et al., 2000; Baruch et al., 2004; Fordyce and Wehner, 1993; Gobbo and O’Mara, 2004; Pietropaolo et al., 2006; Abstract—Aerobic exercise has been well established to pro- mote enhanced learning and memory in both human and Powell, 2005; Vaynman et al., 2004). In humans, exercise non-human animals. Exercise regimens enhance blood per- has been associated with improved cognitive performance in fusion, neo-vascularization, and neurogenesis in nervous young adult, aging adult, and brain-injured populations system structures associated with learning and memory. The (Churchill et al., 2002; Grealy et al., 1999; Kramer and Erick- impact of specific plastic changes to learning and memory son, 2007; Kramer et al., 2006; Winter et al., 2007) and has performance in exercising animals are not well understood. been shown to protect against the onset of various demen- The current experiment was designed to investigate the con- tias, including Alzheimer’s disease (Laurin et al., 2001). tributions of angiogenesis and neurogenesis to learning and memory performance by pharmacologically blocking each The means by which experience facilitates learning process in separate groups of exercising animals prior to and memory are not fully understood. However, the sur- visual spatial memory assessment. Results from our experi- vival of new neurons may contribute to learning and mem- ment indicate that angiogenesis is an important component ory changes following exercise. It has been consistently of learning as animals receiving an angiogenesis inhibitor shown that both enriched environments and exercise (vol- exhibit retarded Morris water maze (MWM) acquisition. Inter- untary and forced) promote neurogenesis in the adult hip- estingly, our results also revealed that neurogenesis inhibi- pocampus, specifically in the dentate gyrus (DG) (Christie tion improves learning and memory performance in the MWM. Animals that received the neurogenesis inhibitor dis- et al., 2008; Kempermannn et al., 1997, 1998; Kim et al., played the best overall MWM performance. These results 2002; Olson et al., 2006; Uysal et al., 2005; Van der Borght point to the importance of vascular plasticity in learning and et al., 2006; van Praag et al., 2005), and exercise-induced memory function and provide empirical evidence to support neurogenesis is correlated with improved learning and mem- the use of manipulations that enhance vascular plasticity to ory performance (Uysal et al., 2005; van Praag et al., 2005). improve cognitive function and protect against natural cog- However, there are also reports that manipulation of neuro- nitive decline. © 2010 IBRO. Published by Elsevier Ltd. All genesis does not impact learning and memory function in the rights reserved. MWM (Meshi et al., 2006; Shors et al., 2002) or contextual Key words: vascular plasticity, exercise-induced facilitation, fear conditioning (Clark et al., 2008; Shors et al., 2002), Morris water maze. indicating that neurogenesis may not be the sole supporter of enhanced cognitive performance following exercise. The contribution of neurogenesis to learning and mem- Aerobic exercise promotes enhanced learning and mem- ory function is further complicated by recent evidence sug- ory in both human and non-human animals. At the cellular gesting that newly proliferated neurons are not immedi- level, exercise is associated with increased angiogenesis ately and functionally incorporated into existing learning (the sprouting of new capillaries from preexisting blood networks. While it is clear that new neurons do become vessels) and/or neurogenesis in various areas of the brain functionally integrated into the existing circuitry eventually, including the hippocampus, motor cortex and cerebellum several recent reports indicate that this integration is a (Black et al., 1991; Clark et al., 2009; Isaacs et al., 1992; somewhat delayed process taking between 3 and 4 weeks Kim et al., 2002; Sikorski et al., 2008; Swain et al., 2003; to complete (Kee et al., 2007; Overstreet et al., 2004; van van Praag et al., 2005). Aerobic exercise in rodents is also Praag et al., 2002). These data are supported by behav- WM one probe trials. (A) All animals ischemic equivalentstudies indicating time in the correct quadrant during the first probe trial. (B) All animals associated with improved recovery following spent in- ioral amounts of that impaired neurogenesis does sult (Lee et al., 2003a,b; Sim et al., 2004) and improved not affect visual spatial memory in the MWM immediately ilar amounts of time in the SW quadrant, which is directlytreatment but impairs performance when memory represents the greatest distance from the plat 1 Present address: University of Texas, Austin, TX, USA. following opposite the target quadrant and als can search.author. Tel: 1-414-229-5883; fax: 1-414-229-5219. trial, SU5416-VX later (Hu et al., 2008). *Corresponding (C) During the remote probe is tested 28 days and VEH-IC animals spent significantly less time in the correct quadrant viernes 29 de octubre de 2010Swain). E-mail address: rswain@uwm.edu (R. A. The current experiment investigated the relative con-
  • 155. Sistema visual Sistema Visual viernes 29 de octubre de 2010
  • 156. Periodo crítico 4ª semana Cambios mediados por experiencia 1º-3ª semanas 4ª-6ª semanas 7ª y 8ª semanas Periodo precritico Periodo crítico Periodo postcrítico Age viernes 29 de octubre de 2010
  • 157. Empobrecimiento ambiental Descenso densidades neuronal, glial y vascular Retraso maduración Anulación cierre periodo crítico viernes 29 de octubre de 2010
  • 159. Cortical parameters viernes 29 de octubre de 2010
  • 160. Cortical parameters viernes 29 de octubre de 2010
  • 161. Cortical parameters viernes 29 de octubre de 2010
  • 162. Vascular density viernes 29 de octubre de 2010
  • 163. Vascular density viernes 29 de octubre de 2010
  • 164. Results 120 25 100 20 80 15 Oscuridad 60 Controles 10 40 5 20 0 0 0 DPN 7 DPN 14 DPN 21 DPN 60 DPN 0 DPN 7 DPN 14 DPN 21 DPN 60 DPN Number of Vascular Density perpendicular vessels viernes 29 de octubre de 2010
  • 165. Enriquecimiento ambiental Donald Hebb (1949) Kresh, Bennett, Rosenzweig, Diamond (60s) Combinación de complejidad de objetos inanimados y estimulación social. viernes 29 de octubre de 2010
  • 166. Enriquecimiento ambiental Cambios anatómicos Plasticidad neuronal Sinaptogénesis Morfología sináptica Neurogénesis Neurotrofinas (BDNF, NGF, NT-3,VEGF) Gliogénesis viernes 29 de octubre de 2010
  • 167. Enriquecimiento ambiental Reduce el deficit de memoria tras ictus (Dahlqvist, 2004) Mejora la recuperiación funcional tras lesión estriatal (Dobrossy 2004) Induce neurogenesis en hipocampo (Kempermann 1997) Reduce los efectos del Hungtington (Spires 2004) Madura y consolida la corteza visual en ratas privadas de luz (Bertoletti 2004) Revierte los efectos del stress prenatal (Morley-Fletcher 2003) Acelera el desarrollo de la corteza visual (Cancedda 2004) viernes 29 de octubre de 2010
  • 171. Enriquecimiento ambiental Edades : . 14 dpn, 21 dpn Pre-critical . 28 dpn, 35 dpn, 42 dpn Critical period . 49 dpn, 56 dpn, 63 dpn Postcritical viernes 29 de octubre de 2010
  • 172. viernes 29 de octubre de 2010
  • 173. Estudio cualitativo viernes 29 de octubre de 2010 Inmunohistoquimia Histoquimia LEA EBA GluT-1
  • 174. LEA EBA Estudio cualitativo viernes 29 de octubre de 2010
  • 175. Estudio cualitativo EBA GluT-1 EBA + GluT-1 viernes 29 de octubre de 2010
  • 176. Enriquecimiento ambiental Angiogénesis viernes 29 de octubre de 2010
  • 177. Estudio cuantitativo viernes 29 de octubre de 2010
  • 178. VEGF WESTERN BLOT ELISA viernes 29 de octubre de 2010
  • 179. viernes 29 de octubre de 2010
  • 180. ELISA viernes 29 de octubre de 2010
  • 181. VEGF levels 6,0 CE Control DR DR-CE 4,5 3,0 1,5 0 14 dpn 21 dpn 28 dpn 35 dpn 42 dpn 49 dpn 56 dpn 63 dpn viernes 29 de octubre de 2010
  • 182. !! )! ! )!!#!# !"#$%&'"!"#$$%& '()*!+$,++++-.,+/0%1234$,#$$%,$++$5,6 !"#$%&'()*+*,&%$*)%$),*-.%,*/)01,)*23%,124*25'() Blackwell Publishing Ltd *2,%&"4*25)51)100$*5)5"*)-.'25%5'5%3*)*00*&5$)10) β /',67,*',%28)12)5"*)97:;;β)'$5,1&#5%&)/*2$%5#)%2)5"*) ,'5)3%$.'()&1,5*+ MA>)N:!J,!;>OBA'(PBQ+Q#QR!SB>NB)=T!K:AO(:=6:B#QR!BA'!@(?U!V,!WBI<:A=:#QR + ()*&+',)%'#-.#/0+12%3#4#&%5##6&7-+&'-+8#-.#9:2%2;&:#&%5#<=*)+2,)%'&:#/)0+-1;2)%;)#>6&/9<?@#()*&+',)%'#-.#/)0+-1;2)%;)@# A&;0:'8#-.#B)52;2%)#&%5#C5-%'-:-38@#D&1E0)#9-0%'+8#F%2G)+12'8@#D&++2-#H&++2)%&@#IJKIL#6)2-&@#H*&2% <=$5,'&5 ;I=:>!X)>=9Q!:6F(?<>:!=(!Y)?<BC!)AF<=?!E('<CB=:?!D(>=)DBC!':Y:C(FE:A=Q!)A'<D)AO!A<E:>(<?!D9BAO:?!)A!BCC!(I!=9: D(EF(A:A=?!(I!=9:!Y)?<BC!D(>=:6,!Z(?=!(I!=9:!D(>=)DBC!D9BAO:?!=9<?!)A'<D:'!(DD<>!'<>)AO![9B=!)?!DBCC:'!=9:!D>)=)DBC F:>)(',!;?=>(DH=:?!FCBH!BA!)EF(>=BA=!>(C:!)A!=9:!':Y:C(FE:A=Q!EB)A=:ABAD:!BA'!FCB?=)D)=H!(I!=9:!D(>=:6!B?![:CC!B? )A!=9:!?=><D=<>:!BA'!I<AD=)(A!(I!=9:!YB?D<CB>!A:=[(>N,!V)?<BC!':F>)YB=)(A!)A'<D:?!B!':D>:B?:!)A!=9:!B?=>(OC)BC F(F<CB=)(AQ![9:>:B?!:A9BAD:'!:6F:>):AD:!)AD>:B?:?!)=,!M6F(?<>:!=(!BA!:A>)D9:'!:AY)>(AE:A=!9B?!X::A!?9([A =(!F>:Y:A=!=9:!:II:D=?!(I!'B>N1>:B>)AO!)A!=9:!Y)?<BC!D(>=:6,!<>!F<>F(?:![B?!=(!?=<'H!=9:!:II:D=?!(I!BA!:A>)D9:' :AY)>(AE:A=!(A!=9:!':A?)=H!(I!B?=>(DH=:?!F:>!>:I:>:AD:!?<>IBD:!B=!=9:!Y)?<BC!D(>=:6!(I!'B>N1>:B>:'!>B=?Q!)A!(>':>!=( ':=:>E)A:!)I!:A9BAD:'!:6F:>):AD:!)?!BXC:!=(!D(EF:A?B=:!=9:!]<BA=)=B=)Y:!:II:D=?!(I!Y)?<BC!':F>)YB=)(A!BA'!=9:!>(C: (I!F9H?)DBC!:6:>D)?:!(A!=9:!:A>)D9E:A=!FB>B')OE,!^>:OABA=!GF>BO<:1_B[C:H!>B=?![:>:!>B)?:'!)A!(A:!(I!=9:!I(CC([)AO >:B>)AO!D(A')=)(A?*!D(A=>(C!>B=?![)=9!?=BA'B>'!9(<?)AO!"+#19!C)O9=-'B>N!DHDC:&`!)A!=(=BC!'B>NA:??!I(>!=9:!'B>N1>:B>)AO :6F:>)E:A=?`! BA'! 'B>N1>:B>)AO! )A! D(A')=)(A?! (I! :A>)D9:'! :AY)>(AE:A=! [)=9(<=! BA'! [)=9! F9H?)DBC! :6:>D)?:,! 89: B?=>(DH=)D!':A?)=H![B?!:?=)EB=:'!XH!)EE<A(9)?=(D9:E)?=>H!I(>!G1+$$β!F>(=:)A,!a<BA=)I)DB=)(A?![:>:!F:>I(>E:'!)A CBH:>!LV,!89:!?(EB=(?:A?(>)BC!D(>=:6!XB>>:C!I):C'![B?!BC?(!?=<'):'!B?!D(A=>(C,!89:!Y(C<E:!(I!CBH:>!LV![B?!?=:>:(C(O)DBCCH DBCD<CB=:'!I(>!:BD9!>:O)(AQ!BO:!BA'!:6F:>)E:A=BC!D(A')=)(A,!b>(E!=9:!X:O)AA)AO!(I!=9:!D>)=)DBC!F:>)('Q!B?=>(DH=: ':A?)=H![B?!9)O9:>!)A!D(A=>(C!>B=?!=9BA!)A!=9:!:A>)D9:'!:AY)>(AE:A=!O>(<F![)=9(<=!F9H?)DBC!:6:>D)?:Q![)=9!':A?)=):? (I!B?=>(DH=:?!B>(<A'!#$c!9)O9:>!B=!BCC!(I!=9:!')II:>:A=!BO:?,!LA!D(A=>B?=Q![9:A!=9:!BA)EBC?!9B'!BDD:??!=(!Y(C<A=B>H :6:>D)?:Q!':A?)=):?![:>:!?)OA)I)DBA=CH!9)O9:>!=9BA!:Y:A!=9:!D(A=>(C!>B=?,!<>!EB)A!>:?<C=!?9([?!=9B=!?=>B=:O):?!=( BFFCH!:AY)>(AE:A=BC!:A>)D9E:A=!?9(<C'!BC[BH?!D(A?)':>!=9:!)AD(>F(>B=)(A!(I!F9H?)DBC!:6:>D)?:Q!:Y:A!I(>!?:A?(>)BC B>:B?!?<D9!B?!=9:!Y)?<BC!B>:BQ![9:>:!D(EFC:6!:A>)D9:'!:6F:>):AD:!XH!)=?:CI!)?!A(=!:A(<O9!=(!D(EF:A?B=:!=9:!:II:D=? (I!Y)?<BC!':F>)YB=)(A, >*#)?1,/$ B?=>(OC)B`!'B>N1>:B>)AO`!:AY)>(AE:A=BC!:A>)D9E:A=`!G1+$$β`!Y)?<BC!D(>=:6`![9::C!><AA)AO, Y)?<BC!D(>=:6!)?!X:=[::A!=9:!=9)>'!BA'!I)I=9!F(?=AB=BC![::N @25,1/.&5%12 [)=9!B!F:BN!B=!=9:!I(<>=9![::N!"bBO)(C)A)!:=!BC,!+%%/&,!G(E: 89:!F(?=AB=BC!':Y:C(FE:A=!(I!=9:!Y)?<BC!D(>=:6!)?!E('<1 B<=9(>?! 9BY:! ?=<'):'! =9:! :II:D=?! (I! =9:! )AD>:B?:! BA'-(> CB=:'!XH!:6F:>):AD:Q![9)D9!?9BF:?!I<AD=)(ABC!BA'!D(>=)DBC ':F>)YB=)(A!(I!Y)?<BC!:6F:>):AD:!(A!=9:!A:<>(ABC!"K:AA:== B>D9)=:D=<>:,!M6F:>):AD:1E:')B=:'!D9BAO:?!B>:!B=!B!EB6)E<E :=!BC,!+%0/`!dBAD:''B!:=!BC,!#$$/&Q!O:A:=)D!"eBEF(A!:=!BC, '<>)AO!B!F>:':=:>E)A:'!=)E:![)A'([!DBCC:'!=9:!D>)=)DBC #$$$&Q! YB?D<CB>! "KCBDN! :=! BC,! +%42`! G)>:YBBO! :=!BC,! +%44` F:>)('!"K:>B>')!:=!BC,!#$$$`!S:A?D9Q!#$$3&Q![9)D9!)A!=9:!>B= ;>OBA'(PB!f!WBI<:A=:Q!+%%0Q!#$$$`!;>OBA'(PB!:=!BC,!#$$3` viernes 29 de octubre de 2010 K:AO(:=6:B!:=!BC,!#$$4&!BA'!B?=>(OC)BC!"d(>Y:==)!:=!BC,!#$$5Q
  • 183. viernes 29 de octubre de 2010
  • 184. Patología SNC TCE Ictus Tumores Patologías neurodegenerativas viernes 29 de octubre de 2010
  • 185. Patología SNC TCE Ictus Tumores Patologías neurodegenerativas Vascularización viernes 29 de octubre de 2010
  • 186. Neuroprotección mediante enriquecimiento ambiental Patologías neurodegenerativas Parkinson Alzheimer Hungtinton Ictus TCE viernes 29 de octubre de 2010
  • 187. Objetivos terapeúticos Neuroprotección/neurorescate Incremento vascularización viernes 29 de octubre de 2010
  • 188. TCE en Desarrollo Mayor capacidad de plasticidad Interferencia en los mecanismos fisiológicos Apoptosis Plasticidad sináptica (NMDA) viernes 29 de octubre de 2010
  • 189. Current research Effects of VEGF administration and inhibition in the visual cortex of developing rats viernes 29 de octubre de 2010
  • 190. Current research Effects of VEGF administration and inhibition in the visual cortex of developing rats viernes 29 de octubre de 2010
  • 191. VEGF infusion 18 dpn Long Evans rats Alzet minipumps for 1 week at a 1 µl /h rate. VEGF. 25 ng/ml. anti-VEGF. 25 µg/ml. PBS. Untreated rats. viernes 29 de octubre de 2010
  • 192. viernes 29 de octubre de 2010
  • 193. Minipump placement viernes 29 de octubre de 2010
  • 194. viernes 29 de octubre de 2010
  • 195. EBA viernes 29 de octubre de 2010
  • 196. HSP-70 viernes 29 de octubre de 2010
  • 197. GFAP viernes 29 de octubre de 2010
  • 198. viernes 29 de octubre de 2010
  • 199. Vascular density viernes 29 de octubre de 2010
  • 200. Vascular density viernes 29 de octubre de 2010
  • 201. Vascular density 50,0 46 46 37,5 38 35 31 30 29 25,0 26 26 27 12,5 0 18 dpn PBS aVEGF VEGF 25 dpn 18 dpn PBS aVEGF VEGF 25 dpn Ipsilateral cortex Contralateral cortex viernes 29 de octubre de 2010
  • 202. Neuronal density viernes 29 de octubre de 2010
  • 203. Neuronal Density (Optical dissector) viernes 29 de octubre de 2010
  • 204. Neuronal Density (Optical dissector) viernes 29 de octubre de 2010
  • 205. Neuronal density 0.000 102.158 95.775 90.520 90.520 2.500 86.608 86.542 85.839 82.161 82.161 75.425 5.000 27.500 0 18 dpn PBS aVEGF VEGF 25 dpn 18 dpn PBS aVEGF VEGF 25 dpn Ipsilateral cortex Contralateral cortex viernes 29 de octubre de 2010
  • 206. Caspase-3 viernes 29 de octubre de 2010
  • 207. Caspase-3 viernes 29 de octubre de 2010
  • 208. C VEGF-SC-SC VEGF-SC-EE VEGF-EE-SC 110.000 82.500 Neuronal Density 55.000 * * * 27.500 * 0 IL CL viernes 29 de octubre de 2010
  • 209. C VEGF-SC-SC VEGF-SC-EE VEGF-EE-SC 22.000 16.500 Apoptotic Density 11.000 * * * 5.500 * * 0 IL CL viernes 29 de octubre de 2010
  • 210. Densidad vascular 2.000 21.694 21.694 20.075 18.149 18.344 18.149 17.852 16.500 16.935 11.000 5.500 0 Control EA Lesion Lesion EA Control EA Lesion Lesion EA Ipsilateral cortex Contralateral cortex viernes 29 de octubre de 2010
  • 211. viernes 29 de octubre de 2010
  • 212. [Cell Adhesion & Migration 3:2, 199-204; April/May/June 2009]; ©2009 Landes Bioscience Special Focus: Angiogenesis in the Central Nervous System Neurovascular development The beginning of a beautiful friendship Victoria L. Bautch1,2,* and Jennifer M. James1 1Department of Biology; 2Carolina Cardiovascular Biology Center; The University of North Carolina at Chapel Hill; Chapel Hill, NC USA Key words: neural development, vascular development, neural tube, spinal cord, central nervous system, peri-neural vascular plexus, vessel sprouting, angiogenesis, neural stem cell, vascular niche viernes 29 de octubre de 2010
  • 213. Contacto www.slideshare.net/nfpguare www.ehu.es/ehusfera/lance eg.argandona@ehu.es viernes 29 de octubre de 2010