SlideShare une entreprise Scribd logo
1  sur  215
Télécharger pour lire hors ligne
Fourier Series

             N. B. Vyas


    Department of Mathematics,
Atmiya Institute of Tech. and Science,
       Rajkot (Guj.) - INDIA



         N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.




                       N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).




                       N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then




                       N. B. Vyas    Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then
  f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )




                        N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then
  f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
  f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )




                        N. B. Vyas   Fourier Series
Periodic Function


   A function f (x) which satisfies the relation f (x) = f (x + T ) for
   all real x and some fixed T is called Periodic function.
   The smallest positive number T , for which this relation holds, is
   called the period of f (x).
   If T is the period of f (x) then
   f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
   f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer




                         N. B. Vyas   Fourier Series
Periodic Function


    A function f (x) which satisfies the relation f (x) = f (x + T ) for
    all real x and some fixed T is called Periodic function.
    The smallest positive number T , for which this relation holds, is
    called the period of f (x).
    If T is the period of f (x) then
    f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
    f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer
Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period
    2π




                          N. B. Vyas   Fourier Series
Periodic Function


    A function f (x) which satisfies the relation f (x) = f (x + T ) for
    all real x and some fixed T is called Periodic function.
    The smallest positive number T , for which this relation holds, is
    called the period of f (x).
    If T is the period of f (x) then
    f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
    f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer
Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period
    2π
    tanx and cotx are periodic functions with period π.



                          N. B. Vyas   Fourier Series
Even & Odd functions



  A function f (x) is said to be even if f (−x) = f (x).




                     N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.




                       N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).
Eg. x3 and sinx are odd function.




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).
Eg. x3 and sinx are odd function.
      c
          f (x)dx = 0 ; if f (x) is an odd function.
     −c




                                N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2




                      N. B. Vyas   Fourier Series
Some Important Formula
                     eax
    eax sin bx dx =         (a sin bx − b cos bx) + c
                   a2 + b 2
                     eax
    eax cos bx dx = 2       (a cosbx + b sinbx) + c
                   a + b2




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c
     c+2π                         c+2π
                        sin nx
           cos nx dx =                 = 0, n = 0
   c                       n      c




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c
     c+2π                         c+2π
                        sin nx
           cos nx dx =                 = 0, n = 0
   c                       n      c
     c+2π
                                1 c+2π
           sin mx cos nx dx =            2sin mx cos nx dx
   c                            2 c




                      N. B. Vyas   Fourier Series
Some Important Formula
                         eax
    eax sin bx dx =             (a sin bx − b cos bx) + c
                       a2 + b 2
                         eax
      eax cos bx dx = 2         (a cosbx + b sinbx) + c
                       a + b2
     c+2π
                            cos nx c+2π
           sin nx dx = −                  = 0, n = 0
   c                           n     c
     c+2π                          c+2π
                         sin nx
           cos nx dx =                  = 0, n = 0
   c                        n      c
     c+2π
                                 1 c+2π
           sin mx cos nx dx =             2sin mx cos nx dx
   c                             2 c
     1 c+2π
  =             [sin (m + n)x + sin (m − n)x] dx
     2 c



                      N. B. Vyas   Fourier Series
Some Important Formula
                         eax
     eax sin bx dx =            (a sin bx − b cos bx) + c
                       a2 + b 2
                         eax
      eax cos bx dx = 2         (a cosbx + b sinbx) + c
                       a + b2
     c+2π
                            cos nx c+2π
           sin nx dx = −                  = 0, n = 0
   c                           n     c
     c+2π                          c+2π
                         sin nx
           cos nx dx =                  = 0, n = 0
   c                        n      c
     c+2π
                                 1 c+2π
           sin mx cos nx dx =             2sin mx cos nx dx
   c                             2 c
     1 c+2π
  =             [sin (m + n)x + sin (m − n)x] dx
     2 c
                                              c+2π
        1 cos (m + n)x cos (m − n)x
  =−                      +                        = 0, n = 0
        2       m+n               m−n         c
                       N. B. Vyas   Fourier Series
Some Important Formula
       c+2π                                c+2π
                                   1
              cos mx cos nx dx =   2
                                                  2cos mx cos nx dx
   c                                   c




                         N. B. Vyas        Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c
       c+2π
               sin2 nx dx
   c
                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c
       c+2π
               sin2 nx dx = π
   c
                             N. B. Vyas       Fourier Series
Some Important Formula

  (Leibnitz’s Rule)To integrate the product of two
  functions, one of which is power of x . We apply the
  generalized rule of integration by parts
    u vdx = u v1 − u v2 + u v3 − u v4 + . . .




                    N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx




                        N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4




                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
         1
      = − e−2x (4x3 + 6x2 + 6x + 3)
         8




                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n
               2



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x             e−2x
      = x3           − 3x2            + 6x                   −6
              −2             (−2)2               (−2)3            (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n and cos n +
               2
                                                1
                                                2
                                                       π=0


                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x             e−2x
      = x3           − 3x2            + 6x                   −6
              −2             (−2)2               (−2)3            (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n and cos n +
               2
                                                1
                                                2
                                                       π=0
      where n is integer.
                         N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by




                     N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                       c+2π
               1
  where a0 =                  f (x) dx
               π   c




                         N. B. Vyas      Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                             c+2π
                   1
  where a0 =                        f (x) dx
                   π     c
                 c+2π
         1
  an =                  f (x) cos nx dx
         π   c




                               N. B. Vyas      Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                           c+2π
                 1
  where a0 =                      f (x) dx
                 π     c
               c+2π
       1
  an =                f (x) cos nx dx
       π   c
               c+2π
       1
  bn =                f (x) sin nx dx
       π   c




                             N. B. Vyas      Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                       2π
               1
  where a0 =                f (x) dx
               π   0




                            N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                              2π
                      1
  where a0 =                       f (x) dx
                      π   0
                 2π
         1
  an =                f (x) cos nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                            2π
                    1
  where a0 =                     f (x) dx
                    π   0
               2π
       1
  an =              f (x) cos nx dx
       π   0
            2π
       1
  bn =              f (x) sin nx dx
       π   0




                                 N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                   π
               1
  where a0 =            f (x) dx
               π   −π




                        N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                       π
                  1
  where a0 =               f (x) dx
                  π   −π
             π
         1
  an =            f (x) cos nx dx
         π   −π




                           N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                     π
                1
  where a0 =             f (x) dx
                π   −π
            π
       1
  an =          f (x) cos nx dx
       π   −π
            π
       1
  bn =          f (x) sin nx dx
       π   −π




                         N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                 ∞                    ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                     π
             1
  where a0 =             f (x) dx = 0
             π   −π




                         N. B. Vyas     Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
             1 π
  where a0 =         f (x) dx = 0
             π −π
       1 π
  an =       f (x) cos nx dx = 0
       π −π




                     N. B. Vyas     Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function
        1 π                     2 π
  bn =       f (x) sin nx dx =      f (x) sin nx dx
       π −π                     π 0



                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function
        1 π                     2 π
  bn =       f (x) sin nx dx =      f (x) sin nx dx
       π −π                     π 0
  because sin nx is an odd function , f (x)sin nx is an even
  function
                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                 ∞                    ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                     π                        π
             1                 2
  where a0 =        f (x) dx =                    f (x) dx
             π   −π            π          0




                         N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
             1 π                  2       π
  where a0 =         f (x) dx =               f (x) dx
             π −π                 π   0
       1 π                        2       π
  an =       f (x) cos nx dx =                f (x) cos nx dx
       π −π                       π   0




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function
        1 π
  bn =       f (x) sin nx dx = 0
       π −π



                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function
        1 π
  bn =       f (x) sin nx dx = 0
       π −π
  because sin nx is an odd function , f (x)sin nx is an odd
  function
                     N. B. Vyas   Fourier Series
Example




                                                 2
                                     π−x
Ex. Obtain Fourier series of f (x) =                 in the
                                       2
    interval 0 ≤ x ≤ 2π. Hence deduce that
    π2     1    1    1
        = 2 − 2 + 2 − ...
    12 1        2   3




                   N. B. Vyas   Fourier Series
Example




                                                 2
                                     π−x
Ex. Obtain Fourier series of f (x) =                 in the
                                       2
    interval 0 ≤ x ≤ 2π. Hence deduce that
    π2     1    1    1
        = 2 − 2 + 2 − ...
    12 1        2   3




                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4




                            N. B. Vyas   Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4
                          2π
     1 (π − x)3                       1
  =                            =−        (−π 3 − π 3 )
    4π   (−3)             0          12π




                               N. B. Vyas   Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4
                          2π
     1 (π − x)3                       1
  =                            =−        (−π 3 − π 3 )
    4π   (−3)             0          12π
      2
    π
  =
     6




                               N. B. Vyas   Fourier Series
Example




                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                       1 2π
  Step 3. an =                f (x) cos nx dx
                       π 0
                 2π
         1            (π − x)2
  an =                         cos nx dx
         π   0           4




                            N. B. Vyas   Fourier Series
Example




                       1 2π
  Step 3. an =                f (x) cos nx dx
                       π 0
                 2π
         1            (π − x)2
  an =                         cos nx dx
         π   0           4
    1
  = 2
   n




                            N. B. Vyas   Fourier Series
Example




                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                     1 2π
  Step 4. bn =              f (x) sin nx dx
                     π 0
               2π
       1            (π − x)2
  bn =                       sin nx dx
       π   0           4




                           N. B. Vyas   Fourier Series
Example




                     1 2π
  Step 4. bn =              f (x) sin nx dx
                     π 0
               2π
       1            (π − x)2
  bn =                       sin nx dx
       π   0           4
  =0




                           N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]




                     N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2   1         1          1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1          2          3




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2    1         1         1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1            2        3
  Putting x = π, we get




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2    1         1         1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1            2        3
  Putting x = π, we get
      π2    1    1    1   1
  0=     − 2 + 2 − 2 + 2 − ...
      12 1       2    3   4




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
     π2    1         1         1
  =     + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
     12 1            2        3
  Putting x = π, we get
       π2    1   1     1   1
  0=      − 2 + 2 − 2 + 2 − ...
       12 1      2     3   4
  π2     1     1   1     1
      = 2 − 2 + 2 − 2 + ...
  12    1     2    3     4


                       N. B. Vyas   Fourier Series
Example




Ex. Expand in a Fourier series the function f (x) = x
    in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example




Ex. Expand in a Fourier series the function f (x) = x
    in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example



                                     2π
                             1
  Step 2. Now a0 =                        f (x) dx
                             π   0
                 2π
         1
  a0 =                x dx
         π   0




                             N. B. Vyas        Fourier Series
Example



                                  2π
                          1
  Step 2. Now a0 =                     f (x) dx
                          π   0
              2π
         1
  a0 =             x dx
         π   0
             2 2π
       1 x
  =
      4π 2     0




                          N. B. Vyas        Fourier Series
Example



                                  2π
                          1
  Step 2. Now a0 =                     f (x) dx
                          π   0
              2π
         1
  a0 =             x dx
         π   0
             2 2π
     1 x
  =
    4π 2       0
  = 2π




                          N. B. Vyas        Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example



                               2π
                       1
  Step 3. an =                      f (x) cos nx dx
                       π   0
                 2π
         1
  an =                x cos nx dx
         π   0




                                N. B. Vyas    Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0
          1 2π
  an =          x cos nx dx
          π 0
                                       2π
         sin nx        cos nx
   x             − −
           n              n            0




                          N. B. Vyas       Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0
          1 2π
  an =          x cos nx dx
          π 0
                                       2π
         sin nx        cos nx
   x             − −
           n              n            0
  =0




                          N. B. Vyas       Fourier Series
Example




                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                               2π
                       1
  Step 4. bn =                      f (x) sin nx dx
                       π   0
                 2π
         1
  bn =                x sin nx dx
         π   0




                                N. B. Vyas    Fourier Series
Example




                            2π
                    1
  Step 4. bn =                   f (x) sin nx dx
                    π   0
              2π
      1
  bn =             x sin nx dx
      π   0
    −2
  =
    n




                             N. B. Vyas    Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                     ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                        ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n
         ∞
               sin nx
  =π−
         n=1
                 n




                        N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                        ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n
         ∞
               sin nx
  =π−
         n=1
                 n




                        N. B. Vyas   Fourier Series
Example




Ex. Determine the Fourier series expansion of the
    function f (x) = xsin x in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example




Ex. Determine the Fourier series expansion of the
    function f (x) = xsin x in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example


                                     2π
                          1
  Step 2. Now a0 =                        f (x) dx
                          π      0
               2π
       1
  a0 =              x sin x dx
       π   0




                           N. B. Vyas          Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π




                     N. B. Vyas        Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π
     1
  = (−2 π cos 2π + sin 2π − 0 + sin 0)
     π




                     N. B. Vyas        Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π
     1
  = (−2 π cos 2π + sin 2π − 0 + sin 0)
     π
       −2π
  a0 =     = −2
        π




                     N. B. Vyas        Fourier Series
Example


                       2π
               1
  Step 3. an =              f (x) cos nx dx
               π   0




                        N. B. Vyas    Fourier Series
Example


               1 2π
  Step 3. an =         f (x) cos nx dx
               π 0
       1 2π
  an =        x sin x cos nx dx
       π 0




                     N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0




                      N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0
          2π
      1
  =          x (sin (n + 1)x − sin (n − 1)x) dx
     2π 0




                     N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0
          2π
      1
  =          x (sin (n + 1)x − sin (n − 1)x) dx
     2π 0
          2π                            2π
      1                             1
  =          x sin (n + 1)x dx −           x sin (n − 1)x dx
     2π 0                          2π 0



                      N. B. Vyas   Fourier Series
Example


                  2π                                    2π
          1                                   1
  an =                 x sin (n + 1)x dx −                   x sin (n − 1)x dx
         2π   0                              2π     0




                            N. B. Vyas   Fourier Series
Example


                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1




                           N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                      1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                 2π     0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0




                              N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                        1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                   2π   0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0
                                            2π
     1            cos 2x          sin 2x
  =    −x                       +
    2π              2               4       0




                              N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                        1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                   2π   0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0
                                            2π
     1            cos 2x          sin 2x
  =     −x                      +
    2π              2               4       0
      1
  =−
      2




                              N. B. Vyas   Fourier Series
Example

                  2π                                    2π
          1                                   1
  an =                 x sin (n + 1)x dx −                   x sin (n − 1)x dx
         2π   0                              2π     0




                            N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
       1     cos (n − 1)x                   sin (n − 1)x
  −      x −                        − −
      2π        n−1                           (n − 1)2            0




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
     1      cos (n − 1)x      sin (n − 1)x
  −     x −               − −
    2π         n−1              (n − 1)2                          0
      1    2π          2π
  =     −      +0+         −0
     2π   n+1         n−1




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
     1        cos (n − 1)x      sin (n − 1)x
  −       x −               − −
    2π           n−1              (n − 1)2                        0
      1      2π          2π
  =       −      +0+         −0
     2π     n+1         n−1
        2
  = 2
     n −1


                           N. B. Vyas   Fourier Series
Example



                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example



                               2π
                       1
  Step 4. bn =                      f (x) sin nx dx
                       π   0
              2π
      1
  =                x sin x sin nx dx
      π   0




                                N. B. Vyas    Fourier Series
Example



                                 2π
                         1
  Step 4. bn =                        f (x) sin nx dx
                         π   0
             2π
    1
  =               x sin x sin nx dx
    π    0
                 2π
     1
  =                   x (2sin nx sin x) dx
    2π       0




                                  N. B. Vyas    Fourier Series
Example



                                 2π
                         1
  Step 4. bn =                        f (x) sin nx dx
                         π   0
             2π
    1
  =               x sin x sin nx dx
    π    0
                 2π
     1
  =                   x (2sin nx sin x) dx
    2π       0
                 2π
     1
  =                   x (−cos (n + 1)x + cos (n − 1)x) dx
    2π       0




                                  N. B. Vyas    Fourier Series
Example



                  2π
          1
  bn =                 x (−cos (n + 1)x + cos (n − 1)x) dx
         2π   0




                            N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0




                              N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0
                                                     2π
       1     sin 2x                 cos 2x x2
  =      x −                    −         +
      2π       2                      4     2        0




                              N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0
                                                     2π
      1      sin 2x                 cos 2x x2
  =      x −                    −         +
     2π        2                      4     2        0
  b1 = π




                              N. B. Vyas   Fourier Series
Example



                  2π
          1
  bn =                 x (−cos (n + 1)x + cos (n − 1)x) dx
         2π   0




                            N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                2π
            1     sin (n + 1)x                   cos (n + 1)x
  ∴ bn =      x −                         −
           2π        n+1                           (n + 1)2     0




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                 2π
            1     sin (n + 1)x                    cos (n + 1)x
  ∴ bn =      x −                          −
           2π        n+1                            (n + 1)2     0
                                                          2π
       1     sin (n − 1)x               cos (n − 1)x
  +      x                        +
      2π        n−1                       (n − 1)2        0




                           N. B. Vyas    Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                 2π
            1     sin (n + 1)x                    cos (n + 1)x
  ∴ bn =      x −                          −
           2π        n+1                            (n + 1)2     0
                                                          2π
    1        sin (n − 1)x               cos (n − 1)x
  +   x                           +
   2π           n−1                       (n − 1)2        0
  =0




                           N. B. Vyas    Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]
                 ∞
          −2
  f (x) =    +     (an cos nx + bn sin nx)
           2   n=1




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]
                 ∞
          −2
  f (x) =    +     (an cos nx + bn sin nx)
           2   n=1




                      N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −π; −π < x < 0
         = x; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −π; −π < x < 0
         = x; 0 < x < π




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         π
                 1
    where a0 =               f (x) dx
                 π   −π




                             N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                        ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                            π
                    1
    where a0 =                  f (x) dx
                    π   −π
               π
           1
    an =            f (x) cos nx dx
           π   −π




                                N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                       ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                           π
                   1
    where a0 =                 f (x) dx
                   π   −π
               π
         1
    an =           f (x) cos nx dx
         π    −π
               π
         1
    bn =           f (x) sin nx dx
         π   −π




                               N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                       ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                           π
                   1
    where a0 =                 f (x) dx
                   π   −π
               π
         1
    an =           f (x) cos nx dx
         π    −π
               π
         1
    bn =           f (x) sin nx dx
         π   −π




                               N. B. Vyas   Fourier Series
Example



                          π
                     1
  Step 2. Now a0 =            f (x) dx
                     π   −π




                     N. B. Vyas    Fourier Series
Example



                                π
                        1
  Step 2. Now a0 =                  f (x) dx
                        π   −π
          0                 π
      1
  =            f (x) dx +           f (x) dx
      π   −π                0




                        N. B. Vyas        Fourier Series
Example



                               π
                       1
  Step 2. Now a0 =                 f (x) dx
                       π   −π
          0                π
    1
  =           f (x) dx +           f (x) dx
    π   −π                 0
         0                     π
    1
  =           (−π) dx +            x dx
    π   −π                 0




                       N. B. Vyas         Fourier Series
Example



                                  π
                          1
  Step 2. Now a0 =                    f (x) dx
                          π   −π
            0                 π
    1
  =              f (x) dx +           f (x) dx
    π       −π                0
             0                    π
    1
  =              (−π) dx +            x dx
    π       −π                0
        π
  =−
        2




                          N. B. Vyas         Fourier Series
Example



                                  π
                          1
  Step 2. Now a0 =                    f (x) dx
                          π   −π
            0                 π
    1
  =              f (x) dx +           f (x) dx
    π       −π                0
             0                    π
    1
  =              (−π) dx +            x dx
    π       −π                0
        π
  =−
        2




                          N. B. Vyas         Fourier Series
Example



                   0                                π
               1
  Step 3. an =          f (x) cos nx dx +               f (x) cos nx dx
               π   −π                           0




                       N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0
      1    sin nx
  =     −π                 +
      π      n        −π




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0                                           π
      1    sin nx                  sin nx                cos nx
  =     −π                 + x                 − (1) −
      π      n        −π             n                     n2     0




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0                                           π
      1    sin nx                  sin nx                cos nx
  =     −π                 + x                 − (1) −
      π      n        −π             n                     n2     0
          n
      (−1) − 1
  =
        πn2




                      N. B. Vyas   Fourier Series
Example



                   0                                  π
               1
  Step 4. bn =          f (x) sin nx dx +                 f (x) sin nx dx
               π   −π                             0




                   N. B. Vyas    Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0
      1    −cosnx
  =     −π                   +
      π      n          −π




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0                                         π
      1    −cosnx                  −cos nx              −sin nx
  =     −π                   + x                    −
      π      n          −π           n                    n2      0




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0                                         π
      1    −cosnx                  −cos nx              −sin nx
  =     −π                   + x                    −
      π      n          −π           n                    n2      0
               n
      1 − 2(−1)
  =
           n




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1
           ∞                                  ∞
    −π          (−1)n − 1                             1 − 2(−1)n
  =    +                          cos nx +                         sin nx
     4   n=1
                  πn2                        n=1
                                                           n




                     N. B. Vyas      Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1
           ∞                                  ∞
    −π          (−1)n − 1                             1 − 2(−1)n
  =    +                          cos nx +                         sin nx
     4   n=1
                  πn2                        n=1
                                                           n




                     N. B. Vyas      Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= 2; −π < x < 0
         = 1; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= 2; −π < x < 0
         = 1; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −k; −π < x < 0
         = k; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −k; −π < x < 0
         = k; 0 < x < π
                            1 1 1               π
    Hence deduce that 1 − + − + . . . =
                            3 5 7               4




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series of the function
    f (x)= x; 0 ≤ x < π
         = 2π ; x = π
         = 2π − x ; π < x < 2π
                        3π 2    1    1    1
    Hence deduce that        = 2 + 2 + 2 + ...
                         8      1    3    5




                  N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                           ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                               2π
                       1
    where a0 =                      f (x) dx
                       π   0
                   π
           1
    an =               f (x) cos nx dx
           π   0




                                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                         ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                             2π
                     1
    where a0 =                    f (x) dx
                     π   0
                 π
         1
    an =             f (x) cos nx dx
         π    0
               2π
         1
    bn =             f (x) sin nx dx
         π   0




                                  N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                         ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                             2π
                     1
    where a0 =                    f (x) dx
                     π   0
                 π
         1
    an =             f (x) cos nx dx
         π    0
               2π
         1
    bn =             f (x) sin nx dx
         π   0




                                  N. B. Vyas   Fourier Series
Example



                           2π
                   1
  Step 2. Now a0 =              f (x) dx
                   π   0




                   N. B. Vyas        Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π




                     N. B. Vyas   Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π
               π                   2π
    1     x2               x2
  =                + 2πx −
    π     2    0           2       π




                      N. B. Vyas       Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π
               π                   2π
    1     x2               x2
  =                + 2πx −
    π     2    0           2       π
  =π




                      N. B. Vyas       Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π




                     N. B. Vyas       Fourier Series
Example
                            π                                   2π
                   1
  Step 3. an =                  f (x) cos nx dx +                    f (x) cos nx dx
                   π    0                                   π
            π                           2π
    1
  =             x cos nx dx +                (2π − x) cos nx dx
    π   0                           π




                         N. B. Vyas            Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0




                     N. B. Vyas       Fourier Series
Example
                           π                             2π
                 1
  Step 3. an =                 f (x) cos nx dx +              f (x) cos nx dx
                 π     0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0
                                                                2π
   1                 sin nx                 cos nx
  + (2π − x)                       − (−1) −
   π                   n                      n2                π




                       N. B. Vyas       Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0
                                                              2π
    1               sin nx            cos nx
  + (2π − x)               − (−1) −
    π                 n                 n2                    π
     1        cos nπ          1
  =       0+      2
                        − 0+ 2
     π          n             n
    1         cos 2nπ          cos nπ
  +       0−      2
                         − 0−
    π           n                n2
     2 [(−1)n − 1]
  =
          πn2
                     N. B. Vyas       Fourier Series
Example


                       2π
               1
  Step 4. bn =              f (x) sin nx dx
               π   0




                        N. B. Vyas    Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0
                                                      2π
   1           cos nx          sin nx
  + (2π − x) −        − (−1) −
   π             n               n2                   π




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0
                                                      2π
   1           cos nx          sin nx
  + (2π − x) −        − (−1) −
   π             n               n2                   π
  =0




                      N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series of
    f (x)= −1; −π < x < − π 2
         = 0 ; −π < x < π
                 2       2
         = 1; π < x < π
               2




                    N. B. Vyas   Fourier Series

Contenu connexe

Tendances

First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsJayanshu Gundaniya
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transformsKarnav Rana
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
the fourier series
the fourier seriesthe fourier series
the fourier seriessafi al amu
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONDhrupal Patel
 
Fourier sine and cosine series
Fourier sine and cosine seriesFourier sine and cosine series
Fourier sine and cosine seriesTarun Gehlot
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 

Tendances (20)

senior seminar
senior seminarsenior seminar
senior seminar
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 
Fourier sine and cosine series
Fourier sine and cosine seriesFourier sine and cosine series
Fourier sine and cosine series
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 

Similaire à Fourier series 1

Fourier 3
Fourier 3Fourier 3
Fourier 3nugon
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)Amr Mohamed
 
Transforming Quadratic functions from General Form to Standard Form
Transforming Quadratic functions from General Form to Standard FormTransforming Quadratic functions from General Form to Standard Form
Transforming Quadratic functions from General Form to Standard FormIvy Estrella
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Matthew Leingang
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Mel Anthony Pepito
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)wsf6276
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 

Similaire à Fourier series 1 (20)

Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Quadratic
QuadraticQuadratic
Quadratic
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
gfg
gfggfg
gfg
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Transforming Quadratic functions from General Form to Standard Form
Transforming Quadratic functions from General Form to Standard FormTransforming Quadratic functions from General Form to Standard Form
Transforming Quadratic functions from General Form to Standard Form
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 

Plus de Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 

Plus de Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 

Fourier series 1

  • 1. Fourier Series N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) - INDIA N. B. Vyas Fourier Series
  • 2. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. N. B. Vyas Fourier Series
  • 3. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). N. B. Vyas Fourier Series
  • 4. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then N. B. Vyas Fourier Series
  • 5. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) N. B. Vyas Fourier Series
  • 6. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) N. B. Vyas Fourier Series
  • 7. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer N. B. Vyas Fourier Series
  • 8. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period 2π N. B. Vyas Fourier Series
  • 9. Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period 2π tanx and cotx are periodic functions with period π. N. B. Vyas Fourier Series
  • 10. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). N. B. Vyas Fourier Series
  • 11. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. N. B. Vyas Fourier Series
  • 12. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 N. B. Vyas Fourier Series
  • 13. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). N. B. Vyas Fourier Series
  • 14. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). Eg. x3 and sinx are odd function. N. B. Vyas Fourier Series
  • 15. Even & Odd functions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). Eg. x3 and sinx are odd function. c f (x)dx = 0 ; if f (x) is an odd function. −c N. B. Vyas Fourier Series
  • 16. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 N. B. Vyas Fourier Series
  • 17. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 N. B. Vyas Fourier Series
  • 18. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c N. B. Vyas Fourier Series
  • 19. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c N. B. Vyas Fourier Series
  • 20. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c N. B. Vyas Fourier Series
  • 21. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c 1 c+2π = [sin (m + n)x + sin (m − n)x] dx 2 c N. B. Vyas Fourier Series
  • 22. Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c 1 c+2π = [sin (m + n)x + sin (m − n)x] dx 2 c c+2π 1 cos (m + n)x cos (m − n)x =− + = 0, n = 0 2 m+n m−n c N. B. Vyas Fourier Series
  • 23. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c N. B. Vyas Fourier Series
  • 24. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c N. B. Vyas Fourier Series
  • 25. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx c N. B. Vyas Fourier Series
  • 26. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx c N. B. Vyas Fourier Series
  • 27. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c N. B. Vyas Fourier Series
  • 28. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx c N. B. Vyas Fourier Series
  • 29. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c N. B. Vyas Fourier Series
  • 30. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c c+2π sin2 nx dx c N. B. Vyas Fourier Series
  • 31. Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c c+2π sin2 nx dx = π c N. B. Vyas Fourier Series
  • 32. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . N. B. Vyas Fourier Series
  • 33. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx N. B. Vyas Fourier Series
  • 34. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 N. B. Vyas Fourier Series
  • 35. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 N. B. Vyas Fourier Series
  • 36. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 N. B. Vyas Fourier Series
  • 37. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n N. B. Vyas Fourier Series
  • 38. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n 2 N. B. Vyas Fourier Series
  • 39. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n and cos n + 2 1 2 π=0 N. B. Vyas Fourier Series
  • 40. Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n and cos n + 2 1 2 π=0 where n is integer. N. B. Vyas Fourier Series
  • 41. Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by N. B. Vyas Fourier Series
  • 42. Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 43. Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c N. B. Vyas Fourier Series
  • 44. Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c c+2π 1 an = f (x) cos nx dx π c N. B. Vyas Fourier Series
  • 45. Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c c+2π 1 an = f (x) cos nx dx π c c+2π 1 bn = f (x) sin nx dx π c N. B. Vyas Fourier Series
  • 46. Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π N. B. Vyas Fourier Series
  • 47. Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 48. Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 49. Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 50. Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 51. Fourier Series Corollary 2: If c = −π, the interval becomes −π << π N. B. Vyas Fourier Series
  • 52. Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 53. Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 54. Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π N. B. Vyas Fourier Series
  • 55. Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 56. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π N. B. Vyas Fourier Series
  • 57. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 58. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx = 0 π −π N. B. Vyas Fourier Series
  • 59. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π N. B. Vyas Fourier Series
  • 60. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function N. B. Vyas Fourier Series
  • 61. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function 1 π 2 π bn = f (x) sin nx dx = f (x) sin nx dx π −π π 0 N. B. Vyas Fourier Series
  • 62. Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function 1 π 2 π bn = f (x) sin nx dx = f (x) sin nx dx π −π π 0 because sin nx is an odd function , f (x)sin nx is an even function N. B. Vyas Fourier Series
  • 63. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π N. B. Vyas Fourier Series
  • 64. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 65. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π π 1 2 where a0 = f (x) dx = f (x) dx π −π π 0 N. B. Vyas Fourier Series
  • 66. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 N. B. Vyas Fourier Series
  • 67. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function N. B. Vyas Fourier Series
  • 68. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function 1 π bn = f (x) sin nx dx = 0 π −π N. B. Vyas Fourier Series
  • 69. Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function 1 π bn = f (x) sin nx dx = 0 π −π because sin nx is an odd function , f (x)sin nx is an odd function N. B. Vyas Fourier Series
  • 70. Example 2 π−x Ex. Obtain Fourier series of f (x) = in the 2 interval 0 ≤ x ≤ 2π. Hence deduce that π2 1 1 1 = 2 − 2 + 2 − ... 12 1 2 3 N. B. Vyas Fourier Series
  • 71. Example 2 π−x Ex. Obtain Fourier series of f (x) = in the 2 interval 0 ≤ x ≤ 2π. Hence deduce that π2 1 1 1 = 2 − 2 + 2 − ... 12 1 2 3 N. B. Vyas Fourier Series
  • 72. Example Sol. Step 1. The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 73. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 74. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 75. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 76. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 77. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 78. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 79. Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 N. B. Vyas Fourier Series
  • 80. Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 2π 1 (π − x)3 1 = =− (−π 3 − π 3 ) 4π (−3) 0 12π N. B. Vyas Fourier Series
  • 81. Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 2π 1 (π − x)3 1 = =− (−π 3 − π 3 ) 4π (−3) 0 12π 2 π = 6 N. B. Vyas Fourier Series
  • 82. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 83. Example 1 2π Step 3. an = f (x) cos nx dx π 0 2π 1 (π − x)2 an = cos nx dx π 0 4 N. B. Vyas Fourier Series
  • 84. Example 1 2π Step 3. an = f (x) cos nx dx π 0 2π 1 (π − x)2 an = cos nx dx π 0 4 1 = 2 n N. B. Vyas Fourier Series
  • 85. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 86. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 2π 1 (π − x)2 bn = sin nx dx π 0 4 N. B. Vyas Fourier Series
  • 87. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 2π 1 (π − x)2 bn = sin nx dx π 0 4 =0 N. B. Vyas Fourier Series
  • 88. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 89. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 N. B. Vyas Fourier Series
  • 90. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 N. B. Vyas Fourier Series
  • 91. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get N. B. Vyas Fourier Series
  • 92. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get π2 1 1 1 1 0= − 2 + 2 − 2 + 2 − ... 12 1 2 3 4 N. B. Vyas Fourier Series
  • 93. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get π2 1 1 1 1 0= − 2 + 2 − 2 + 2 − ... 12 1 2 3 4 π2 1 1 1 1 = 2 − 2 + 2 − 2 + ... 12 1 2 3 4 N. B. Vyas Fourier Series
  • 94. Example Ex. Expand in a Fourier series the function f (x) = x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 95. Example Ex. Expand in a Fourier series the function f (x) = x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 96. Example Sol. Step 1. The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 97. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 98. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 99. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 100. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 101. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 102. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 103. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 N. B. Vyas Fourier Series
  • 104. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 2 2π 1 x = 4π 2 0 N. B. Vyas Fourier Series
  • 105. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 2 2π 1 x = 4π 2 0 = 2π N. B. Vyas Fourier Series
  • 106. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 107. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 2π 1 an = x cos nx dx π 0 N. B. Vyas Fourier Series
  • 108. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 1 2π an = x cos nx dx π 0 2π sin nx cos nx x − − n n 0 N. B. Vyas Fourier Series
  • 109. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 1 2π an = x cos nx dx π 0 2π sin nx cos nx x − − n n 0 =0 N. B. Vyas Fourier Series
  • 110. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 111. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 bn = x sin nx dx π 0 N. B. Vyas Fourier Series
  • 112. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 bn = x sin nx dx π 0 −2 = n N. B. Vyas Fourier Series
  • 113. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 114. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n N. B. Vyas Fourier Series
  • 115. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n ∞ sin nx =π− n=1 n N. B. Vyas Fourier Series
  • 116. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n ∞ sin nx =π− n=1 n N. B. Vyas Fourier Series
  • 117. Example Ex. Determine the Fourier series expansion of the function f (x) = xsin x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 118. Example Ex. Determine the Fourier series expansion of the function f (x) = xsin x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 119. Example Sol. Step 1. The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 120. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 121. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 122. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 123. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 124. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 125. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 126. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x sin x dx π 0 N. B. Vyas Fourier Series
  • 127. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π N. B. Vyas Fourier Series
  • 128. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π 1 = (−2 π cos 2π + sin 2π − 0 + sin 0) π N. B. Vyas Fourier Series
  • 129. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π 1 = (−2 π cos 2π + sin 2π − 0 + sin 0) π −2π a0 = = −2 π N. B. Vyas Fourier Series
  • 130. Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 131. Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 N. B. Vyas Fourier Series
  • 132. Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 N. B. Vyas Fourier Series
  • 133. Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 2π 1 = x (sin (n + 1)x − sin (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 134. Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 2π 1 = x (sin (n + 1)x − sin (n − 1)x) dx 2π 0 2π 2π 1 1 = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 135. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 136. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 137. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 N. B. Vyas Fourier Series
  • 138. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 2π 1 cos 2x sin 2x = −x + 2π 2 4 0 N. B. Vyas Fourier Series
  • 139. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 2π 1 cos 2x sin 2x = −x + 2π 2 4 0 1 =− 2 N. B. Vyas Fourier Series
  • 140. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 141. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 142. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 N. B. Vyas Fourier Series
  • 143. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 N. B. Vyas Fourier Series
  • 144. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 1 2π 2π = − +0+ −0 2π n+1 n−1 N. B. Vyas Fourier Series
  • 145. Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 1 2π 2π = − +0+ −0 2π n+1 n−1 2 = 2 n −1 N. B. Vyas Fourier Series
  • 146. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 147. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 N. B. Vyas Fourier Series
  • 148. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 2π 1 = x (2sin nx sin x) dx 2π 0 N. B. Vyas Fourier Series
  • 149. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 2π 1 = x (2sin nx sin x) dx 2π 0 2π 1 = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 150. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 151. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 152. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 153. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 2π 1 sin 2x cos 2x x2 = x − − + 2π 2 4 2 0 N. B. Vyas Fourier Series
  • 154. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 2π 1 sin 2x cos 2x x2 = x − − + 2π 2 4 2 0 b1 = π N. B. Vyas Fourier Series
  • 155. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 156. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 157. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 N. B. Vyas Fourier Series
  • 158. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 2π 1 sin (n − 1)x cos (n − 1)x + x + 2π n−1 (n − 1)2 0 N. B. Vyas Fourier Series
  • 159. Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 2π 1 sin (n − 1)x cos (n − 1)x + x + 2π n−1 (n − 1)2 0 =0 N. B. Vyas Fourier Series
  • 160. Example Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 161. Example Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ −2 f (x) = + (an cos nx + bn sin nx) 2 n=1 N. B. Vyas Fourier Series
  • 162. Example Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ −2 f (x) = + (an cos nx + bn sin nx) 2 n=1 N. B. Vyas Fourier Series
  • 163. Example Ex. Find the Fourier series for the periodic function f (x)= −π; −π < x < 0 = x; 0 < x < π N. B. Vyas Fourier Series
  • 164. Example Ex. Find the Fourier series for the periodic function f (x)= −π; −π < x < 0 = x; 0 < x < π N. B. Vyas Fourier Series
  • 165. Example Sol. Step 1. The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 166. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 167. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 168. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π N. B. Vyas Fourier Series
  • 169. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 170. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 171. Example π 1 Step 2. Now a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 172. Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 N. B. Vyas Fourier Series
  • 173. Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 N. B. Vyas Fourier Series
  • 174. Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 π =− 2 N. B. Vyas Fourier Series
  • 175. Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 π =− 2 N. B. Vyas Fourier Series
  • 176. Example 0 π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 N. B. Vyas Fourier Series
  • 177. Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 N. B. Vyas Fourier Series
  • 178. Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 1 sin nx = −π + π n −π N. B. Vyas Fourier Series
  • 179. Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 π 1 sin nx sin nx cos nx = −π + x − (1) − π n −π n n2 0 N. B. Vyas Fourier Series
  • 180. Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 π 1 sin nx sin nx cos nx = −π + x − (1) − π n −π n n2 0 n (−1) − 1 = πn2 N. B. Vyas Fourier Series
  • 181. Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 N. B. Vyas Fourier Series
  • 182. Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 N. B. Vyas Fourier Series
  • 183. Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 1 −cosnx = −π + π n −π N. B. Vyas Fourier Series
  • 184. Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 π 1 −cosnx −cos nx −sin nx = −π + x − π n −π n n2 0 N. B. Vyas Fourier Series
  • 185. Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 π 1 −cosnx −cos nx −sin nx = −π + x − π n −π n n2 0 n 1 − 2(−1) = n N. B. Vyas Fourier Series
  • 186. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) N. B. Vyas Fourier Series
  • 187. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 N. B. Vyas Fourier Series
  • 188. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 ∞ ∞ −π (−1)n − 1 1 − 2(−1)n = + cos nx + sin nx 4 n=1 πn2 n=1 n N. B. Vyas Fourier Series
  • 189. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 ∞ ∞ −π (−1)n − 1 1 − 2(−1)n = + cos nx + sin nx 4 n=1 πn2 n=1 n N. B. Vyas Fourier Series
  • 190. Example Ex. Find the Fourier series for the periodic function f (x)= 2; −π < x < 0 = 1; 0 < x < π N. B. Vyas Fourier Series
  • 191. Example Ex. Find the Fourier series for the periodic function f (x)= 2; −π < x < 0 = 1; 0 < x < π N. B. Vyas Fourier Series
  • 192. Example Ex. Find the Fourier series for the periodic function f (x)= −k; −π < x < 0 = k; 0 < x < π N. B. Vyas Fourier Series
  • 193. Example Ex. Find the Fourier series for the periodic function f (x)= −k; −π < x < 0 = k; 0 < x < π 1 1 1 π Hence deduce that 1 − + − + . . . = 3 5 7 4 N. B. Vyas Fourier Series
  • 194. Example Ex. Find the Fourier series of the function f (x)= x; 0 ≤ x < π = 2π ; x = π = 2π − x ; π < x < 2π 3π 2 1 1 1 Hence deduce that = 2 + 2 + 2 + ... 8 1 3 5 N. B. Vyas Fourier Series
  • 195. Example Sol. Step 1. The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 196. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 197. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 198. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 199. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 200. Example Sol. Step 1. The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 201. Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 202. Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π N. B. Vyas Fourier Series
  • 203. Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π π 2π 1 x2 x2 = + 2πx − π 2 0 2 π N. B. Vyas Fourier Series
  • 204. Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π π 2π 1 x2 x2 = + 2πx − π 2 0 2 π =π N. B. Vyas Fourier Series
  • 205. Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π N. B. Vyas Fourier Series
  • 206. Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π N. B. Vyas Fourier Series
  • 207. Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 N. B. Vyas Fourier Series
  • 208. Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 2π 1 sin nx cos nx + (2π − x) − (−1) − π n n2 π N. B. Vyas Fourier Series
  • 209. Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 2π 1 sin nx cos nx + (2π − x) − (−1) − π n n2 π 1 cos nπ 1 = 0+ 2 − 0+ 2 π n n 1 cos 2nπ cos nπ + 0− 2 − 0− π n n2 2 [(−1)n − 1] = πn2 N. B. Vyas Fourier Series
  • 210. Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 211. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π N. B. Vyas Fourier Series
  • 212. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 N. B. Vyas Fourier Series
  • 213. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 2π 1 cos nx sin nx + (2π − x) − − (−1) − π n n2 π N. B. Vyas Fourier Series
  • 214. Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 2π 1 cos nx sin nx + (2π − x) − − (−1) − π n n2 π =0 N. B. Vyas Fourier Series
  • 215. Example Ex. Find the Fourier series of f (x)= −1; −π < x < − π 2 = 0 ; −π < x < π 2 2 = 1; π < x < π 2 N. B. Vyas Fourier Series