SlideShare une entreprise Scribd logo
1  sur  237
Télécharger pour lire hors ligne
Reduction Formula
Dr. Nirav Vyas
Department of Science & Humanities
Atmiya University
Yogidham, Kalavad road
Rajkot - 360005 . Gujarat
Email: nbvyas@aits.edu.in
Dr. Nirav Vyas Reduction Formula
Introduction
A Reduction Formula for an integral is a formula which
connects integral linearly with another integral of the same
type, but of the lower degree.
Dr. Nirav Vyas Reduction Formula
Introduction
A Reduction Formula for an integral is a formula which
connects integral linearly with another integral of the same
type, but of the lower degree.
Reduction formula is generally obtained by repeated
application of integration by parts.
Dr. Nirav Vyas Reduction Formula
Introduction
A Reduction Formula for an integral is a formula which
connects integral linearly with another integral of the same
type, but of the lower degree.
Reduction formula is generally obtained by repeated
application of integration by parts.
Reduction formula are used as a tool to find area and
volume.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
= − sinn−1
x cos x + (n − 1) sinn−2
xdx − (n − 1) sinn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
= − sinn−1
x cos x + (n − 1) sinn−2
xdx − (n − 1) sinn
xdx
∴ In = − sinn−1
x cos x + (n − 1)In−2 − (n − 1)In
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
= − sinn−1
x cos x + (n − 1) sinn−2
xdx − (n − 1) sinn
xdx
∴ In = − sinn−1
x cos x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = − sinn−1
x cos x + (n − 1)In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
= − sinn−1
x cos x + (n − 1) sinn−2
xdx − (n − 1) sinn
xdx
∴ In = − sinn−1
x cos x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = − sinn−1
x cos x + (n − 1)In−2
∴ nIn = − sinn−1
x cos x + (n − 1)In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
1. Reduction Formula for sinn
xdx, n ≥ 2
In order to apply integration by parts, we split sinn
x in two
parts sinn
x = (sinn−1
x)(sin x)
Let In = sinn
xdx
= (sinn−1
x)(sin x)dx
= (sinn−1
x)(− cos x) − {(n − 1) sinn−2
x cos x}{− cos x}dx
= − sinn−1
x cos x + (n − 1) sinn−2
x cos2
xdx
= − sinn−1
x cos x + (n − 1) sinn−2
x(1 − sin2
x)dx
= − sinn−1
x cos x + (n − 1) sinn−2
xdx − (n − 1) sinn
xdx
∴ In = − sinn−1
x cos x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = − sinn−1
x cos x + (n − 1)In−2
∴ nIn = − sinn−1
x cos x + (n − 1)In−2
∴ In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2 —(1)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
= cosn−1
x sin x + (n − 1) cosn−2
xdx − (n − 1) cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
= cosn−1
x sin x + (n − 1) cosn−2
xdx − (n − 1) cosn
xdx
∴ In = cosn−1
x sin x + (n − 1)In−2 − (n − 1)In
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
= cosn−1
x sin x + (n − 1) cosn−2
xdx − (n − 1) cosn
xdx
∴ In = cosn−1
x sin x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = cosn−1
x sin x + (n − 1)In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
= cosn−1
x sin x + (n − 1) cosn−2
xdx − (n − 1) cosn
xdx
∴ In = cosn−1
x sin x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = cosn−1
x sin x + (n − 1)In−2
∴ nIn = cosn−1
x sin x + (n − 1)In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
2. Reduction Formula for cosn
xdx, n ≥ 2
In order to apply integration by parts, we split cosn
x in two
parts cosn
x = (cosn−1
x)(cos x)
Let In = cosn
xdx
= (cosn−1
x)(cos x)dx
= (cosn−1
x)(sin x) − {(n − 1) cosn−2
x(− sin x)}{sin x}dx
= cosn−1
x sin x + (n − 1) cosn−2
x sin2
xdx
= cosn−1
x sin x + (n − 1) cosn−2
x(1 − cos2
x)dx
= cosn−1
x sin x + (n − 1) cosn−2
xdx − (n − 1) cosn
xdx
∴ In = cosn−1
x sin x + (n − 1)In−2 − (n − 1)In
∴ In + (n − 1)In = cosn−1
x sin x + (n − 1)In−2
∴ nIn = cosn−1
x sin x + (n − 1)In−2
∴ In =
1
n
cosn−1
x sin x +
n − 1
n
In−2 — (2)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
The formulae (1) and (2) are called Reduction formulae
because the exponent is reduced from n to n − 2.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
The formulae (1) and (2) are called Reduction formulae
because the exponent is reduced from n to n − 2.
Now we will consider some definite integral and apply above
reduction formulae to obtain some generalized result.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
∴
π/2
0
sinn
xdx = (0 − 0) +
n − 1
n
In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
∴
π/2
0
sinn
xdx = (0 − 0) +
n − 1
n
In−2
∴ In =
n − 1
n
In−2 — (3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
∴
π/2
0
sinn
xdx = (0 − 0) +
n − 1
n
In−2
∴ In =
n − 1
n
In−2 — (3)
Now if we apply successive use of eq. (3) by replacing n by
n − 2 in (3), we get,
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
∴
π/2
0
sinn
xdx = (0 − 0) +
n − 1
n
In−2
∴ In =
n − 1
n
In−2 — (3)
Now if we apply successive use of eq. (3) by replacing n by
n − 2 in (3), we get,
∴ In−2 =
n − 3
n − 2
In−4 — (4)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Let In =
π/2
0
sinn
xdx
from (1), we have In = −
1
n
sinn−1
x cos x +
n − 1
n
In−2
∴
π/2
0
sinn
xdx = {−
1
n
sinn−1
x cos x}
π/2
0 +
n − 1
n
π/2
0
sinn−2
xdx
∴
π/2
0
sinn
xdx = (0 − 0) +
n − 1
n
In−2
∴ In =
n − 1
n
In−2 — (3)
Now if we apply successive use of eq. (3) by replacing n by
n − 2 in (3), we get,
∴ In−2 =
n − 3
n − 2
In−4 — (4)
from (3) and (4) In =
n − 1
n
n − 3
n − 2
In−4
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 1: n is an even integer
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 1: n is an even integer
Continuing the above process we find
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 1: n is an even integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
1
2
I0
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 1: n is an even integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
1
2
I0
where I0 =
π
2
0
sin0
xdx =
π
2
0
dx = π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 1: n is an even integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
1
2
I0
where I0 =
π
2
0
sin0
xdx =
π
2
0
dx = π
2
∴
π/2
0
sinn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
3
4
.
1
2
.
π
2
— (5)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Continuing the above process we find
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
2
3
I1
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
2
3
I1
where I1 =
π
2
0
sin xdx = {− cos x}
π
2
0 dx = 1
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
2
3
I1
where I1 =
π
2
0
sin xdx = {− cos x}
π
2
0 dx = 1
∴
π/2
0
sinn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
4
5
.
2
3
.1 — (6)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
Proceeding in the same way we get,
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
In−6
Case 2: n is an odd integer
Continuing the above process we find
In =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
2
3
I1
where I1 =
π
2
0
sin xdx = {− cos x}
π
2
0 dx = 1
∴
π/2
0
sinn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
4
5
.
2
3
.1 — (6)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
∴
π/2
0
sinn
xdx =
π/2
0
sinn π
2
− x dx =
π/2
0
cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
∴
π/2
0
sinn
xdx =
π/2
0
sinn π
2
− x dx =
π/2
0
cosn
xdx
Case 1: n is an even integer
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
∴
π/2
0
sinn
xdx =
π/2
0
sinn π
2
− x dx =
π/2
0
cosn
xdx
Case 1: n is an even integer
∴
π/2
0
cosn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
3
4
.
1
2
.
π
2
— (5)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
∴
π/2
0
sinn
xdx =
π/2
0
sinn π
2
− x dx =
π/2
0
cosn
xdx
Case 1: n is an even integer
∴
π/2
0
cosn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
3
4
.
1
2
.
π
2
— (5)
Case 2: n is an odd integer
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x
We can verify that reduction formula for
π/2
0
cosn
xdx is
exactly same as that for
π/2
0
sinn
xdx
the reason is
a
0
f(x)dx =
a
0
f(a − x)dx
∴
π/2
0
sinn
xdx =
π/2
0
sinn π
2
− x dx =
π/2
0
cosn
xdx
Case 1: n is an even integer
∴
π/2
0
cosn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
3
4
.
1
2
.
π
2
— (5)
Case 2: n is an odd integer
∴
π/2
0
cosn
xdx =
n − 1
n
n − 3
n − 2
n − 5
n − 4
. . .
4
5
.
2
3
.1 — (6)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
I = 16
π/2
0
cos8
t.2dt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
I = 16
π/2
0
cos8
t.2dt
= 32
π/2
0
cos8
tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
I = 16
π/2
0
cos8
t.2dt
= 32
π/2
0
cos8
tdt
using formula (5) with n = 8
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
I = 16
π/2
0
cos8
t.2dt
= 32
π/2
0
cos8
tdt
using formula (5) with n = 8
I = 32.
7
8
.
5
6
.
3
4
.
1
2
.
π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 1
Evaluate
π
0
(1 + cos x)4
dx
Sol.
π
0
(1 + cos x)4
dx =
π
0
(2 cos2 x
2
)4
dx
= 24 π
0
cos8 x
2
dx
Taking x/2 = t, ∴ dx = 2dt
I = 16
π/2
0
cos8
t.2dt
= 32
π/2
0
cos8
tdt
using formula (5) with n = 8
I = 32.
7
8
.
5
6
.
3
4
.
1
2
.
π
2
=
35π
8
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
= 4{
π/2
0
sin6
xdx +
π/2
0
sin6
(π − x)dx}
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
= 4{
π/2
0
sin6
xdx +
π/2
0
sin6
(π − x)dx}
= 8
π/2
0
sin6
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
= 4{
π/2
0
sin6
xdx +
π/2
0
sin6
(π − x)dx}
= 8
π/2
0
sin6
xdx
using formula (5) with n = 6
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
= 4{
π/2
0
sin6
xdx +
π/2
0
sin6
(π − x)dx}
= 8
π/2
0
sin6
xdx
using formula (5) with n = 6
I = 8.
5
6
.
3
4
.
1
2
.
π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 2
Evaluate
2π
−2π
sin6
xdx
Sol. Since
a
−a
f(x)dx = 2
a
0
f(x)dx if f(x) is even
∴
2π
−2π
sin6
xdx = 2
2π
0
sin6
xdx
Now using the
2a
0
f(x)dx =
a
0
f(x)dx +
a
0
f(2a − x)dx
∴ I = 2{
π
0
sin6
xdx +
π
0
sin6
(2π − x)dx}
= 4
π
0
sin6
xdx Apply same result again
= 4{
π/2
0
sin6
xdx +
π/2
0
sin6
(π − x)dx}
= 8
π/2
0
sin6
xdx
using formula (5) with n = 6
I = 8.
5
6
.
3
4
.
1
2
.
π
2
=
5π
4
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
=
π
2
.
1
7
−
1
7
1
0
x7
√
1 − x2
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
=
π
2
.
1
7
−
1
7
1
0
x7
√
1 − x2
dx
put x = sin t, ∴ dx = cos tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
=
π
2
.
1
7
−
1
7
1
0
x7
√
1 − x2
dx
put x = sin t, ∴ dx = cos tdt
when x = 0 → t = 0 and x = 1 → t = π/2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
=
π
2
.
1
7
−
1
7
1
0
x7
√
1 − x2
dx
put x = sin t, ∴ dx = cos tdt
when x = 0 → t = 0 and x = 1 → t = π/2
∴ I =
π
14
−
1
7
π/2
0
sin7
t
cos t
costdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Example 3
Evaluate
1
0
x6
sin−1
xdx
Sol. Integration by parts, gives
1
0
x6
sin−1
xdx = {(sin−1
x)
x7
7
}1
0 −
1
0
1
√
1 − x2
.
x7
7
=
π
2
.
1
7
−
1
7
1
0
x7
√
1 − x2
dx
put x = sin t, ∴ dx = cos tdt
when x = 0 → t = 0 and x = 1 → t = π/2
∴ I =
π
14
−
1
7
π/2
0
sin7
t
cos t
costdt
(complete the remaining solution...)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
2
π
0
(1 − cos x)3
dx Ans. 5π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
2
π
0
(1 − cos x)3
dx Ans. 5π
2
3
1
0
x7
1 − x4
dx Ans. 1
3
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
2
π
0
(1 − cos x)3
dx Ans. 5π
2
3
1
0
x7
1 − x4
dx Ans. 1
3
4
1
0
x5
sin−1
xdx Ans. 11π
192
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
2
π
0
(1 − cos x)3
dx Ans. 5π
2
3
1
0
x7
1 − x4
dx Ans. 1
3
4
1
0
x5
sin−1
xdx Ans. 11π
192
5
1
0
x2
cos−1
xdx Ans. 2
9
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinn
x, cosn
x - Exercise
Evaluate the following
1
π/4
0
sin7
2xdx Ans. 8
35
2
π
0
(1 − cos x)3
dx Ans. 5π
2
3
1
0
x7
1 − x4
dx Ans. 1
3
4
1
0
x5
sin−1
xdx Ans. 11π
192
5
1
0
x2
cos−1
xdx Ans. 2
9
6
π/2
−π/2
sin7
xdx Ans. 0
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
= (sinm−1
x)(− cosn+1 x
n+1
) − {(m − 1) sinm−2
x cos x}{− cosn+1 x
n+1
}dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
= (sinm−1
x)(− cosn+1 x
n+1
) − {(m − 1) sinm−2
x cos x}{− cosn+1 x
n+1
}dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn+2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
= (sinm−1
x)(− cosn+1 x
n+1
) − {(m − 1) sinm−2
x cos x}{− cosn+1 x
n+1
}dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn+2
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
x(1 − sin2
x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
= (sinm−1
x)(− cosn+1 x
n+1
) − {(m − 1) sinm−2
x cos x}{− cosn+1 x
n+1
}dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn+2
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
x(1 − sin2
x)dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
3. Reduction Formula for sinm
x cosn
xdx where m and n
are positive integers with m ≥ 2, n ≥ 2
Let Im,n = sinm
x cosn
xdx
In order to apply integration by parts, we split sinm
x cosn
x
in two parts sinm
x cosn
x = (sinm−1
x)(cosn
x sin x)
Let Im,n = (sinm−1
x)(cosn
x sin x)dx
= (sinm−1
x)(− cosn+1 x
n+1
) − {(m − 1) sinm−2
x cos x}{− cosn+1 x
n+1
}dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn+2
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
x(1 − sin2
x)dx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
∴ Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n − m−1
n+1
Im,n
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
∴ Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n − m−1
n+1
Im,n
∴ Im,n + m−1
n+1
Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
∴ Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n − m−1
n+1
Im,n
∴ Im,n + m−1
n+1
Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n
∴ m+n
n+1
Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
= (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
sinm−2
x cosn
xdx −
m−1
n+1
sinm
x cosn
xdx
∴ Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n − m−1
n+1
Im,n
∴ Im,n + m−1
n+1
Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n
∴ m+n
n+1
Im,n = (− sinm−1 x cosn+1 x
n+1
) + m−1
n+1
Im−2,n
∴ Im,n = (− sinm−1 x cosn+1 x
m+n
) + m−1
m+n
Im−2,n —(1)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Similarly in sinm
x cosn
xdx, if we reduce the powers of
cosine instead of sine we get the another reduction formula
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Similarly in sinm
x cosn
xdx, if we reduce the powers of
cosine instead of sine we get the another reduction formula
Im,n = (cosn−1 x sinm+1 x
m+n
) + n−1
m+n
Im,n−2 —(2)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Similarly in sinm
x cosn
xdx, if we reduce the powers of
cosine instead of sine we get the another reduction formula
Im,n = (cosn−1 x sinm+1 x
m+n
) + n−1
m+n
Im,n−2 —(2)
Now we will consider some definite integral and apply above
reduction formulae to obtain some generalized result.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Let
π/2
0
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Let
π/2
0
sinm
x cosn
xdx
Substituting the limits of integration 0 and π/2 in (1) and
(2) we have
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Let
π/2
0
sinm
x cosn
xdx
Substituting the limits of integration 0 and π/2 in (1) and
(2) we have
Im,n = m−1
m+n
Im−2,n —(3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Let
π/2
0
sinm
x cosn
xdx
Substituting the limits of integration 0 and π/2 in (1) and
(2) we have
Im,n = m−1
m+n
Im−2,n —(3)
and
Im,n = n−1
m+n
Im,n−2 —(4)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Let
π/2
0
sinm
x cosn
xdx
Substituting the limits of integration 0 and π/2 in (1) and
(2) we have
Im,n = m−1
m+n
Im−2,n —(3)
and
Im,n = n−1
m+n
Im,n−2 —(4)
we shall consider following four different cases.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
by successive application of above formula , replacing n by
n − 2 we get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
by successive application of above formula , replacing n by
n − 2 we get
Im,n−2 = n−3
m+n−2
Im,n−4 — (ii)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
by successive application of above formula , replacing n by
n − 2 we get
Im,n−2 = n−3
m+n−2
Im,n−4 — (ii)
∴ Im,n = n−1
m+n
. n−3
m+n−2
Im,n−4 (from (i) and (ii) )
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
by successive application of above formula , replacing n by
n − 2 we get
Im,n−2 = n−3
m+n−2
Im,n−4 — (ii)
∴ Im,n = n−1
m+n
. n−3
m+n−2
Im,n−4 (from (i) and (ii) )
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
Im,n−6
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
we will be using Im,n = n−1
m+n
Im,n−2 —(4)
Case 1: Let m and n be both positive integers
we have Im,n = n−1
m+n
Im,n−2 — (i)
by successive application of above formula , replacing n by
n − 2 we get
Im,n−2 = n−3
m+n−2
Im,n−4 — (ii)
∴ Im,n = n−1
m+n
. n−3
m+n−2
Im,n−4 (from (i) and (ii) )
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
Im,n−6
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Now, Im,0 =
π/2
0
sinm
xdx = m−1
m
.m−3
m−2
. . . 1
2
.π
2
(as n is even)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Now, Im,0 =
π/2
0
sinm
xdx = m−1
m
.m−3
m−2
. . . 1
2
.π
2
(as n is even)
substituting the value of Im,0 in eq. (5), we get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Now, Im,0 =
π/2
0
sinm
xdx = m−1
m
.m−3
m−2
. . . 1
2
.π
2
(as n is even)
substituting the value of Im,0 in eq. (5), we get
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
. m−1
m
.m−3
m−2
. . . 1
2
.π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
(Case 1 contd...)
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
Im,0 — (5)
Now, Im,0 =
π/2
0
sinm
xdx = m−1
m
.m−3
m−2
. . . 1
2
.π
2
(as n is even)
substituting the value of Im,0 in eq. (5), we get
∴ Im,n = n−1
m+n
. n−3
m+n−2
. n−5
m+n−4
. . . 1
m+2
. m−1
m
.m−3
m−2
. . . 1
2
.π
2
∴ Im,n =
[(m − 1)(m − 3) . . . 3.1] [(n − 1)(n − 3) . . . 3.1]
(m + n)(m + n − 2) . . . 4.2
.π
2
—
(6)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 1
n+2
I0,n
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 1
n+2
I0,n
I0,n =
π/2
0
cosn
xdx = n−1
n
n−3
n−2
. . . 2
3
.1 (as n is odd)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 1
n+2
I0,n
I0,n =
π/2
0
cosn
xdx = n−1
n
n−3
n−2
. . . 2
3
.1 (as n is odd)
substituting the value of I0,n is previous formula, we get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 2: Let m be even and n be odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 1
n+2
I0,n
I0,n =
π/2
0
cosn
xdx = n−1
n
n−3
n−2
. . . 2
3
.1 (as n is odd)
substituting the value of I0,n is previous formula, we get
Im,n =
[(m − 1)(m − 3) . . . 3.1] [(n − 1)(n − 3) . . . 4.2]
(m + n)(m + n − 2) . . . 5.3
.1 —
(7)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
a
0
f(x)dx =
a
0
f(a − x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
a
0
f(x)dx =
a
0
f(a − x)dx
=
π/2
0
cosm
x sinn
xdx = In,m
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
a
0
f(x)dx =
a
0
f(a − x)dx
=
π/2
0
cosm
x sinn
xdx = In,m
∴ Im,n = In,m
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
a
0
f(x)dx =
a
0
f(a − x)dx
=
π/2
0
cosm
x sinn
xdx = In,m
∴ Im,n = In,m
Therefore we can use the formula (7) which is
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 3: Let n be even and m be odd.
Then Im,n =
π/2
0
sinm
x cosn
xdx
=
π/2
0
sinm π
2
− x cosn π
2
− x dx
a
0
f(x)dx =
a
0
f(a − x)dx
=
π/2
0
cosm
x sinn
xdx = In,m
∴ Im,n = In,m
Therefore we can use the formula (7) which is
Im,n =
[(n − 1)(n − 3) . . . 3.1] [(m − 1)(m − 3) . . . 4.2]
(m + n)(m + n − 2) . . . 5.3
.1 —-
(8)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
I1,n =
π/2
0
sin x cosn
xdx = −
cosn+1
x
n + 1
π/2
0
=
1
n + 1
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
I1,n =
π/2
0
sin x cosn
xdx = −
cosn+1
x
n + 1
π/2
0
=
1
n + 1
substituting the value of I1,n is previous formula, we get
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
I1,n =
π/2
0
sin x cosn
xdx = −
cosn+1
x
n + 1
π/2
0
=
1
n + 1
substituting the value of I1,n is previous formula, we get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
. 1
n+1
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
I1,n =
π/2
0
sin x cosn
xdx = −
cosn+1
x
n + 1
π/2
0
=
1
n + 1
substituting the value of I1,n is previous formula, we get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
. 1
n+1
In order to get conversion from we multiply numerator and
denominator by (n − 1)(n − 3)..4.2 we find
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
Case 4: Let m and n both are odd.
we will be using Im,n = m−1
m+n
Im−2,n —(3)
from (3) and by successive application of above formula , we
get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
I1,n
I1,n =
π/2
0
sin x cosn
xdx = −
cosn+1
x
n + 1
π/2
0
=
1
n + 1
substituting the value of I1,n is previous formula, we get
∴ Im,n = m−1
m+n
. m−3
m+n−2
. m−5
m+n−4
. . . 4
n+5
. 2
n+3
. 1
n+1
In order to get conversion from we multiply numerator and
denominator by (n − 1)(n − 3)..4.2 we find
Im,n =
[(m − 1)(m − 3) . . . 4.2] [(n − 1)(n − 3) . . . 4.2]
(m + n)(m + n − 2) . . . (n + 3)(n + 1)(n − 1)(n − 3) . . . 4.2
—- (9)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
All the above four cases can be written as
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
All the above four cases can be written as
Im,n =
π/2
0
sinm
x cosn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
All the above four cases can be written as
Im,n =
π/2
0
sinm
x cosn
xdx
=
[(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1]
(m + n)(m + n − 2)(m + n − 4) . . . .2or1
.k —- (10)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
All the above four cases can be written as
Im,n =
π/2
0
sinm
x cosn
xdx
=
[(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1]
(m + n)(m + n − 2)(m + n − 4) . . . .2or1
.k —- (10)
where k =
π
2
if both m and n are even
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx
All the above four cases can be written as
Im,n =
π/2
0
sinm
x cosn
xdx
=
[(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1]
(m + n)(m + n − 2)(m + n − 4) . . . .2or1
.k —- (10)
where k =
π
2
if both m and n are even
or k = 1 for all other cases
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Let x/2 = t → dx = 2dt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Let x/2 = t → dx = 2dt
= 26 π/2
0
sin2
t cos10
t.2dt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Let x/2 = t → dx = 2dt
= 26 π/2
0
sin2
t cos10
t.2dt
using formula (10) with m = 2, n = 10
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Let x/2 = t → dx = 2dt
= 26 π/2
0
sin2
t cos10
t.2dt
using formula (10) with m = 2, n = 10
= 27 [1] [9.7.5.3.1]
12.10.8.6.4.2
.
π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 1
Evaluate
π
0
sin2
x(1 + cos x)4
dx
Sol.
π
0
sin2
x(1 + cos x)4
dx
=
π
0
2 cos x
2
sin x
2
2
2 cos2 x
2
4
dx
= 26 π
0
sin2 x
2
cos10 x
2
dx
Let x/2 = t → dx = 2dt
= 26 π/2
0
sin2
t cos10
t.2dt
using formula (10) with m = 2, n = 10
= 27 [1] [9.7.5.3.1]
12.10.8.6.4.2
.
π
2
=
21π
16
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
= 1
3
π/2
0
cos6
t(2 sin t cos t)2
dt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
= 1
3
π/2
0
cos6
t(2 sin t cos t)2
dt
= 4
3
π/2
0
sin2
t cos8
tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
= 1
3
π/2
0
cos6
t(2 sin t cos t)2
dt
= 4
3
π/2
0
sin2
t cos8
tdt
using formula (10) with m = 2, n = 8
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
= 1
3
π/2
0
cos6
t(2 sin t cos t)2
dt
= 4
3
π/2
0
sin2
t cos8
tdt
using formula (10) with m = 2, n = 8
= 4
3
[1] [7.5.3.1]
10.8.6.4.2
.
π
2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 2
Evaluate
π/6
0
cos6
3x sin2
6xdx
Sol.
π/6
0
cos6
3x sin2
6xdx
let 3x = t => dx = dt/3,
when x = 0 → t = 0 and x = π/6 → t = π/2
=
π/2
0
cos6
t sin2
2t(dt/3)
= 1
3
π/2
0
cos6
t(2 sin t cos t)2
dt
= 4
3
π/2
0
sin2
t cos8
tdt
using formula (10) with m = 2, n = 8
= 4
3
[1] [7.5.3.1]
10.8.6.4.2
.
π
2
=
7π
384
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
=
π/2
0
(1/2 sin t)3
cos t.(cos tdt/2)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
=
π/2
0
(1/2 sin t)3
cos t.(cos tdt/2)
= 1
16
π/2
0
sin3
t cos2
tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
=
π/2
0
(1/2 sin t)3
cos t.(cos tdt/2)
= 1
16
π/2
0
sin3
t cos2
tdt
using formula (10) with m = 3, n = 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
=
π/2
0
(1/2 sin t)3
cos t.(cos tdt/2)
= 1
16
π/2
0
sin3
t cos2
tdt
using formula (10) with m = 3, n = 2
= 1
16
[2] [1]
5.3.1
.1
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 3
Evaluate
1/2
0
x3
√
1 − 4x2dx
Sol. Let 2x = sin t → dx = cos tdt/2
when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2
∴
1/2
0
x3
√
1 − 4x2dx
=
π/2
0
(1/2 sin t)3
cos t.(cos tdt/2)
= 1
16
π/2
0
sin3
t cos2
tdt
using formula (10) with m = 3, n = 2
= 1
16
[2] [1]
5.3.1
.1
=
1
120
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Sol. Let x = tan t → dx = sec2
tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Sol. Let x = tan t → dx = sec2
tdt
when x = 0, t = 0 and x → ∞ => t = π/2
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Sol. Let x = tan t → dx = sec2
tdt
when x = 0, t = 0 and x → ∞ => t = π/2
∴
∞
0
x4
(1 + x2)4
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Sol. Let x = tan t → dx = sec2
tdt
when x = 0, t = 0 and x → ∞ => t = π/2
∴
∞
0
x4
(1 + x2)4
dx
=
π/2
0
tan4
t
sec8 t
. sec2
tdt
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Example 4
Evaluate
∞
0
x4
(1 + x2)4
dx
Sol. Let x = tan t → dx = sec2
tdt
when x = 0, t = 0 and x → ∞ => t = π/2
∴
∞
0
x4
(1 + x2)4
dx
=
π/2
0
tan4
t
sec8 t
. sec2
tdt
(complete the remaining solution...)
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
2
π/4
0
cos3
2x sin4
4x Ans. 128
1155
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
2
π/4
0
cos3
2x sin4
4x Ans. 128
1155
3
a
0
x3
(a2
− x2
)3/2
dx Ans. 2a7
35
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
2
π/4
0
cos3
2x sin4
4x Ans. 128
1155
3
a
0
x3
(a2
− x2
)3/2
dx Ans. 2a7
35
4
2a
0
x2
√
2ax − x2dx Ans. 5π
8
a4
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
2
π/4
0
cos3
2x sin4
4x Ans. 128
1155
3
a
0
x3
(a2
− x2
)3/2
dx Ans. 2a7
35
4
2a
0
x2
√
2ax − x2dx Ans. 5π
8
a4
5
2
0
x3
√
2x − x2dx Ans. 7π
8
Dr. Nirav Vyas Reduction Formula
Reduction formula - sinm
x cosn
xdx - Exercise
Evaluate the following
1
π/6
0
cos4
3x sin2
6xdx Ans. 5π
192
2
π/4
0
cos3
2x sin4
4x Ans. 128
1155
3
a
0
x3
(a2
− x2
)3/2
dx Ans. 2a7
35
4
2a
0
x2
√
2ax − x2dx Ans. 5π
8
a4
5
2
0
x3
√
2x − x2dx Ans. 7π
8
6
∞
0
x2
(1 + x2)7/2
dx Ans. 2
15
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
= (tann−2
x)(sec2
x − 1)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
= (tann−2
x)(sec2
x − 1)dx
= tann−2
x sec2
xdx − tann−2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
= (tann−2
x)(sec2
x − 1)dx
= tann−2
x sec2
xdx − tann−2
xdx
Now the integral tann−2
x sec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to tann−1 x
n−1
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
= (tann−2
x)(sec2
x − 1)dx
= tann−2
x sec2
xdx − tann−2
xdx
Now the integral tann−2
x sec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to tann−1 x
n−1
∴ we have following reduction formula for tann
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
4. Reduction Formula for tann
xdx, n ≥ 2
In order to apply integration by parts, we split tann
x in two
parts tann
x = (tann−2
x)(tan2
x)
Let In = tann
xdx
= (tann−2
x)(tan2
x)dx
= (tann−2
x)(sec2
x − 1)dx
= tann−2
x sec2
xdx − tann−2
xdx
Now the integral tann−2
x sec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to tann−1 x
n−1
∴ we have following reduction formula for tann
xdx
In = tann−1 x
n−1
+ In−2 — (1)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
= (cotn−2
x)(cosec2
x − 1)dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
= (cotn−2
x)(cosec2
x − 1)dx
= cotn−2
x cosec2
xdx − cotn−2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
= (cotn−2
x)(cosec2
x − 1)dx
= cotn−2
x cosec2
xdx − cotn−2
xdx
Now the integral cotn−2
x cosec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to − cotn−1 x
n−1
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
= (cotn−2
x)(cosec2
x − 1)dx
= cotn−2
x cosec2
xdx − cotn−2
xdx
Now the integral cotn−2
x cosec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to − cotn−1 x
n−1
∴ we have following reduction formula for cotn
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
5. Reduction Formula for cotn
xdx, n ≥ 2
In order to apply integration by parts, we split cotn
x in two
parts cotn
x = (cotn−2
x)(cot2
x)
Let In = cotn
xdx
= (cotn−2
x)(cot2
x)dx
= (cotn−2
x)(cosec2
x − 1)dx
= cotn−2
x cosec2
xdx − cotn−2
xdx
Now the integral cotn−2
x cosec2
xdx of the form
[f(x)]n
f (x)dx hence it is equal to − cotn−1 x
n−1
∴ we have following reduction formula for cotn
xdx
In = − cotn−1 x
n−1
+ In−2 — (2)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
Now let us consider corresponding definite integrals
Let In =
π/4
0
tann
xdx, n ≥ 2
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
Now let us consider corresponding definite integrals
Let In =
π/4
0
tann
xdx, n ≥ 2
from eq. (1), we have
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
Now let us consider corresponding definite integrals
Let In =
π/4
0
tann
xdx, n ≥ 2
from eq. (1), we have
In =
π/4
0
tann
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
Now let us consider corresponding definite integrals
Let In =
π/4
0
tann
xdx, n ≥ 2
from eq. (1), we have
In =
π/4
0
tann
xdx
= tann−1 x
n−1
π/4
0
−
π/4
0
tann−2
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx
Now let us consider corresponding definite integrals
Let In =
π/4
0
tann
xdx, n ≥ 2
from eq. (1), we have
In =
π/4
0
tann
xdx
= tann−1 x
n−1
π/4
0
−
π/4
0
tann−2
xdx
∴ In =
1
n − 1
− In−2 — (3)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
I6 = 1
5
− 1
3
− I2
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
I6 = 1
5
− 1
3
− I2
I6 = 1
5
− 1
3
− (1 − I0)
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
I6 = 1
5
− 1
3
− I2
I6 = 1
5
− 1
3
− (1 − I0) but I0 =
π/4
0
tan0
θdθ =
π/4
0
dθ = π
4
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
I6 = 1
5
− 1
3
− I2
I6 = 1
5
− 1
3
− (1 − I0) but I0 =
π/4
0
tan0
θdθ =
π/4
0
dθ = π
4
∴ I6 = 1
5
− 1
3
+ 1 − π
4
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx - Example 1
Evaluate
1
0
x6
1 + x2
dx
Let x = tanθ, ∴ dx = sec2
θdθ
x = 0, θ = 0 and x = 1, θ = π/4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6 θ
1+tan2 θ
sec2
θdθ =
π/4
0
tan6
θdθ
we have In = 1
n−1
− In−2
using above reduction formula by succession, we have
I6 = 1
5
− I4
I6 = 1
5
− 1
3
− I2
I6 = 1
5
− 1
3
− (1 − I0) but I0 =
π/4
0
tan0
θdθ =
π/4
0
dθ = π
4
∴ I6 = 1
5
− 1
3
+ 1 − π
4
∴
1
0
x6
1 + x2
dx =
π/4
0
tan6
θdθ = 13
15
− π
4
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx - Exercise
1
π/4
0
tan4
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx - Exercise
1
π/4
0
tan4
xdx
2
π/4
0
tan5
xdx
Dr. Nirav Vyas Reduction Formula
Reduction formula - tann
xdx, cotn
xdx - Exercise
1
π/4
0
tan4
xdx
2
π/4
0
tan5
xdx
3
π/2
π/4
cot5
xdx
Try to find reduction formula for
1 secn
xdx
2
π/4
0
secn
xdx
Dr. Nirav Vyas Reduction Formula

Contenu connexe

Tendances

Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first orderUzair Saiyed
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 

Tendances (20)

Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Secant method
Secant method Secant method
Secant method
 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Power series
Power series Power series
Power series
 
Properties of straight lines
Properties of straight linesProperties of straight lines
Properties of straight lines
 

Similaire à Reduction forumla

Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfManarKareem1
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodTasuku Soma
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindIJECEIAES
 
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite seriesAlaa Mohammed
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minimasudersana viswanathan
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integrationKamel Attar
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationAhmed Hamed
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysLina Ša
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formulaShani Qasmi
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 

Similaire à Reduction forumla (20)

INTEGRATION
INTEGRATIONINTEGRATION
INTEGRATION
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite series
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
lec32.ppt
lec32.pptlec32.ppt
lec32.ppt
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
 
maths
maths maths
maths
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
 
勾配法
勾配法勾配法
勾配法
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formula
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 

Plus de Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 

Plus de Dr. Nirav Vyas (20)

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 

Dernier

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 

Dernier (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 

Reduction forumla

  • 1. Reduction Formula Dr. Nirav Vyas Department of Science & Humanities Atmiya University Yogidham, Kalavad road Rajkot - 360005 . Gujarat Email: nbvyas@aits.edu.in Dr. Nirav Vyas Reduction Formula
  • 2. Introduction A Reduction Formula for an integral is a formula which connects integral linearly with another integral of the same type, but of the lower degree. Dr. Nirav Vyas Reduction Formula
  • 3. Introduction A Reduction Formula for an integral is a formula which connects integral linearly with another integral of the same type, but of the lower degree. Reduction formula is generally obtained by repeated application of integration by parts. Dr. Nirav Vyas Reduction Formula
  • 4. Introduction A Reduction Formula for an integral is a formula which connects integral linearly with another integral of the same type, but of the lower degree. Reduction formula is generally obtained by repeated application of integration by parts. Reduction formula are used as a tool to find area and volume. Dr. Nirav Vyas Reduction Formula
  • 5. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 6. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Dr. Nirav Vyas Reduction Formula
  • 7. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx Dr. Nirav Vyas Reduction Formula
  • 8. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx Dr. Nirav Vyas Reduction Formula
  • 9. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx Dr. Nirav Vyas Reduction Formula
  • 10. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx Dr. Nirav Vyas Reduction Formula
  • 11. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx Dr. Nirav Vyas Reduction Formula
  • 12. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 xdx − (n − 1) sinn xdx Dr. Nirav Vyas Reduction Formula
  • 13. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 xdx − (n − 1) sinn xdx ∴ In = − sinn−1 x cos x + (n − 1)In−2 − (n − 1)In Dr. Nirav Vyas Reduction Formula
  • 14. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 xdx − (n − 1) sinn xdx ∴ In = − sinn−1 x cos x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = − sinn−1 x cos x + (n − 1)In−2 Dr. Nirav Vyas Reduction Formula
  • 15. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 xdx − (n − 1) sinn xdx ∴ In = − sinn−1 x cos x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = − sinn−1 x cos x + (n − 1)In−2 ∴ nIn = − sinn−1 x cos x + (n − 1)In−2 Dr. Nirav Vyas Reduction Formula
  • 16. Reduction formula - sinn x, cosn x 1. Reduction Formula for sinn xdx, n ≥ 2 In order to apply integration by parts, we split sinn x in two parts sinn x = (sinn−1 x)(sin x) Let In = sinn xdx = (sinn−1 x)(sin x)dx = (sinn−1 x)(− cos x) − {(n − 1) sinn−2 x cos x}{− cos x}dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 xdx = − sinn−1 x cos x + (n − 1) sinn−2 x(1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 xdx − (n − 1) sinn xdx ∴ In = − sinn−1 x cos x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = − sinn−1 x cos x + (n − 1)In−2 ∴ nIn = − sinn−1 x cos x + (n − 1)In−2 ∴ In = − 1 n sinn−1 x cos x + n − 1 n In−2 —(1) Dr. Nirav Vyas Reduction Formula
  • 17. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 18. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Dr. Nirav Vyas Reduction Formula
  • 19. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx Dr. Nirav Vyas Reduction Formula
  • 20. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx Dr. Nirav Vyas Reduction Formula
  • 21. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx Dr. Nirav Vyas Reduction Formula
  • 22. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx Dr. Nirav Vyas Reduction Formula
  • 23. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx Dr. Nirav Vyas Reduction Formula
  • 24. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx = cosn−1 x sin x + (n − 1) cosn−2 xdx − (n − 1) cosn xdx Dr. Nirav Vyas Reduction Formula
  • 25. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx = cosn−1 x sin x + (n − 1) cosn−2 xdx − (n − 1) cosn xdx ∴ In = cosn−1 x sin x + (n − 1)In−2 − (n − 1)In Dr. Nirav Vyas Reduction Formula
  • 26. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx = cosn−1 x sin x + (n − 1) cosn−2 xdx − (n − 1) cosn xdx ∴ In = cosn−1 x sin x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = cosn−1 x sin x + (n − 1)In−2 Dr. Nirav Vyas Reduction Formula
  • 27. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx = cosn−1 x sin x + (n − 1) cosn−2 xdx − (n − 1) cosn xdx ∴ In = cosn−1 x sin x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = cosn−1 x sin x + (n − 1)In−2 ∴ nIn = cosn−1 x sin x + (n − 1)In−2 Dr. Nirav Vyas Reduction Formula
  • 28. Reduction formula - sinn x, cosn x 2. Reduction Formula for cosn xdx, n ≥ 2 In order to apply integration by parts, we split cosn x in two parts cosn x = (cosn−1 x)(cos x) Let In = cosn xdx = (cosn−1 x)(cos x)dx = (cosn−1 x)(sin x) − {(n − 1) cosn−2 x(− sin x)}{sin x}dx = cosn−1 x sin x + (n − 1) cosn−2 x sin2 xdx = cosn−1 x sin x + (n − 1) cosn−2 x(1 − cos2 x)dx = cosn−1 x sin x + (n − 1) cosn−2 xdx − (n − 1) cosn xdx ∴ In = cosn−1 x sin x + (n − 1)In−2 − (n − 1)In ∴ In + (n − 1)In = cosn−1 x sin x + (n − 1)In−2 ∴ nIn = cosn−1 x sin x + (n − 1)In−2 ∴ In = 1 n cosn−1 x sin x + n − 1 n In−2 — (2) Dr. Nirav Vyas Reduction Formula
  • 29. Reduction formula - sinn x, cosn x The formulae (1) and (2) are called Reduction formulae because the exponent is reduced from n to n − 2. Dr. Nirav Vyas Reduction Formula
  • 30. Reduction formula - sinn x, cosn x The formulae (1) and (2) are called Reduction formulae because the exponent is reduced from n to n − 2. Now we will consider some definite integral and apply above reduction formulae to obtain some generalized result. Dr. Nirav Vyas Reduction Formula
  • 31. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx Dr. Nirav Vyas Reduction Formula
  • 32. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 Dr. Nirav Vyas Reduction Formula
  • 33. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx Dr. Nirav Vyas Reduction Formula
  • 34. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx ∴ π/2 0 sinn xdx = (0 − 0) + n − 1 n In−2 Dr. Nirav Vyas Reduction Formula
  • 35. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx ∴ π/2 0 sinn xdx = (0 − 0) + n − 1 n In−2 ∴ In = n − 1 n In−2 — (3) Dr. Nirav Vyas Reduction Formula
  • 36. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx ∴ π/2 0 sinn xdx = (0 − 0) + n − 1 n In−2 ∴ In = n − 1 n In−2 — (3) Now if we apply successive use of eq. (3) by replacing n by n − 2 in (3), we get, Dr. Nirav Vyas Reduction Formula
  • 37. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx ∴ π/2 0 sinn xdx = (0 − 0) + n − 1 n In−2 ∴ In = n − 1 n In−2 — (3) Now if we apply successive use of eq. (3) by replacing n by n − 2 in (3), we get, ∴ In−2 = n − 3 n − 2 In−4 — (4) Dr. Nirav Vyas Reduction Formula
  • 38. Reduction formula - sinn x, cosn x Let In = π/2 0 sinn xdx from (1), we have In = − 1 n sinn−1 x cos x + n − 1 n In−2 ∴ π/2 0 sinn xdx = {− 1 n sinn−1 x cos x} π/2 0 + n − 1 n π/2 0 sinn−2 xdx ∴ π/2 0 sinn xdx = (0 − 0) + n − 1 n In−2 ∴ In = n − 1 n In−2 — (3) Now if we apply successive use of eq. (3) by replacing n by n − 2 in (3), we get, ∴ In−2 = n − 3 n − 2 In−4 — (4) from (3) and (4) In = n − 1 n n − 3 n − 2 In−4 Dr. Nirav Vyas Reduction Formula
  • 39. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Dr. Nirav Vyas Reduction Formula
  • 40. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 1: n is an even integer Dr. Nirav Vyas Reduction Formula
  • 41. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 1: n is an even integer Continuing the above process we find Dr. Nirav Vyas Reduction Formula
  • 42. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 1: n is an even integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 1 2 I0 Dr. Nirav Vyas Reduction Formula
  • 43. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 1: n is an even integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 1 2 I0 where I0 = π 2 0 sin0 xdx = π 2 0 dx = π 2 Dr. Nirav Vyas Reduction Formula
  • 44. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 1: n is an even integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 1 2 I0 where I0 = π 2 0 sin0 xdx = π 2 0 dx = π 2 ∴ π/2 0 sinn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 3 4 . 1 2 . π 2 — (5) Dr. Nirav Vyas Reduction Formula
  • 45. Reduction formula - sinn x, cosn x Proceeding in the same way we get, Dr. Nirav Vyas Reduction Formula
  • 46. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Dr. Nirav Vyas Reduction Formula
  • 47. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Dr. Nirav Vyas Reduction Formula
  • 48. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Continuing the above process we find Dr. Nirav Vyas Reduction Formula
  • 49. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 2 3 I1 Dr. Nirav Vyas Reduction Formula
  • 50. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 2 3 I1 where I1 = π 2 0 sin xdx = {− cos x} π 2 0 dx = 1 Dr. Nirav Vyas Reduction Formula
  • 51. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 2 3 I1 where I1 = π 2 0 sin xdx = {− cos x} π 2 0 dx = 1 ∴ π/2 0 sinn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 4 5 . 2 3 .1 — (6) Dr. Nirav Vyas Reduction Formula
  • 52. Reduction formula - sinn x, cosn x Proceeding in the same way we get, In = n − 1 n n − 3 n − 2 n − 5 n − 4 In−6 Case 2: n is an odd integer Continuing the above process we find In = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 2 3 I1 where I1 = π 2 0 sin xdx = {− cos x} π 2 0 dx = 1 ∴ π/2 0 sinn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 4 5 . 2 3 .1 — (6) Dr. Nirav Vyas Reduction Formula
  • 53. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx Dr. Nirav Vyas Reduction Formula
  • 54. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx Dr. Nirav Vyas Reduction Formula
  • 55. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx ∴ π/2 0 sinn xdx = π/2 0 sinn π 2 − x dx = π/2 0 cosn xdx Dr. Nirav Vyas Reduction Formula
  • 56. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx ∴ π/2 0 sinn xdx = π/2 0 sinn π 2 − x dx = π/2 0 cosn xdx Case 1: n is an even integer Dr. Nirav Vyas Reduction Formula
  • 57. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx ∴ π/2 0 sinn xdx = π/2 0 sinn π 2 − x dx = π/2 0 cosn xdx Case 1: n is an even integer ∴ π/2 0 cosn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 3 4 . 1 2 . π 2 — (5) Dr. Nirav Vyas Reduction Formula
  • 58. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx ∴ π/2 0 sinn xdx = π/2 0 sinn π 2 − x dx = π/2 0 cosn xdx Case 1: n is an even integer ∴ π/2 0 cosn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 3 4 . 1 2 . π 2 — (5) Case 2: n is an odd integer Dr. Nirav Vyas Reduction Formula
  • 59. Reduction formula - sinn x, cosn x We can verify that reduction formula for π/2 0 cosn xdx is exactly same as that for π/2 0 sinn xdx the reason is a 0 f(x)dx = a 0 f(a − x)dx ∴ π/2 0 sinn xdx = π/2 0 sinn π 2 − x dx = π/2 0 cosn xdx Case 1: n is an even integer ∴ π/2 0 cosn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 3 4 . 1 2 . π 2 — (5) Case 2: n is an odd integer ∴ π/2 0 cosn xdx = n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 4 5 . 2 3 .1 — (6) Dr. Nirav Vyas Reduction Formula
  • 60. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Dr. Nirav Vyas Reduction Formula
  • 61. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx Dr. Nirav Vyas Reduction Formula
  • 62. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Dr. Nirav Vyas Reduction Formula
  • 63. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt Dr. Nirav Vyas Reduction Formula
  • 64. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt I = 16 π/2 0 cos8 t.2dt Dr. Nirav Vyas Reduction Formula
  • 65. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt I = 16 π/2 0 cos8 t.2dt = 32 π/2 0 cos8 tdt Dr. Nirav Vyas Reduction Formula
  • 66. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt I = 16 π/2 0 cos8 t.2dt = 32 π/2 0 cos8 tdt using formula (5) with n = 8 Dr. Nirav Vyas Reduction Formula
  • 67. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt I = 16 π/2 0 cos8 t.2dt = 32 π/2 0 cos8 tdt using formula (5) with n = 8 I = 32. 7 8 . 5 6 . 3 4 . 1 2 . π 2 Dr. Nirav Vyas Reduction Formula
  • 68. Reduction formula - sinn x, cosn x - Example 1 Evaluate π 0 (1 + cos x)4 dx Sol. π 0 (1 + cos x)4 dx = π 0 (2 cos2 x 2 )4 dx = 24 π 0 cos8 x 2 dx Taking x/2 = t, ∴ dx = 2dt I = 16 π/2 0 cos8 t.2dt = 32 π/2 0 cos8 tdt using formula (5) with n = 8 I = 32. 7 8 . 5 6 . 3 4 . 1 2 . π 2 = 35π 8 Dr. Nirav Vyas Reduction Formula
  • 69. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Dr. Nirav Vyas Reduction Formula
  • 70. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even Dr. Nirav Vyas Reduction Formula
  • 71. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Dr. Nirav Vyas Reduction Formula
  • 72. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx Dr. Nirav Vyas Reduction Formula
  • 73. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} Dr. Nirav Vyas Reduction Formula
  • 74. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again Dr. Nirav Vyas Reduction Formula
  • 75. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again = 4{ π/2 0 sin6 xdx + π/2 0 sin6 (π − x)dx} Dr. Nirav Vyas Reduction Formula
  • 76. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again = 4{ π/2 0 sin6 xdx + π/2 0 sin6 (π − x)dx} = 8 π/2 0 sin6 xdx Dr. Nirav Vyas Reduction Formula
  • 77. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again = 4{ π/2 0 sin6 xdx + π/2 0 sin6 (π − x)dx} = 8 π/2 0 sin6 xdx using formula (5) with n = 6 Dr. Nirav Vyas Reduction Formula
  • 78. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again = 4{ π/2 0 sin6 xdx + π/2 0 sin6 (π − x)dx} = 8 π/2 0 sin6 xdx using formula (5) with n = 6 I = 8. 5 6 . 3 4 . 1 2 . π 2 Dr. Nirav Vyas Reduction Formula
  • 79. Reduction formula - sinn x, cosn x - Example 2 Evaluate 2π −2π sin6 xdx Sol. Since a −a f(x)dx = 2 a 0 f(x)dx if f(x) is even ∴ 2π −2π sin6 xdx = 2 2π 0 sin6 xdx Now using the 2a 0 f(x)dx = a 0 f(x)dx + a 0 f(2a − x)dx ∴ I = 2{ π 0 sin6 xdx + π 0 sin6 (2π − x)dx} = 4 π 0 sin6 xdx Apply same result again = 4{ π/2 0 sin6 xdx + π/2 0 sin6 (π − x)dx} = 8 π/2 0 sin6 xdx using formula (5) with n = 6 I = 8. 5 6 . 3 4 . 1 2 . π 2 = 5π 4 Dr. Nirav Vyas Reduction Formula
  • 80. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Dr. Nirav Vyas Reduction Formula
  • 81. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives Dr. Nirav Vyas Reduction Formula
  • 82. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 Dr. Nirav Vyas Reduction Formula
  • 83. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 = π 2 . 1 7 − 1 7 1 0 x7 √ 1 − x2 dx Dr. Nirav Vyas Reduction Formula
  • 84. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 = π 2 . 1 7 − 1 7 1 0 x7 √ 1 − x2 dx put x = sin t, ∴ dx = cos tdt Dr. Nirav Vyas Reduction Formula
  • 85. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 = π 2 . 1 7 − 1 7 1 0 x7 √ 1 − x2 dx put x = sin t, ∴ dx = cos tdt when x = 0 → t = 0 and x = 1 → t = π/2 Dr. Nirav Vyas Reduction Formula
  • 86. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 = π 2 . 1 7 − 1 7 1 0 x7 √ 1 − x2 dx put x = sin t, ∴ dx = cos tdt when x = 0 → t = 0 and x = 1 → t = π/2 ∴ I = π 14 − 1 7 π/2 0 sin7 t cos t costdt Dr. Nirav Vyas Reduction Formula
  • 87. Reduction formula - sinn x, cosn x - Example 3 Evaluate 1 0 x6 sin−1 xdx Sol. Integration by parts, gives 1 0 x6 sin−1 xdx = {(sin−1 x) x7 7 }1 0 − 1 0 1 √ 1 − x2 . x7 7 = π 2 . 1 7 − 1 7 1 0 x7 √ 1 − x2 dx put x = sin t, ∴ dx = cos tdt when x = 0 → t = 0 and x = 1 → t = π/2 ∴ I = π 14 − 1 7 π/2 0 sin7 t cos t costdt (complete the remaining solution...) Dr. Nirav Vyas Reduction Formula
  • 88. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 Dr. Nirav Vyas Reduction Formula
  • 89. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 2 π 0 (1 − cos x)3 dx Ans. 5π 2 Dr. Nirav Vyas Reduction Formula
  • 90. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 2 π 0 (1 − cos x)3 dx Ans. 5π 2 3 1 0 x7 1 − x4 dx Ans. 1 3 Dr. Nirav Vyas Reduction Formula
  • 91. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 2 π 0 (1 − cos x)3 dx Ans. 5π 2 3 1 0 x7 1 − x4 dx Ans. 1 3 4 1 0 x5 sin−1 xdx Ans. 11π 192 Dr. Nirav Vyas Reduction Formula
  • 92. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 2 π 0 (1 − cos x)3 dx Ans. 5π 2 3 1 0 x7 1 − x4 dx Ans. 1 3 4 1 0 x5 sin−1 xdx Ans. 11π 192 5 1 0 x2 cos−1 xdx Ans. 2 9 Dr. Nirav Vyas Reduction Formula
  • 93. Reduction formula - sinn x, cosn x - Exercise Evaluate the following 1 π/4 0 sin7 2xdx Ans. 8 35 2 π 0 (1 − cos x)3 dx Ans. 5π 2 3 1 0 x7 1 − x4 dx Ans. 1 3 4 1 0 x5 sin−1 xdx Ans. 11π 192 5 1 0 x2 cos−1 xdx Ans. 2 9 6 π/2 −π/2 sin7 xdx Ans. 0 Dr. Nirav Vyas Reduction Formula
  • 94. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 95. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 96. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Dr. Nirav Vyas Reduction Formula
  • 97. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx Dr. Nirav Vyas Reduction Formula
  • 98. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx = (sinm−1 x)(− cosn+1 x n+1 ) − {(m − 1) sinm−2 x cos x}{− cosn+1 x n+1 }dx Dr. Nirav Vyas Reduction Formula
  • 99. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx = (sinm−1 x)(− cosn+1 x n+1 ) − {(m − 1) sinm−2 x cos x}{− cosn+1 x n+1 }dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn+2 xdx Dr. Nirav Vyas Reduction Formula
  • 100. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx = (sinm−1 x)(− cosn+1 x n+1 ) − {(m − 1) sinm−2 x cos x}{− cosn+1 x n+1 }dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn+2 xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn x(1 − sin2 x)dx Dr. Nirav Vyas Reduction Formula
  • 101. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx = (sinm−1 x)(− cosn+1 x n+1 ) − {(m − 1) sinm−2 x cos x}{− cosn+1 x n+1 }dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn+2 xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn x(1 − sin2 x)dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 102. Reduction formula - sinm x cosn xdx 3. Reduction Formula for sinm x cosn xdx where m and n are positive integers with m ≥ 2, n ≥ 2 Let Im,n = sinm x cosn xdx In order to apply integration by parts, we split sinm x cosn x in two parts sinm x cosn x = (sinm−1 x)(cosn x sin x) Let Im,n = (sinm−1 x)(cosn x sin x)dx = (sinm−1 x)(− cosn+1 x n+1 ) − {(m − 1) sinm−2 x cos x}{− cosn+1 x n+1 }dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn+2 xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn x(1 − sin2 x)dx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 103. Reduction formula - sinm x cosn xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 104. Reduction formula - sinm x cosn xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx ∴ Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n − m−1 n+1 Im,n Dr. Nirav Vyas Reduction Formula
  • 105. Reduction formula - sinm x cosn xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx ∴ Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n − m−1 n+1 Im,n ∴ Im,n + m−1 n+1 Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n Dr. Nirav Vyas Reduction Formula
  • 106. Reduction formula - sinm x cosn xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx ∴ Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n − m−1 n+1 Im,n ∴ Im,n + m−1 n+1 Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n ∴ m+n n+1 Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n Dr. Nirav Vyas Reduction Formula
  • 107. Reduction formula - sinm x cosn xdx = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 sinm−2 x cosn xdx − m−1 n+1 sinm x cosn xdx ∴ Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n − m−1 n+1 Im,n ∴ Im,n + m−1 n+1 Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n ∴ m+n n+1 Im,n = (− sinm−1 x cosn+1 x n+1 ) + m−1 n+1 Im−2,n ∴ Im,n = (− sinm−1 x cosn+1 x m+n ) + m−1 m+n Im−2,n —(1) Dr. Nirav Vyas Reduction Formula
  • 108. Reduction formula - sinm x cosn xdx Similarly in sinm x cosn xdx, if we reduce the powers of cosine instead of sine we get the another reduction formula Dr. Nirav Vyas Reduction Formula
  • 109. Reduction formula - sinm x cosn xdx Similarly in sinm x cosn xdx, if we reduce the powers of cosine instead of sine we get the another reduction formula Im,n = (cosn−1 x sinm+1 x m+n ) + n−1 m+n Im,n−2 —(2) Dr. Nirav Vyas Reduction Formula
  • 110. Reduction formula - sinm x cosn xdx Similarly in sinm x cosn xdx, if we reduce the powers of cosine instead of sine we get the another reduction formula Im,n = (cosn−1 x sinm+1 x m+n ) + n−1 m+n Im,n−2 —(2) Now we will consider some definite integral and apply above reduction formulae to obtain some generalized result. Dr. Nirav Vyas Reduction Formula
  • 111. Reduction formula - sinm x cosn xdx Let π/2 0 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 112. Reduction formula - sinm x cosn xdx Let π/2 0 sinm x cosn xdx Substituting the limits of integration 0 and π/2 in (1) and (2) we have Dr. Nirav Vyas Reduction Formula
  • 113. Reduction formula - sinm x cosn xdx Let π/2 0 sinm x cosn xdx Substituting the limits of integration 0 and π/2 in (1) and (2) we have Im,n = m−1 m+n Im−2,n —(3) Dr. Nirav Vyas Reduction Formula
  • 114. Reduction formula - sinm x cosn xdx Let π/2 0 sinm x cosn xdx Substituting the limits of integration 0 and π/2 in (1) and (2) we have Im,n = m−1 m+n Im−2,n —(3) and Im,n = n−1 m+n Im,n−2 —(4) Dr. Nirav Vyas Reduction Formula
  • 115. Reduction formula - sinm x cosn xdx Let π/2 0 sinm x cosn xdx Substituting the limits of integration 0 and π/2 in (1) and (2) we have Im,n = m−1 m+n Im−2,n —(3) and Im,n = n−1 m+n Im,n−2 —(4) we shall consider following four different cases. Dr. Nirav Vyas Reduction Formula
  • 116. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Dr. Nirav Vyas Reduction Formula
  • 117. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers Dr. Nirav Vyas Reduction Formula
  • 118. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) Dr. Nirav Vyas Reduction Formula
  • 119. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) by successive application of above formula , replacing n by n − 2 we get Dr. Nirav Vyas Reduction Formula
  • 120. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) by successive application of above formula , replacing n by n − 2 we get Im,n−2 = n−3 m+n−2 Im,n−4 — (ii) Dr. Nirav Vyas Reduction Formula
  • 121. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) by successive application of above formula , replacing n by n − 2 we get Im,n−2 = n−3 m+n−2 Im,n−4 — (ii) ∴ Im,n = n−1 m+n . n−3 m+n−2 Im,n−4 (from (i) and (ii) ) Dr. Nirav Vyas Reduction Formula
  • 122. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) by successive application of above formula , replacing n by n − 2 we get Im,n−2 = n−3 m+n−2 Im,n−4 — (ii) ∴ Im,n = n−1 m+n . n−3 m+n−2 Im,n−4 (from (i) and (ii) ) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 Im,n−6 Dr. Nirav Vyas Reduction Formula
  • 123. Reduction formula - sinm x cosn xdx we will be using Im,n = n−1 m+n Im,n−2 —(4) Case 1: Let m and n be both positive integers we have Im,n = n−1 m+n Im,n−2 — (i) by successive application of above formula , replacing n by n − 2 we get Im,n−2 = n−3 m+n−2 Im,n−4 — (ii) ∴ Im,n = n−1 m+n . n−3 m+n−2 Im,n−4 (from (i) and (ii) ) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 Im,n−6 ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Dr. Nirav Vyas Reduction Formula
  • 124. Reduction formula - sinm x cosn xdx (Case 1 contd...) Dr. Nirav Vyas Reduction Formula
  • 125. Reduction formula - sinm x cosn xdx (Case 1 contd...) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Dr. Nirav Vyas Reduction Formula
  • 126. Reduction formula - sinm x cosn xdx (Case 1 contd...) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Now, Im,0 = π/2 0 sinm xdx = m−1 m .m−3 m−2 . . . 1 2 .π 2 (as n is even) Dr. Nirav Vyas Reduction Formula
  • 127. Reduction formula - sinm x cosn xdx (Case 1 contd...) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Now, Im,0 = π/2 0 sinm xdx = m−1 m .m−3 m−2 . . . 1 2 .π 2 (as n is even) substituting the value of Im,0 in eq. (5), we get Dr. Nirav Vyas Reduction Formula
  • 128. Reduction formula - sinm x cosn xdx (Case 1 contd...) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Now, Im,0 = π/2 0 sinm xdx = m−1 m .m−3 m−2 . . . 1 2 .π 2 (as n is even) substituting the value of Im,0 in eq. (5), we get ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 . m−1 m .m−3 m−2 . . . 1 2 .π 2 Dr. Nirav Vyas Reduction Formula
  • 129. Reduction formula - sinm x cosn xdx (Case 1 contd...) ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 Im,0 — (5) Now, Im,0 = π/2 0 sinm xdx = m−1 m .m−3 m−2 . . . 1 2 .π 2 (as n is even) substituting the value of Im,0 in eq. (5), we get ∴ Im,n = n−1 m+n . n−3 m+n−2 . n−5 m+n−4 . . . 1 m+2 . m−1 m .m−3 m−2 . . . 1 2 .π 2 ∴ Im,n = [(m − 1)(m − 3) . . . 3.1] [(n − 1)(n − 3) . . . 3.1] (m + n)(m + n − 2) . . . 4.2 .π 2 — (6) Dr. Nirav Vyas Reduction Formula
  • 130. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. Dr. Nirav Vyas Reduction Formula
  • 131. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) Dr. Nirav Vyas Reduction Formula
  • 132. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get Dr. Nirav Vyas Reduction Formula
  • 133. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 1 n+2 I0,n Dr. Nirav Vyas Reduction Formula
  • 134. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 1 n+2 I0,n I0,n = π/2 0 cosn xdx = n−1 n n−3 n−2 . . . 2 3 .1 (as n is odd) Dr. Nirav Vyas Reduction Formula
  • 135. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 1 n+2 I0,n I0,n = π/2 0 cosn xdx = n−1 n n−3 n−2 . . . 2 3 .1 (as n is odd) substituting the value of I0,n is previous formula, we get Dr. Nirav Vyas Reduction Formula
  • 136. Reduction formula - sinm x cosn xdx Case 2: Let m be even and n be odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 1 n+2 I0,n I0,n = π/2 0 cosn xdx = n−1 n n−3 n−2 . . . 2 3 .1 (as n is odd) substituting the value of I0,n is previous formula, we get Im,n = [(m − 1)(m − 3) . . . 3.1] [(n − 1)(n − 3) . . . 4.2] (m + n)(m + n − 2) . . . 5.3 .1 — (7) Dr. Nirav Vyas Reduction Formula
  • 137. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Dr. Nirav Vyas Reduction Formula
  • 138. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 139. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx Dr. Nirav Vyas Reduction Formula
  • 140. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx a 0 f(x)dx = a 0 f(a − x)dx Dr. Nirav Vyas Reduction Formula
  • 141. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx a 0 f(x)dx = a 0 f(a − x)dx = π/2 0 cosm x sinn xdx = In,m Dr. Nirav Vyas Reduction Formula
  • 142. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx a 0 f(x)dx = a 0 f(a − x)dx = π/2 0 cosm x sinn xdx = In,m ∴ Im,n = In,m Dr. Nirav Vyas Reduction Formula
  • 143. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx a 0 f(x)dx = a 0 f(a − x)dx = π/2 0 cosm x sinn xdx = In,m ∴ Im,n = In,m Therefore we can use the formula (7) which is Dr. Nirav Vyas Reduction Formula
  • 144. Reduction formula - sinm x cosn xdx Case 3: Let n be even and m be odd. Then Im,n = π/2 0 sinm x cosn xdx = π/2 0 sinm π 2 − x cosn π 2 − x dx a 0 f(x)dx = a 0 f(a − x)dx = π/2 0 cosm x sinn xdx = In,m ∴ Im,n = In,m Therefore we can use the formula (7) which is Im,n = [(n − 1)(n − 3) . . . 3.1] [(m − 1)(m − 3) . . . 4.2] (m + n)(m + n − 2) . . . 5.3 .1 —- (8) Dr. Nirav Vyas Reduction Formula
  • 145. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. Dr. Nirav Vyas Reduction Formula
  • 146. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) Dr. Nirav Vyas Reduction Formula
  • 147. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get Dr. Nirav Vyas Reduction Formula
  • 148. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n Dr. Nirav Vyas Reduction Formula
  • 149. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n I1,n = π/2 0 sin x cosn xdx = − cosn+1 x n + 1 π/2 0 = 1 n + 1 Dr. Nirav Vyas Reduction Formula
  • 150. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n I1,n = π/2 0 sin x cosn xdx = − cosn+1 x n + 1 π/2 0 = 1 n + 1 substituting the value of I1,n is previous formula, we get Dr. Nirav Vyas Reduction Formula
  • 151. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n I1,n = π/2 0 sin x cosn xdx = − cosn+1 x n + 1 π/2 0 = 1 n + 1 substituting the value of I1,n is previous formula, we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 . 1 n+1 Dr. Nirav Vyas Reduction Formula
  • 152. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n I1,n = π/2 0 sin x cosn xdx = − cosn+1 x n + 1 π/2 0 = 1 n + 1 substituting the value of I1,n is previous formula, we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 . 1 n+1 In order to get conversion from we multiply numerator and denominator by (n − 1)(n − 3)..4.2 we find Dr. Nirav Vyas Reduction Formula
  • 153. Reduction formula - sinm x cosn xdx Case 4: Let m and n both are odd. we will be using Im,n = m−1 m+n Im−2,n —(3) from (3) and by successive application of above formula , we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 I1,n I1,n = π/2 0 sin x cosn xdx = − cosn+1 x n + 1 π/2 0 = 1 n + 1 substituting the value of I1,n is previous formula, we get ∴ Im,n = m−1 m+n . m−3 m+n−2 . m−5 m+n−4 . . . 4 n+5 . 2 n+3 . 1 n+1 In order to get conversion from we multiply numerator and denominator by (n − 1)(n − 3)..4.2 we find Im,n = [(m − 1)(m − 3) . . . 4.2] [(n − 1)(n − 3) . . . 4.2] (m + n)(m + n − 2) . . . (n + 3)(n + 1)(n − 1)(n − 3) . . . 4.2 —- (9) Dr. Nirav Vyas Reduction Formula
  • 154. Reduction formula - sinm x cosn xdx All the above four cases can be written as Dr. Nirav Vyas Reduction Formula
  • 155. Reduction formula - sinm x cosn xdx All the above four cases can be written as Im,n = π/2 0 sinm x cosn xdx Dr. Nirav Vyas Reduction Formula
  • 156. Reduction formula - sinm x cosn xdx All the above four cases can be written as Im,n = π/2 0 sinm x cosn xdx = [(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1] (m + n)(m + n − 2)(m + n − 4) . . . .2or1 .k —- (10) Dr. Nirav Vyas Reduction Formula
  • 157. Reduction formula - sinm x cosn xdx All the above four cases can be written as Im,n = π/2 0 sinm x cosn xdx = [(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1] (m + n)(m + n − 2)(m + n − 4) . . . .2or1 .k —- (10) where k = π 2 if both m and n are even Dr. Nirav Vyas Reduction Formula
  • 158. Reduction formula - sinm x cosn xdx All the above four cases can be written as Im,n = π/2 0 sinm x cosn xdx = [(m − 1)(m − 3) . . . .2or1] [(n − 1)(n − 3) . . . .2or1] (m + n)(m + n − 2)(m + n − 4) . . . .2or1 .k —- (10) where k = π 2 if both m and n are even or k = 1 for all other cases Dr. Nirav Vyas Reduction Formula
  • 159. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Dr. Nirav Vyas Reduction Formula
  • 160. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx Dr. Nirav Vyas Reduction Formula
  • 161. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx Dr. Nirav Vyas Reduction Formula
  • 162. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Dr. Nirav Vyas Reduction Formula
  • 163. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Let x/2 = t → dx = 2dt Dr. Nirav Vyas Reduction Formula
  • 164. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Let x/2 = t → dx = 2dt = 26 π/2 0 sin2 t cos10 t.2dt Dr. Nirav Vyas Reduction Formula
  • 165. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Let x/2 = t → dx = 2dt = 26 π/2 0 sin2 t cos10 t.2dt using formula (10) with m = 2, n = 10 Dr. Nirav Vyas Reduction Formula
  • 166. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Let x/2 = t → dx = 2dt = 26 π/2 0 sin2 t cos10 t.2dt using formula (10) with m = 2, n = 10 = 27 [1] [9.7.5.3.1] 12.10.8.6.4.2 . π 2 Dr. Nirav Vyas Reduction Formula
  • 167. Reduction formula - sinm x cosn xdx - Example 1 Evaluate π 0 sin2 x(1 + cos x)4 dx Sol. π 0 sin2 x(1 + cos x)4 dx = π 0 2 cos x 2 sin x 2 2 2 cos2 x 2 4 dx = 26 π 0 sin2 x 2 cos10 x 2 dx Let x/2 = t → dx = 2dt = 26 π/2 0 sin2 t cos10 t.2dt using formula (10) with m = 2, n = 10 = 27 [1] [9.7.5.3.1] 12.10.8.6.4.2 . π 2 = 21π 16 Dr. Nirav Vyas Reduction Formula
  • 168. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Dr. Nirav Vyas Reduction Formula
  • 169. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx Dr. Nirav Vyas Reduction Formula
  • 170. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, Dr. Nirav Vyas Reduction Formula
  • 171. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 Dr. Nirav Vyas Reduction Formula
  • 172. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) Dr. Nirav Vyas Reduction Formula
  • 173. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) = 1 3 π/2 0 cos6 t(2 sin t cos t)2 dt Dr. Nirav Vyas Reduction Formula
  • 174. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) = 1 3 π/2 0 cos6 t(2 sin t cos t)2 dt = 4 3 π/2 0 sin2 t cos8 tdt Dr. Nirav Vyas Reduction Formula
  • 175. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) = 1 3 π/2 0 cos6 t(2 sin t cos t)2 dt = 4 3 π/2 0 sin2 t cos8 tdt using formula (10) with m = 2, n = 8 Dr. Nirav Vyas Reduction Formula
  • 176. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) = 1 3 π/2 0 cos6 t(2 sin t cos t)2 dt = 4 3 π/2 0 sin2 t cos8 tdt using formula (10) with m = 2, n = 8 = 4 3 [1] [7.5.3.1] 10.8.6.4.2 . π 2 Dr. Nirav Vyas Reduction Formula
  • 177. Reduction formula - sinm x cosn xdx - Example 2 Evaluate π/6 0 cos6 3x sin2 6xdx Sol. π/6 0 cos6 3x sin2 6xdx let 3x = t => dx = dt/3, when x = 0 → t = 0 and x = π/6 → t = π/2 = π/2 0 cos6 t sin2 2t(dt/3) = 1 3 π/2 0 cos6 t(2 sin t cos t)2 dt = 4 3 π/2 0 sin2 t cos8 tdt using formula (10) with m = 2, n = 8 = 4 3 [1] [7.5.3.1] 10.8.6.4.2 . π 2 = 7π 384 Dr. Nirav Vyas Reduction Formula
  • 178. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Dr. Nirav Vyas Reduction Formula
  • 179. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 Dr. Nirav Vyas Reduction Formula
  • 180. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 Dr. Nirav Vyas Reduction Formula
  • 181. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx Dr. Nirav Vyas Reduction Formula
  • 182. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx = π/2 0 (1/2 sin t)3 cos t.(cos tdt/2) Dr. Nirav Vyas Reduction Formula
  • 183. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx = π/2 0 (1/2 sin t)3 cos t.(cos tdt/2) = 1 16 π/2 0 sin3 t cos2 tdt Dr. Nirav Vyas Reduction Formula
  • 184. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx = π/2 0 (1/2 sin t)3 cos t.(cos tdt/2) = 1 16 π/2 0 sin3 t cos2 tdt using formula (10) with m = 3, n = 2 Dr. Nirav Vyas Reduction Formula
  • 185. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx = π/2 0 (1/2 sin t)3 cos t.(cos tdt/2) = 1 16 π/2 0 sin3 t cos2 tdt using formula (10) with m = 3, n = 2 = 1 16 [2] [1] 5.3.1 .1 Dr. Nirav Vyas Reduction Formula
  • 186. Reduction formula - sinm x cosn xdx - Example 3 Evaluate 1/2 0 x3 √ 1 − 4x2dx Sol. Let 2x = sin t → dx = cos tdt/2 when x = 0, t = 0 and x = 1/2 => sin t = 1 => t = π/2 ∴ 1/2 0 x3 √ 1 − 4x2dx = π/2 0 (1/2 sin t)3 cos t.(cos tdt/2) = 1 16 π/2 0 sin3 t cos2 tdt using formula (10) with m = 3, n = 2 = 1 16 [2] [1] 5.3.1 .1 = 1 120 Dr. Nirav Vyas Reduction Formula
  • 187. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Dr. Nirav Vyas Reduction Formula
  • 188. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Sol. Let x = tan t → dx = sec2 tdt Dr. Nirav Vyas Reduction Formula
  • 189. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Sol. Let x = tan t → dx = sec2 tdt when x = 0, t = 0 and x → ∞ => t = π/2 Dr. Nirav Vyas Reduction Formula
  • 190. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Sol. Let x = tan t → dx = sec2 tdt when x = 0, t = 0 and x → ∞ => t = π/2 ∴ ∞ 0 x4 (1 + x2)4 dx Dr. Nirav Vyas Reduction Formula
  • 191. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Sol. Let x = tan t → dx = sec2 tdt when x = 0, t = 0 and x → ∞ => t = π/2 ∴ ∞ 0 x4 (1 + x2)4 dx = π/2 0 tan4 t sec8 t . sec2 tdt Dr. Nirav Vyas Reduction Formula
  • 192. Reduction formula - sinm x cosn xdx - Example 4 Evaluate ∞ 0 x4 (1 + x2)4 dx Sol. Let x = tan t → dx = sec2 tdt when x = 0, t = 0 and x → ∞ => t = π/2 ∴ ∞ 0 x4 (1 + x2)4 dx = π/2 0 tan4 t sec8 t . sec2 tdt (complete the remaining solution...) Dr. Nirav Vyas Reduction Formula
  • 193. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 Dr. Nirav Vyas Reduction Formula
  • 194. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 2 π/4 0 cos3 2x sin4 4x Ans. 128 1155 Dr. Nirav Vyas Reduction Formula
  • 195. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 2 π/4 0 cos3 2x sin4 4x Ans. 128 1155 3 a 0 x3 (a2 − x2 )3/2 dx Ans. 2a7 35 Dr. Nirav Vyas Reduction Formula
  • 196. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 2 π/4 0 cos3 2x sin4 4x Ans. 128 1155 3 a 0 x3 (a2 − x2 )3/2 dx Ans. 2a7 35 4 2a 0 x2 √ 2ax − x2dx Ans. 5π 8 a4 Dr. Nirav Vyas Reduction Formula
  • 197. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 2 π/4 0 cos3 2x sin4 4x Ans. 128 1155 3 a 0 x3 (a2 − x2 )3/2 dx Ans. 2a7 35 4 2a 0 x2 √ 2ax − x2dx Ans. 5π 8 a4 5 2 0 x3 √ 2x − x2dx Ans. 7π 8 Dr. Nirav Vyas Reduction Formula
  • 198. Reduction formula - sinm x cosn xdx - Exercise Evaluate the following 1 π/6 0 cos4 3x sin2 6xdx Ans. 5π 192 2 π/4 0 cos3 2x sin4 4x Ans. 128 1155 3 a 0 x3 (a2 − x2 )3/2 dx Ans. 2a7 35 4 2a 0 x2 √ 2ax − x2dx Ans. 5π 8 a4 5 2 0 x3 √ 2x − x2dx Ans. 7π 8 6 ∞ 0 x2 (1 + x2)7/2 dx Ans. 2 15 Dr. Nirav Vyas Reduction Formula
  • 199. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 200. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Dr. Nirav Vyas Reduction Formula
  • 201. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx Dr. Nirav Vyas Reduction Formula
  • 202. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx Dr. Nirav Vyas Reduction Formula
  • 203. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx = (tann−2 x)(sec2 x − 1)dx Dr. Nirav Vyas Reduction Formula
  • 204. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx = (tann−2 x)(sec2 x − 1)dx = tann−2 x sec2 xdx − tann−2 xdx Dr. Nirav Vyas Reduction Formula
  • 205. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx = (tann−2 x)(sec2 x − 1)dx = tann−2 x sec2 xdx − tann−2 xdx Now the integral tann−2 x sec2 xdx of the form [f(x)]n f (x)dx hence it is equal to tann−1 x n−1 Dr. Nirav Vyas Reduction Formula
  • 206. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx = (tann−2 x)(sec2 x − 1)dx = tann−2 x sec2 xdx − tann−2 xdx Now the integral tann−2 x sec2 xdx of the form [f(x)]n f (x)dx hence it is equal to tann−1 x n−1 ∴ we have following reduction formula for tann xdx Dr. Nirav Vyas Reduction Formula
  • 207. Reduction formula - tann xdx, cotn xdx 4. Reduction Formula for tann xdx, n ≥ 2 In order to apply integration by parts, we split tann x in two parts tann x = (tann−2 x)(tan2 x) Let In = tann xdx = (tann−2 x)(tan2 x)dx = (tann−2 x)(sec2 x − 1)dx = tann−2 x sec2 xdx − tann−2 xdx Now the integral tann−2 x sec2 xdx of the form [f(x)]n f (x)dx hence it is equal to tann−1 x n−1 ∴ we have following reduction formula for tann xdx In = tann−1 x n−1 + In−2 — (1) Dr. Nirav Vyas Reduction Formula
  • 208. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 209. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Dr. Nirav Vyas Reduction Formula
  • 210. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx Dr. Nirav Vyas Reduction Formula
  • 211. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx Dr. Nirav Vyas Reduction Formula
  • 212. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx = (cotn−2 x)(cosec2 x − 1)dx Dr. Nirav Vyas Reduction Formula
  • 213. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx = (cotn−2 x)(cosec2 x − 1)dx = cotn−2 x cosec2 xdx − cotn−2 xdx Dr. Nirav Vyas Reduction Formula
  • 214. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx = (cotn−2 x)(cosec2 x − 1)dx = cotn−2 x cosec2 xdx − cotn−2 xdx Now the integral cotn−2 x cosec2 xdx of the form [f(x)]n f (x)dx hence it is equal to − cotn−1 x n−1 Dr. Nirav Vyas Reduction Formula
  • 215. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx = (cotn−2 x)(cosec2 x − 1)dx = cotn−2 x cosec2 xdx − cotn−2 xdx Now the integral cotn−2 x cosec2 xdx of the form [f(x)]n f (x)dx hence it is equal to − cotn−1 x n−1 ∴ we have following reduction formula for cotn xdx Dr. Nirav Vyas Reduction Formula
  • 216. Reduction formula - tann xdx, cotn xdx 5. Reduction Formula for cotn xdx, n ≥ 2 In order to apply integration by parts, we split cotn x in two parts cotn x = (cotn−2 x)(cot2 x) Let In = cotn xdx = (cotn−2 x)(cot2 x)dx = (cotn−2 x)(cosec2 x − 1)dx = cotn−2 x cosec2 xdx − cotn−2 xdx Now the integral cotn−2 x cosec2 xdx of the form [f(x)]n f (x)dx hence it is equal to − cotn−1 x n−1 ∴ we have following reduction formula for cotn xdx In = − cotn−1 x n−1 + In−2 — (2) Dr. Nirav Vyas Reduction Formula
  • 217. Reduction formula - tann xdx, cotn xdx Now let us consider corresponding definite integrals Let In = π/4 0 tann xdx, n ≥ 2 Dr. Nirav Vyas Reduction Formula
  • 218. Reduction formula - tann xdx, cotn xdx Now let us consider corresponding definite integrals Let In = π/4 0 tann xdx, n ≥ 2 from eq. (1), we have Dr. Nirav Vyas Reduction Formula
  • 219. Reduction formula - tann xdx, cotn xdx Now let us consider corresponding definite integrals Let In = π/4 0 tann xdx, n ≥ 2 from eq. (1), we have In = π/4 0 tann xdx Dr. Nirav Vyas Reduction Formula
  • 220. Reduction formula - tann xdx, cotn xdx Now let us consider corresponding definite integrals Let In = π/4 0 tann xdx, n ≥ 2 from eq. (1), we have In = π/4 0 tann xdx = tann−1 x n−1 π/4 0 − π/4 0 tann−2 xdx Dr. Nirav Vyas Reduction Formula
  • 221. Reduction formula - tann xdx, cotn xdx Now let us consider corresponding definite integrals Let In = π/4 0 tann xdx, n ≥ 2 from eq. (1), we have In = π/4 0 tann xdx = tann−1 x n−1 π/4 0 − π/4 0 tann−2 xdx ∴ In = 1 n − 1 − In−2 — (3) Dr. Nirav Vyas Reduction Formula
  • 222. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Dr. Nirav Vyas Reduction Formula
  • 223. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ Dr. Nirav Vyas Reduction Formula
  • 224. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 Dr. Nirav Vyas Reduction Formula
  • 225. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = Dr. Nirav Vyas Reduction Formula
  • 226. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ Dr. Nirav Vyas Reduction Formula
  • 227. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 Dr. Nirav Vyas Reduction Formula
  • 228. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have Dr. Nirav Vyas Reduction Formula
  • 229. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 Dr. Nirav Vyas Reduction Formula
  • 230. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 I6 = 1 5 − 1 3 − I2 Dr. Nirav Vyas Reduction Formula
  • 231. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 I6 = 1 5 − 1 3 − I2 I6 = 1 5 − 1 3 − (1 − I0) Dr. Nirav Vyas Reduction Formula
  • 232. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 I6 = 1 5 − 1 3 − I2 I6 = 1 5 − 1 3 − (1 − I0) but I0 = π/4 0 tan0 θdθ = π/4 0 dθ = π 4 Dr. Nirav Vyas Reduction Formula
  • 233. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 I6 = 1 5 − 1 3 − I2 I6 = 1 5 − 1 3 − (1 − I0) but I0 = π/4 0 tan0 θdθ = π/4 0 dθ = π 4 ∴ I6 = 1 5 − 1 3 + 1 − π 4 Dr. Nirav Vyas Reduction Formula
  • 234. Reduction formula - tann xdx - Example 1 Evaluate 1 0 x6 1 + x2 dx Let x = tanθ, ∴ dx = sec2 θdθ x = 0, θ = 0 and x = 1, θ = π/4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θ 1+tan2 θ sec2 θdθ = π/4 0 tan6 θdθ we have In = 1 n−1 − In−2 using above reduction formula by succession, we have I6 = 1 5 − I4 I6 = 1 5 − 1 3 − I2 I6 = 1 5 − 1 3 − (1 − I0) but I0 = π/4 0 tan0 θdθ = π/4 0 dθ = π 4 ∴ I6 = 1 5 − 1 3 + 1 − π 4 ∴ 1 0 x6 1 + x2 dx = π/4 0 tan6 θdθ = 13 15 − π 4 Dr. Nirav Vyas Reduction Formula
  • 235. Reduction formula - tann xdx, cotn xdx - Exercise 1 π/4 0 tan4 xdx Dr. Nirav Vyas Reduction Formula
  • 236. Reduction formula - tann xdx, cotn xdx - Exercise 1 π/4 0 tan4 xdx 2 π/4 0 tan5 xdx Dr. Nirav Vyas Reduction Formula
  • 237. Reduction formula - tann xdx, cotn xdx - Exercise 1 π/4 0 tan4 xdx 2 π/4 0 tan5 xdx 3 π/2 π/4 cot5 xdx Try to find reduction formula for 1 secn xdx 2 π/4 0 secn xdx Dr. Nirav Vyas Reduction Formula