SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
Graphing Inverse
 Trig Functions
Graphing Inverse
        Trig Functions
                   x
e.g i  y  5 sin
                1

                   3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
               1

                   3
Domain:  1   1  x
                   3
             3 x  3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1

                    3
Domain:  1   1  x
                   3
              3 x  3
Range:    y  
              2 5 2
             5       5
                 y
              2        2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3
Domain:  1   1  x                5
                   3                 2
              3 x  3
Range:    y           -3            3   x
              2 5 2
             5       5            5
                 y           
              2        2             2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3                           1 x
Domain:  1   1  x                5   y  5 sin
                                                   3
                   3                 2
              3 x  3
Range:    y           -3            3     x
              2 5 2
             5       5            5
                 y           
              2        2             2
ii  y  tan 1  3  x 2 
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                
                                           3
                 0
             x   3, y  tan 1 0
                        0                         x
                                      3       3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                            
                                               y  tan 1 3  x 2   
                                           3
                 0
             x   3, y  tan 1 0
                        0                                  x
                                      3          3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
(iii ) y  sin 1 sin x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                all real x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x

                         
Range:             y
              2           2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2         
                                    2

                                                 x
                                        
                                    
                                        2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2                    y  sin 1 sin x
                                    2

                                                           x
                                        
                                    
                                        2
(iv) y  sin sin 1 x
(iv) y  sin sin 1 x
Domain:  1  x  1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                
                         sin
                                2
                        1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                                 
                         sin   
                                  
                               2
                         1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                                 
                        sin   
                                   
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                              1

Range: when x  1, y  sin sin 1 1
                                            -1        1   x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                                 
                        sin   
                                   
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                   y  sin sin 1 x
                                                 1

Range: when x  1, y  sin sin 1 1
                                            -1        1    x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                                 
                        sin   
                                   
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                       y  sin sin 1 x
                                                  1

Range: when x  1, y  sin sin 1 1
                                             -1          1     x
                                 
                          sin                    -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                                 
                        sin   
                                   
                              2
                        1                 Exercise 1C; 2 to 5ace,
        when x  0, y  sin sin 1 0         6a b i,iii, 9, 11 to 15
                        sin 0
                        0
                 1  y  1

Contenu connexe

Tendances

Shirin1
Shirin1Shirin1
Shirin1bu655
 
Ejercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssEjercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssMatemolivares1
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookboomingbookbooming
 
Modul 1 pd linier orde satu
Modul 1 pd linier orde satuModul 1 pd linier orde satu
Modul 1 pd linier orde satuDhifa Tasrif
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Qwerty1293
 

Tendances (8)

Wiris edu ardo
Wiris edu ardoWiris edu ardo
Wiris edu ardo
 
Shirin1
Shirin1Shirin1
Shirin1
 
Ejercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssEjercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccss
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookbooming
 
Tarea 3
Tarea 3Tarea 3
Tarea 3
 
Algebra 3
Algebra 3Algebra 3
Algebra 3
 
Modul 1 pd linier orde satu
Modul 1 pd linier orde satuModul 1 pd linier orde satu
Modul 1 pd linier orde satu
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

12X1 T05 03 graphing inverse trig (2011)

  • 2. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3
  • 3. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1   1 x 3 3 x  3
  • 4. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1   1 x 3 3 x  3 Range:    y   2 5 2 5 5   y 2 2
  • 5. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 Domain:  1   1 x 5 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 6. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 1 x Domain:  1   1 x 5 y  5 sin 3 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 7. ii  y  tan 1  3  x 2 
  • 8. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3
  • 9. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0
  • 10. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0
  • 11. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3
  • 12. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3  0 y 3
  • 13. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 14. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0   y  tan 1 3  x 2  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 15. (iii ) y  sin 1 sin x
  • 16. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x
  • 17. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x   Range:   y 2 2
  • 18. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  2   x   2
  • 19. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  y  sin 1 sin x 2   x   2
  • 20. (iv) y  sin sin 1 x
  • 21. (iv) y  sin sin 1 x Domain:  1  x  1
  • 22. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1
  • 23. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1   sin       2  1
  • 24. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1   sin       2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 25. y (iv) y  sin sin 1 x Domain:  1  x  1 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1   sin       2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 26. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1   sin       2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 27. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1   sin       2  1 Exercise 1C; 2 to 5ace, when x  0, y  sin sin 1 0 6a b i,iii, 9, 11 to 15  sin 0 0 1  y  1