SlideShare une entreprise Scribd logo
1  sur  103
Télécharger pour lire hors ligne
Geometrical Representation of
Complex Numbers
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

x
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy

x
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy

x
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy

x

The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy

x

The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy

x

The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Geometrical Representation of
Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
y

z  x  iy
A vector always

x

represents
HEAD minus TAIL

The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Addition / Subtraction
Addition / Subtraction

y

x
Addition / Subtraction

y

z1
x
Addition / Subtraction

y

z2
z1
x
Addition / Subtraction

y

z2
z1
x

To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction

y

z1  z 2
z2
z1
x

To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction

y

z1  z 2
z2
z1
x

To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction

y

z1  z 2
z2
z1
x

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction

y

z1  z 2
z2
z1
x
z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction

y

z1  z 2
z2
z1
x
z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Trianglar Inequality
In any triangle a side will be shorter than the sum of the other two sides
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Trianglar Inequality
In any triangle a side will be shorter than the sum of the other two sides
In ABC ; AC  AB  BC
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Trianglar Inequality
In any triangle a side will be shorter than the sum of the other two sides
In ABC ; AC  AB  BC
(equality occurs when AC is a straight line)
Addition / Subtraction

y

z1  z 2
z2

NOTE :
the parallelogram formed by adding
vectors has two diagonals;

z1
x
z1  z 2

z1  z 2 and z1  z 2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Trianglar Inequality
In any triangle a side will be shorter than the sum of the other two sides
In ABC ; AC  AB  BC
(equality occurs when AC is a straight line)
z1  z 2  z1  z 2
Addition
If a point A represents z1 and point B
represents z 2 then point C representing
z1  z 2 is such that the points OACB
form a parallelogram.
Addition
If a point A represents z1 and point B
represents z 2 then point C representing
z1  z 2 is such that the points OACB
form a parallelogram.

Subtraction
If a point D represents  z1
and point E represents z 2  z1
then the points ODEB form a
parallelogram.

Note: AB  z 2  z1
arg z 2  z1   
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
The length of OQ is w
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
The length of OQ is w
The length of PQ is z  w
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
Using the triangular inequality on OPQ
The length of OQ is w
zw  z  w
The length of PQ is z  w
e.g .1995

y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
Using the triangular inequality on OPQ
The length of OQ is w
zw  z  w
The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
quadrilateral OPRQ?
e.g .1995

R y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
Using the triangular inequality on OPQ
The length of OQ is w
zw  z  w
The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
quadrilateral OPRQ?
e.g .1995

R y
Q
P

x
O
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w

i  Show that z  w  z  w
The length of OP is z
Using the triangular inequality on OPQ
The length of OQ is w
zw  z  w
The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
quadrilateral OPRQ?
OPRQ is a parallelogram
w
z

iii  If z  w  z  w , what can be said about ?
w
z

iii  If z  w  z  w , what can be said about ?
zw  zw
w
z
i.e. diagonals in OPRQ are =

iii  If z  w  z  w , what can be said about ?
zw  zw
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2

w
 is purely imaginary
z
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
Multiplication

w
 is purely imaginary
z
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
Multiplication
z1 z 2  z1 z 2

w
 is purely imaginary
z
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
Multiplication
z1 z 2  z1 z 2

w
 is purely imaginary
z

arg z1 z 2  arg z1  arg z 2
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
Multiplication
z1 z 2  z1 z 2

w
 is purely imaginary
z

arg z1 z 2  arg z1  arg z 2

r1cis1  r2 cis 2  r1r2 cis1   2 
w
z
z  w  z  w i.e. diagonals in OPRQ are =
 OPRQ is a rectangle

iii  If z  w  z  w , what can be said about ?

arg w  arg z 



2

w 
arg 
z 2
Multiplication
z1 z 2  z1 z 2

w
 is purely imaginary
z

arg z1 z 2  arg z1  arg z 2

r1cis1  r2 cis 2  r1r2 cis1   2 

i.e. if we multiply z1 by z 2 , the vector z1 is rotated anticlockwise by  2

and its length is multiplied by r2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r





Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
2
2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r





Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
2
2

Multiplication by i is a rotation anticlockwise by


2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r





Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
2
2

Multiplication by i is a rotation anticlockwise by

REMEMBER:


2

A vector is HEAD minus TAIL
y

B
A 

C
O

D(1)

x
y

 

DC  DA  i

B
A 

C
O

D(1)

x
y

B
A 

C
O

D(1)

x

 

DC  DA  i
C  1    1 i
y

B
A 

C
O

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O


B  A  DC

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O


B  A  DC
B    C 1

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O


B  A  DC
B    C 1
B      1 i
 i  1  i  

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA

D(1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

x

 

DC  DA  i
C  1    1 i

C  1    1 i
 1  i   i
y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR
y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR




 
DB  2cis  DA
4
y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR




 
DB  2cis  DA
4



B  1  2  cos  i sin  (  1)
4
4

y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR




 
DB  2cis  DA
4



B  1  2  cos  i sin  (  1)
4
4

B  1  i  (  1)  1
y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR




 
DB  2cis  DA
4



B  1  2  cos  i sin  (  1)
4
4

B  1  i  (  1)  1
   1  i  i  1
y

 

DC  DA  i
C  1    1 i

B
A 

C
O

D(1)


B  A  DC
B    C 1
B      1 i
 i  1  i  

OR


B  C  DA
B  1  i   i  (  1)
 i  1  i  

C  1    1 i
 1  i   i

x
OR




 
DB  2cis  DA
4



B  1  2  cos  i sin  (  1)
4
4

B  1  i  (  1)  1
   1  i  i  1

 i  1  i  
e.g.2000 

B
C

y

A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?
 


OC  OA  2i
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?
 


OC  OA  2i
C  2i
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
diagonals bisect in a rectangle
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
diagonals bisect in a rectangle
 D  midpoint of AC
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
diagonals bisect in a rectangle
 D  midpoint of AC
AC
D
2
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
  2i
D
diagonals bisect in a rectangle
2
 D  midpoint of AC
AC
D
2
e.g.2000 

B
C

y
A 

x
O
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 

i  What complex number corresponds to C?

 


OC  OA  2i
C  2i
(ii) What complex number corresponds to the point of intersection D of
the diagonals OB and AC?
  2i
D
diagonals bisect in a rectangle
2
 D  midpoint of AC
1 
AC
 D    i 
D
2 
2
Examples
Examples

  

OB  OA cis
3
Examples

  

OB  OA cis
3

B  1cis
3
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i

D  iB
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i

D  iB
D

3 1
 i
2 2
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i

D  iB
D

3 1
 i
2 2



C  B  OD
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i

D  iB
D

3 1
 i
2 2



C  B  OD
1
3  
3 1 
C  
i
 i
2 2   2 2 
Examples

  

OB  OA cis
3

B  1cis
3
1
3
B 
i
2 2
 


OD  OB  i

D  iB
D

3 1
 i
2 2



C  B  OD
1
3  
3 1 
C  
i
 i
2 2   2 2 
1  3  1  3 
C 
i

 2   2 
(i )

 


AP  AO  i
(i )

 


AP  AO  i
P  A  i  O  A 
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

(ii )

 


QB  BO  i
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
Q  B  iB
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
Q  B  iB
Q  1  i z 2
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
Q  B  iB
Q  1  i z 2

M

PQ
2
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
Q  B  iB
Q  1  i z 2

PQ
2
1  i z1  1  i z2
M
2
M
(i )

 


AP  AO  i
P  A  i  O  A 
P  z1  i0  z1 
P  z1  iz1

P  1  i z1

 


(ii ) QB  BO  i
Q  B  i O  B 
Q  B  iB
Q  1  i z 2

PQ
2
1  i z1  1  i z2
M
2
 z1  z2    z1  z2 i
M
2
M
Cambridge Ex 1E; 2 to 8, 10 to 15, 18, 19, 21, 22
Terry Lee: Exercise 2.6

Contenu connexe

Tendances

2.3 slopes and difference quotient
2.3 slopes and difference quotient2.3 slopes and difference quotient
2.3 slopes and difference quotient
math260
 
Complex dynamics of superior phoenix set
Complex dynamics of superior phoenix setComplex dynamics of superior phoenix set
Complex dynamics of superior phoenix set
IAEME Publication
 

Tendances (18)

Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 Slides
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
 
Graph theory
Graph theoryGraph theory
Graph theory
 
Algo Final
Algo FinalAlgo Final
Algo Final
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Maths 12
Maths 12Maths 12
Maths 12
 
Elliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge ProofElliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge Proof
 
Linear Transformations
Linear TransformationsLinear Transformations
Linear Transformations
 
Clique Relaxation Models in Networks: Theory, Algorithms, and Applications
Clique Relaxation Models in Networks: Theory, Algorithms, and ApplicationsClique Relaxation Models in Networks: Theory, Algorithms, and Applications
Clique Relaxation Models in Networks: Theory, Algorithms, and Applications
 
2.3 slopes and difference quotient
2.3 slopes and difference quotient2.3 slopes and difference quotient
2.3 slopes and difference quotient
 
Elliptic Curves and Elliptic Curve Cryptography
Elliptic Curves and Elliptic Curve CryptographyElliptic Curves and Elliptic Curve Cryptography
Elliptic Curves and Elliptic Curve Cryptography
 
Graph theory concepts complex networks presents-rouhollah nabati
Graph theory concepts   complex networks presents-rouhollah nabatiGraph theory concepts   complex networks presents-rouhollah nabati
Graph theory concepts complex networks presents-rouhollah nabati
 
Complex dynamics of superior phoenix set
Complex dynamics of superior phoenix setComplex dynamics of superior phoenix set
Complex dynamics of superior phoenix set
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curves
 
Elliptic Curve Cryptography: Arithmetic behind
Elliptic Curve Cryptography: Arithmetic behindElliptic Curve Cryptography: Arithmetic behind
Elliptic Curve Cryptography: Arithmetic behind
 

En vedette

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
Nigel Simmons
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
Nigel Simmons
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
Nigel Simmons
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
Nigel Simmons
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 

En vedette (13)

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similaire à X2 t01 06 geometrical representation (2013)

Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
Chapter 12 Section 12.1  Three-Dimensional Coordinate SysChapter 12 Section 12.1  Three-Dimensional Coordinate Sys
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
EstelaJeffery653
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
Elias Dinsa
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimension
SwathiSundari
 

Similaire à X2 t01 06 geometrical representation (2013) (20)

Graph
GraphGraph
Graph
 
Graph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph ColouringGraph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph Colouring
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Elements of Graph Theory for IS.pptx
Elements of Graph Theory for IS.pptxElements of Graph Theory for IS.pptx
Elements of Graph Theory for IS.pptx
 
complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDF
 
Graph theory
Graph theoryGraph theory
Graph theory
 
Graphs and eularian circuit & path with c++ program
Graphs and eularian circuit & path with c++ programGraphs and eularian circuit & path with c++ program
Graphs and eularian circuit & path with c++ program
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 
Notes 7 6382 Power Series.pptx
Notes 7 6382 Power Series.pptxNotes 7 6382 Power Series.pptx
Notes 7 6382 Power Series.pptx
 
On continuity of complex fuzzy functions
On continuity of complex fuzzy functionsOn continuity of complex fuzzy functions
On continuity of complex fuzzy functions
 
U unit4 vm
U unit4 vmU unit4 vm
U unit4 vm
 
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
Chapter 12 Section 12.1  Three-Dimensional Coordinate SysChapter 12 Section 12.1  Three-Dimensional Coordinate Sys
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
 
Unit 2: All
Unit 2: AllUnit 2: All
Unit 2: All
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
graph theory
graph theorygraph theory
graph theory
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimension
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdf
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdf
 

Plus de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Dernier

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

X2 t01 06 geometrical representation (2013)

  • 2. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors.
  • 3. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y x
  • 4. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 5. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 6. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 7. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 8. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 9. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy A vector always x represents HEAD minus TAIL The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 14. Addition / Subtraction y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 15. Addition / Subtraction y z1  z 2 z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 16. Addition / Subtraction y z1  z 2 z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 17. Addition / Subtraction y z1  z 2 z2 z1 x To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 18. Addition / Subtraction y z1  z 2 z2 z1 x z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 19. Addition / Subtraction y z1  z 2 z2 z1 x z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 20. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 21. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 22. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides
  • 23. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC ; AC  AB  BC
  • 24. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC ; AC  AB  BC (equality occurs when AC is a straight line)
  • 25. Addition / Subtraction y z1  z 2 z2 NOTE : the parallelogram formed by adding vectors has two diagonals; z1 x z1  z 2 z1  z 2 and z1  z 2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC ; AC  AB  BC (equality occurs when AC is a straight line) z1  z 2  z1  z 2
  • 26. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z 2 is such that the points OACB form a parallelogram.
  • 27. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z 2 is such that the points OACB form a parallelogram. Subtraction If a point D represents  z1 and point E represents z 2  z1 then the points ODEB form a parallelogram. Note: AB  z 2  z1 arg z 2  z1   
  • 28. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 29. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 30. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z
  • 31. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w
  • 32. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w The length of PQ is z  w
  • 33. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangular inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w
  • 34. e.g .1995 y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangular inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 35. e.g .1995 R y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangular inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 36. e.g .1995 R y Q P x O The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangular inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ? OPRQ is a parallelogram
  • 37. w z iii  If z  w  z  w , what can be said about ?
  • 38. w z iii  If z  w  z  w , what can be said about ? zw  zw
  • 39. w z i.e. diagonals in OPRQ are = iii  If z  w  z  w , what can be said about ? zw  zw
  • 40. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ?
  • 41. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2
  • 42. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2
  • 43. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 w  is purely imaginary z
  • 44. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 Multiplication w  is purely imaginary z
  • 45. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 Multiplication z1 z 2  z1 z 2 w  is purely imaginary z
  • 46. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 Multiplication z1 z 2  z1 z 2 w  is purely imaginary z arg z1 z 2  arg z1  arg z 2
  • 47. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 Multiplication z1 z 2  z1 z 2 w  is purely imaginary z arg z1 z 2  arg z1  arg z 2 r1cis1  r2 cis 2  r1r2 cis1   2 
  • 48. w z z  w  z  w i.e. diagonals in OPRQ are =  OPRQ is a rectangle iii  If z  w  z  w , what can be said about ? arg w  arg z   2 w  arg  z 2 Multiplication z1 z 2  z1 z 2 w  is purely imaginary z arg z1 z 2  arg z1  arg z 2 r1cis1  r2 cis 2  r1r2 cis1   2  i.e. if we multiply z1 by z 2 , the vector z1 is rotated anticlockwise by  2 and its length is multiplied by r2
  • 49. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r
  • 50. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2
  • 51. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2 Multiplication by i is a rotation anticlockwise by  2
  • 52. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2 Multiplication by i is a rotation anticlockwise by REMEMBER:  2 A vector is HEAD minus TAIL
  • 54. y    DC  DA  i B A  C O D(1) x
  • 55. y B A  C O D(1) x    DC  DA  i C  1    1 i
  • 56. y B A  C O D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 57. y B A  C O  B  A  DC D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 58. y B A  C O  B  A  DC B    C 1 D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 59. y B A  C O  B  A  DC B    C 1 B      1 i  i  1  i   D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 60. y B A  C O  B  A  DC B    C 1 B      1 i  i  1  i   OR D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 61. y B A  C O  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA D(1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 62. y B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1) x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 63. y B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   x    DC  DA  i C  1    1 i C  1    1 i  1  i   i
  • 64. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR
  • 65. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR      DB  2cis  DA 4
  • 66. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR      DB  2cis  DA 4    B  1  2  cos  i sin  (  1) 4 4 
  • 67. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR      DB  2cis  DA 4    B  1  2  cos  i sin  (  1) 4 4  B  1  i  (  1)  1
  • 68. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR      DB  2cis  DA 4    B  1  2  cos  i sin  (  1) 4 4  B  1  i  (  1)  1    1  i  i  1
  • 69. y    DC  DA  i C  1    1 i B A  C O D(1)  B  A  DC B    C 1 B      1 i  i  1  i   OR   B  C  DA B  1  i   i  (  1)  i  1  i   C  1    1 i  1  i   i x OR      DB  2cis  DA 4    B  1  2  cos  i sin  (  1) 4 4  B  1  i  (  1)  1    1  i  i  1  i  1  i  
  • 70. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number 
  • 71. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?
  • 72. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i
  • 73. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i
  • 74. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?
  • 75. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle
  • 76. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC
  • 77. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC AC D 2
  • 78. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i D diagonals bisect in a rectangle 2  D  midpoint of AC AC D 2
  • 79. e.g.2000  B C y A  x O In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?     OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i D diagonals bisect in a rectangle 2  D  midpoint of AC 1  AC  D    i  D 2  2
  • 82. Examples     OB  OA cis 3  B  1cis 3
  • 83. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2
  • 84. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i
  • 85. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i D  iB
  • 86. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i D  iB D 3 1  i 2 2
  • 87. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i D  iB D 3 1  i 2 2   C  B  OD
  • 88. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i D  iB D 3 1  i 2 2   C  B  OD 1 3   3 1  C   i  i 2 2   2 2 
  • 89. Examples     OB  OA cis 3  B  1cis 3 1 3 B  i 2 2     OD  OB  i D  iB D 3 1  i 2 2   C  B  OD 1 3   3 1  C   i  i 2 2   2 2  1  3  1  3  C  i   2   2 
  • 90.
  • 92. (i )     AP  AO  i P  A  i  O  A 
  • 93. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1 
  • 94. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1
  • 95. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 96. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1 (ii )     QB  BO  i
  • 97. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B 
  • 98. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B  Q  B  iB
  • 99. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B  Q  B  iB Q  1  i z 2
  • 100. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B  Q  B  iB Q  1  i z 2 M PQ 2
  • 101. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B  Q  B  iB Q  1  i z 2 PQ 2 1  i z1  1  i z2 M 2 M
  • 102. (i )     AP  AO  i P  A  i  O  A  P  z1  i0  z1  P  z1  iz1 P  1  i z1     (ii ) QB  BO  i Q  B  i O  B  Q  B  iB Q  1  i z 2 PQ 2 1  i z1  1  i z2 M 2  z1  z2    z1  z2 i M 2 M
  • 103. Cambridge Ex 1E; 2 to 8, 10 to 15, 18, 19, 21, 22 Terry Lee: Exercise 2.6