SlideShare une entreprise Scribd logo
1  sur  118
Heat Exchanger Shell & Tube 
Kelompok 3: 
1. Wahyudi Mahaputra 
2. Ikhwan Mutaqqin 
3. Vania Anisya Albels 
4. Eka Syafei 
5. M. Ilham Chairat 
6. Olivia Cesarah Tarigan 
7. Aula Arief 
University of Indonesia
KONSEP STANDAR 
RANGKA PRESENTASI 
RULES OF 
THUMB 
PROSEDUR 
PERHITUNGAN 
SOAL 
HITUNGAN 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
KONSEP HE SHELL & TUBE 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
Definisi Shell and Tube Heat Exchanger 
University of Indonesia
Tujuan 
 STHE merupakan jenis HE 
yang sangat berguna dan 
banyak digunakan dalam 
proses industri. 
 Hal ini dikarenakan, industri 
membutuhkan jumlah 
hairpin double pipe yang 
cukup banyak. 
University of Indonesia
Komponen Utama 
1. Shell 
2. Nozzles 
3. Channels 
4. Channel covers 
5. Baffles 
University of Indonesia
Perbandingan 
Single Pass Multiple Passes 
• Saat fluida dalam HE saling melewati 
hanya satu kali disebut singgle pass 
heat exchanger. 
• Tidak dapat menyediakan heat 
recovery 
• Saat fluida dalam HE saling melewati 
lebih dari satu kali disebut multi pass 
heat exchanger. 
• Untuk membuat fluida yang multiple 
passes ialah menggunakan U-tube 
HE dan menambah baffle. 
• Contoh 1-4,1-6,1-8,2-4. Angka 
pertama menunjukan jumlah shell 
dan angka kedua menunjukan 
jumlah passes. 
University of Indonesia
University of Indonesia 
Single Pass 
& Multi Pass
MULTIPASS STHE 
University of Indonesia 
X-X SHELL TUBE STHE
MULTIPASS STHE 
University of Indonesia 
4-8 SHELL TUBE STHE
Istilah-istilah dalam HE Shell&Tube 
 BAFFLE 
 Merupakan penyokong 
agar tubes tidak bergetar 
atau bergerak 
 Terbagi 2 tipe: 
 PLATE 
 ROD 
University of Indonesia
PLATE BAFFLE 
J e n i s B a f f l e p a d a S T H E 
University of Indonesia
ROD BAFFLE 
J e n i s B a f f l e p a d a S T H E 
University of Indonesia
Istilah-istilah dalam HE Shell&Tube 
 BAFFLE CUT 
 Sejumlah persenan dari tinggi 
yang dipotong dari keseluruhan 
setiap baffle untuk 
mempengaruhi aliran di dalam 
shell 
 Salah satu parameter penting 
dalam desain sebuah STHE 
 Pengaruhi keefisienan 
perpindahan panas di shellside 
 Biasa digunakan sekitar 15%-40% 
dari shell inside diameter 
University of Indonesia
Effect of Baffle Cut 
University of Indonesia 
B a f f l e c u t m e m p e n g a r u h i a l i r a n p a d a s h e l l s i d e
Istilah-istilah dalam HE Shell&Tube 
 TUBE LAYOUT PATTERNS 
 Triangular 
 Rotated Triangular 
 Square 
 Rotated Square 
 Tipe 30° memberi lebih 
banyak tubes dalam shell 
 Tipe 60° lebih bersih karena 
pitch nya dekat 
pitch 
University of Indonesia
Aplikasi HE Shell&Tube 
 Aplikasi sangat luas 
 STHE jenis Heat Exchanger yang paling umum dipergunakan 
pada proses Revinary, Oil and Gas, Petrochemical, dan 
perusahaan-perusahaan energi 
 Dapat bekerja pada range T dan P yang luas 
 Dapat terbuat dari berbagai macam material 
 Banyak supplier 
 Well established – desain dan kode nya sudah berkembang 
melalui pengalaman 
 Pada power plants biasanya menggunkan 2-4 STHE Desain 
dikarenakan lebih simple karena aliran masuk dan keluar disisi 
yang sama (economizer) 
University of Indonesia
Aplikasi 
S h e l l a n d t u b e h e a t e x c h a n g e r p a d a o i l a n d g a s i n d u s t r y 
University of Indonesia
STANDAR HE SHELL & TUBE 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
Shell and Tube Heat Exchanger Standards 
American 
Petroleum Institute 
(API) 
ANSI/API Standard 660 (8th Ed) 
tahun 2007 
TEMA 
(Tubular Exchanger 
Manufactures Association) 
University of Indonesia
Design STHE 
 Temperatur 
Harus mempunyai 
Maximum Design 
Temperaute dan 
Minimum Design Metal 
Temperature (MDMT) 
 Cladding for Corrosion Allowance 
Design Temperature 
harus dipengaruhi oleh 
shell dan tube 
Ketebalan Minimum 10 mm (3/8 in) 
University of Indonesia
Design 
Tubes 
 Diameter minimim luar tubes harus 19.05 mm (3/4 in), 
 Radius rata-rata dari lengkungan-U, tidak boleh kurang dari 1.5 
kali diameter luar. 
University of Indonesia
Materials 
 Tubes 
 Integrally finned tubes of copper 
alloy shall be furnished in the 
annealed-temper condition, such 
as described in ASTM B 359/B 359M. 
 Gaskets – seal mekanis yang mengisi 
ruang antara dua permukaan rapat 
untuk mencegah kebooran 
 Gaskets shall not contain asbestos. 
Gasket 
University of Indonesia
Fabrication 
University of Indonesia
Fabrication 
University of Indonesia
TEMA 
(Tubular Exchanger Manufactures Association) 
University of Indonesia
TEMA 
Designation 
University of Indonesia
RULES OF THUMB HE SHELL & TUBE 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
RULE OF THUMB #1 
1. Kecepatan maksimum pada shellside 
Kecepatan harus dijaga tidak 
terlalu cepat , hal ini ditujukan 
untuk mencegah terjadinya erosi 
ketika terdapat moisture dan 
partikel dalam aliran. 
Untuk mengurangi pressure drop yang tinggi 
dapat menggunakan kecepatan aliran di bawah 
maksimum pada kondisi operasi tertentu 
Kecepatan pada nozzle boleh diizinkan sampai 
1,2 dan 1,4 kali lipatnya 
University of Indonesia
RULE OF THUMB #2 
2. Kecepatan maksimum pada nozzle 
Penurunan tekanan dalam 
heat exchanger harus 
selalu diperhatikan , 
terutama pada sistem yang 
menggunakan aliran 
bertekanan rendah 
University of Indonesia
RULE OF THUMB #3 
3. Jangan digunakan untuk menurunkan temperatur yang terlalu tinggi 
Ilustrasi : pada pencairan Hidrogen dan neon 
Udara (umpan dimana mengandung hidrogen dan neon), tidak 
langsung didinginkan menggunakan nitrogen cair, akan tetapi 
didinginkan secara bertahap dahulu, yaitu didinginkan dengan air pada 
kondisi normal, lalu kemudian didinignkan menggunakan cairan nitrogen. 
4. Penempatan fluida pada heat exchanger 
• Fluida korosif ditempatkan pada bagian tubeside 
• Fluida yang memiliki tekanan dan temperatur tinggi diletakkan dalam 
tubeside 
• Fluida yang memiliki kecepatan tinggi ditempatkan dalam tubeside 
• Fluida yang memiliki kekotoran, ditempatkan pada bagian tubeside 
• Aliran yang memiliki debit besar diletakkan pada bagian yang 
berdiameter lebih besar, begitu sebaliknya 
University of Indonesia
RULE OF THUMB #4 
Untuk sistem yang relatif 
bersih (kotoran) dan memiliki 
perbedaan temperatur 
antara shell dan tube yang 
tidak terlalu tinggi, maka 
digunakan BEM 
Untuk sistem yang heat 
exchanger yang akan 
mengakomodasi ekspansi 
thermal yang secara 
signifikan antara tube dan 
shell, maka digunaan BEU 
University of Indonesia
PROSEDUR PERHITUNGAN HE SHELL & TUBE 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
Shell and Tube Design Flowsheet 
University of Indonesia
Determining R,S 
University of Indonesia
Determining Temperature Difference 
University of Indonesia
Determining Physical Properties 
University of Indonesia
Determining Heat Transfer 
Overall Coefficient 
University of Indonesia
Determining Uo 
University of Indonesia
Determining Tube Side Coefficient 
University of Indonesia
Determining Bundle Diameter 
University of Indonesia
Shell Diameter and Baffle Spacing 
University of Indonesia
Colborn Coefficient (jH) 
University of Indonesia
Overall Coefficient 
University of Indonesia
Tube Side Friction Factor 
University of Indonesia
Shell Friction Factor 
University of Indonesia
Check Pressure Drop 
University of Indonesia
EXAMPLE 8.1 (KERN) 
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 
University of Indonesia
Calculation of a 2-4 Oil Cooler 
A 33.5˚API oil has viscosity of 1.0 
centipoise at 180˚F and 2.0 centipoise at 
100˚F.49,600lb/hr of oil leaving a distilling 
column at 358˚F and is to be used in an 
absorption process at 100˚F.Cooling will be 
achieved by water from 90˚F to 
120˚F.Pressure drop allowances of 10psi may 
be used on both streams along with a 
combined dirt factor of 0.004. 
University of Indonesia
 Available for this service from a discontinued operation is 
35in.ID 2-4exchanger having 454 1in.OD ,11BWG tubes 
״ 0׳ 12 long laid out on 1¼-in.squre pitch. The bundle is 
arranged for six tube passes and vertical cut baffles are 
spaced 7in. apart. The longitudinal baffle is welded to the 
shell. 
 Is it necessary to use a 2-4 exchanger? 
 Will the available exchanger fulfill the requirements? 
University of Indonesia
2-6 Shell and tube heat exchanger 
University of Indonesia
Temperature profile: 
T1(358) 
t2(120) 
T2(100) 
t1(90) 
L
Solution:- 
Exchanger 
shell side Tube side 
ID=35in. Number=454 
Baffle spacing=7in. Length=12 ״ 0׳ 
Passes=2 OD,BWG=1in.,11 
Pitch=1¼in.squre 
Passes=6
Hot fluid Cold fluid 
difference 
T1=358˚F t2=120˚F Δt1=238˚F 
T2=100˚F t1=90˚F Δt2=10˚F 
Temperature range:- 
(T1-T2) (t2-t1) 
258˚F 30˚F
LMTD:- 
LMTD= Δt1-Δt2 
ln(Δt1/Δt2) 
LMTD = 238-10 
ln(238/10) 
LMTD =72˚F
Correction factor:- 
R= (T1-T2)/(t2 - t1) 
R=238/30 
R=8.6 
S=(t2-t1)/(T1-t1) 
S=30/(358-90) 
S=0.112
True temperature difference:- 
Δt=FT×LMTD 
From table: FT=0.93 
LMTD=72˚F 
Δt=0.93×72 
Δt=66.96˚F
Heat balance:- 
Oil 
Q=W ×cp×(T1-T2) 
Q=49,600×0.545×(358-100) 
Q=6,980,000Btu/hr 
Water 
Q=m×cp×(t2-t1) 
Q=23,2666.67×1.0×(120-90) 
Q=6,980,000.1Btu/hr
Caloric temperatures:- 
Δt2/Δt1=10/238=0.042 
For 
API=33.5˚ and temperature 
range(258˚F) Kc=0.47(from table) 
For Kc=0.47 and Δt2/Δt1=0.042 
Fc=0.267
Caloric temperature of hot fluid: 
Tc=T2+Fc×(T1-T2) 
Tc=100+0.267×(258) 
Tc=165˚F 
Caloric temperature of cold fluid: 
tc=t1+Fc×(t2-t1) 
tc=90+0.267×(30) 
tc=98˚F
Hot fluid: shell side 
Flow area 
as=1/2(ID×C ׳×B)/144PT 
as=1/2(35×0.25×7)/144×1.25 
as=0.17ft2 
Mass velocity 
Gs=W/as 
Gs=49,600/0.17 
Gs=292000lb/(hr)(ft2)
Viscosity: 
At Tc=165F (from table) 
μ=1.12cp 
μ=1.12×2.42 
μ=2.71lb/(ft)(hr) 
Equivalent diameter: 
De=0.99 in. (from table) 
De=0.99/12 
De=0.0825ft
Reynolds number: 
Res=DeGs/μ 
Res=0.0825×292000/2.71 
Res=8900 
jH=52.5 (from table) 
Prandtl number:- 
Pr=(cμ/k) 
For 
API=33.5˚ and μ=2.71 (from table) 
k(Pr)⅓=0.20Btu/(hr)(ft2)(˚F)
Film coefficient: 
ho=jH× (k/De) × (Pr)⅓×Φs 
ho/Φs= 52.5 ×0.2/0.0825 
ho/Φs=127 
Cold fluid: tube side 
Flow area: 
a ׳t=0.455 in. square 
at=(Nt×a ׳t)/(144×n) 
at=(454×0.455)/(144×6) 
at=0.239ft2
Mass velocity: 
Gt=m/at 
Gt=232666.67/0.239 
Gt=973500lb/(hr)(ft2) 
Fluid velocity: 
V=Gt/(3600×ρ) 
V=973500/(3600×62.37) 
V=4.33fps
Diameter: 
D=0.76 in./12 (from table) 
D=0.0633ft 
Viscosity: 
At tc=98˚F 
μ=0.73 cp (from table) 
μ=0.73×2.42 
μ=1.77 lb/(hr)(ft)
Reynolds number: 
Ret=D× Gt/μ 
Ret=(0.0633 ×973500)/1.77 
Ret=348156 
Film coefficient: 
For 
V=4.33fps (from table) 
hi=1010×0.96 
hi=970 Btu/(hr)(ft2)(ºF)
hio=hi×(ID/OD) 
hio=970×(0.76/1.0) 
hio=737 Btu/(hr)(ft2)(ºF) 
Tube-wall temperature: 
tw=tc+ ho × (Tc-tc) 
(ho+hio) 
tw=98+ 127 × (165-98) 
(127+737) 
tw=108ºF
At tw: 
μw=1.95×2.42 
μw=4.72 lb/(hr)(ft) 
Φs=(μ/μw)¼ 
Φs=(2.71/4.72)¼ 
Φs=0.92 
ho=127×0.92 
ho=117 Btu/(hr)(ft2)(ºF)
Clean overall coefficient Uc: 
Uc= (hio×ho)/ (hio+ho) 
Uc=(737×117)/(737+117) 
Uc=101 Btu/(hr)(ft2)(ºF)
Design overall coefficient UD: 
UD=Q/(A× Δt) 
A(total)=454×12ft×(0.2618ft2/lin ft) 
A=1425ft2 
UD=6980000/(1425×66.96) 
UD=73.15 Btu/(hr)(ft2)(ºF)
Dirt factor Rd: 
Rd=(Uc-UD)/UcUD 
Rd=(101-73.15)/(101×73.15) 
Rd=0.00377 (hr)(ft2)(ºF)/Btu 
Rd (required) 0.004 
Rd(calculated) 0.00377
Pressure drop: (on shell side) 
For Res=8900 (from table) 
f=0.00215ft2/in.2 
No of crosses, N+1=12L/B 
N+1=(12 × 12)/7 
N+1=20.1 ( Say,21) 
Ds=35 in./12 
Ds=2.92ft
S( specific gravity)=0.82 (from fig.)
ΔPs = f×Gs2×Ds×(N+1) 
5.22×1010×De×s×Φs 
ΔPs =0.00215×2920002×2.92×42 
5.22×1010×0.0825×0.82×0.92 
ΔPs =7.0psi (allowable=10psi)
Pressure drop: (on tube side) 
Ret =34815.6 (from fig.) 
f=0.000195ft2/in.2 
ΔPt=(f×Gt2×L×n)/(5.22×1010×Ds×Φt) 
ΔPt= 4 psi 
Gt=973500,v2/2g=0.13 (from fig.) 
ΔPr=(4×n×v2)/(2g×s) 
ΔPr=3.2 psi 
ΔPT=ΔPt+ΔPr=7.2psi(allowable=10psi)
2-4 Shell and tube heat exchanger:-
Only replace value of n=6 to n=4 
At=0.3585 
Gt=649000 
V=2.89fps 
Ret=23210 
hi=760 Btu/(hr)(ft2)(ºF) 
hio=577 Btu/(hr)(ft2)(ºF) 
tw=110ºF 
ho=117 Btu/(hr)(ft2)(ºF)
Uc=94 Btu/(hr)(ft2)(ºF) 
Rd=0.003 (hr)(ft2)(ºF)/Btu 
F=0.00025 
ΔPt=1.53 psi ,v2/2g =0.065 
ΔPr=1.04 psi 
ΔPT=ΔPt+ΔPr=2.57psi 
(allowable=10psi)s 
So,2-6 STHE is more suitable as 
compare to 2-4 STHE.
EXAMPLE 8.2 KERN 
C O N T O H P E R H I T U N G A N S T H E 
University of Indonesia
CALCULATION OF AN ACETONE-ACETIC ACID 
EXCHANGER 
Acetone (s=0.79) at 250oF is to be sent to storage at 100oF and at a rate of 
60,000 lb/hr. The heat will be recieved by 168,000 lb/hr of 100 per cent acetic 
acid (s=1.07) coming from storage at 90oC and heated to 150oC. Pressure 
drops of 10.0 psi are available for both fluids, and a combined dirt factor of 
0.004 should be provided. 
Available for the service are a large number of 1-2 exchangers having 21 ¼ in. 
ID shells with 270 tubes ¾ in. OD, 14 BWG, 16’0’’ long and laid out 1-in. Square 
pitch. The bundles are arranged for two tube passes with segmental baffles 
spaced in. apart. 
How many of the 1-2 exchangers should be installed in series? 
Diketahui :
Table 9. Tube 
Sheet Layout 
Table 10. Heat Exchanger and Condenser 
Tube Data
PEMBAHASAN 
1. HEAT BALANCE  Q = WC (T1-T2) 
Aceton Acetic acid 
Q = 60,000 x 0.57 (250-100) = 5,130,000 Btu/hr Q = 168,000 x 0.51 (150- 
90) = 5,130,000 Btu/hr 
2. TEMPERATURE DIFFERENCE 
( 
= LMTD. FT 
Fig. 18 (HE 1-2)  FT = tidak 
memotong 
Fig. 19 (HE 2-4)  FT = 0.67 (masih 
terlalu rendah, minimal 0.75) 
Fig. 20 (HE 3-6)  FT = 0.88 (pilih tipe 
HE 3-6) 
 FT merupakan pertimbangan 
pemilihan jumlah shell and tube. 
Terlebih dahulu menghitung R 
dan S 
= LMTD. FT = 39.1 x 0.88 = 
34.4 F
FIG. 18
FIG. 19 
0. 
67
FIG. 20 0. 
88
3. CALORIC TEMPERATURE 
Tc and tc. These liquids are not viscous, and the viscosity correction will be 
negligible, . Average temperatures may be used. 
Aceton  Ta = (250+100)/2 = 175 F , Acetic acid  ta = (150+90)/2 
= 120 F 
4. FLOW AREA 
Keterangan : 
ID = Inner Diameter 
C’ = PT – OD tube 
B = Baffle
5. MASS VELOCITY 
6.
Aceton 100% 
Ta = 175 F 
x = 14.5 
y = 7.2 
Acetic acid 
100% 
ta = 120 F 
x = 12.1 
y = 14.2
Shell : aceton 
D = de/12 
[Fig. 10] 
Tube : acetic acid 
D = ID/12 
[Fig. 10]
7. Colburn Coefficient (jH)
13 
7
55
8. Ta, c, k
FIG. 2
9. ho, hi 
10. hio 
13. CLEAN OVERALL COEFFICIENT(Uc)
14. DESIGN OVERALL COEFFICIENT (Uc)
15. DIRT FACTOR (Rd)
15,8 
00
FIG. 29 
0.001 
55
FIG. 26 
0.000 
24
FIG. 27 
0. 
63
THANK YOU  
P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3

Contenu connexe

Tendances

Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiAli Hasimi Pane
 
Fenomena perpindahan
Fenomena perpindahanFenomena perpindahan
Fenomena perpindahanEzron Wenggo
 
328793143-Laporan-Praktikum-Heat-Exchanger.docx
328793143-Laporan-Praktikum-Heat-Exchanger.docx328793143-Laporan-Praktikum-Heat-Exchanger.docx
328793143-Laporan-Praktikum-Heat-Exchanger.docxAnnisaSeptiana14
 
Bab ii
Bab iiBab ii
Bab iiOBOR 2
 
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisTransport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisRinka Meari
 
Swenson Walker Crystalizer
Swenson Walker CrystalizerSwenson Walker Crystalizer
Swenson Walker Crystalizernurul isnaini
 
Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Jaýa Mañdala
 
153335269 tutorial-hysys-untuk-mahasiswa-1
153335269 tutorial-hysys-untuk-mahasiswa-1153335269 tutorial-hysys-untuk-mahasiswa-1
153335269 tutorial-hysys-untuk-mahasiswa-1Iim Fatimura
 

Tendances (20)

Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasi
 
Vaporizer
VaporizerVaporizer
Vaporizer
 
Evaporator
EvaporatorEvaporator
Evaporator
 
Condenser design
Condenser designCondenser design
Condenser design
 
13-Reaktor Fixed Bed R-01
13-Reaktor Fixed Bed R-0113-Reaktor Fixed Bed R-01
13-Reaktor Fixed Bed R-01
 
Fenomena perpindahan
Fenomena perpindahanFenomena perpindahan
Fenomena perpindahan
 
328793143-Laporan-Praktikum-Heat-Exchanger.docx
328793143-Laporan-Praktikum-Heat-Exchanger.docx328793143-Laporan-Praktikum-Heat-Exchanger.docx
328793143-Laporan-Praktikum-Heat-Exchanger.docx
 
Destilasi batch
Destilasi batchDestilasi batch
Destilasi batch
 
Bab ii
Bab iiBab ii
Bab ii
 
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisTransport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
 
Superheater & reheater
Superheater & reheaterSuperheater & reheater
Superheater & reheater
 
Pertemuan 5 boiler ok
Pertemuan 5 boiler okPertemuan 5 boiler ok
Pertemuan 5 boiler ok
 
Swenson Walker Crystalizer
Swenson Walker CrystalizerSwenson Walker Crystalizer
Swenson Walker Crystalizer
 
Ppt reaktor
Ppt reaktorPpt reaktor
Ppt reaktor
 
Assignment 1
Assignment 1Assignment 1
Assignment 1
 
Fluidisasi
FluidisasiFluidisasi
Fluidisasi
 
Heat exchanger lab 2
Heat exchanger lab 2Heat exchanger lab 2
Heat exchanger lab 2
 
Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)
 
4cheagrp3
4cheagrp34cheagrp3
4cheagrp3
 
153335269 tutorial-hysys-untuk-mahasiswa-1
153335269 tutorial-hysys-untuk-mahasiswa-1153335269 tutorial-hysys-untuk-mahasiswa-1
153335269 tutorial-hysys-untuk-mahasiswa-1
 

En vedette

Shell and tube heat exchanger
Shell and tube heat exchangerShell and tube heat exchanger
Shell and tube heat exchangerPaul singh
 
New shell & tube heat exchanger
New shell & tube heat exchangerNew shell & tube heat exchanger
New shell & tube heat exchangervatsalpateln
 
applications of the principles of heat transfer to design of heat exchangers
 applications of the principles of heat transfer to design of heat exchangers applications of the principles of heat transfer to design of heat exchangers
applications of the principles of heat transfer to design of heat exchangersKathiresan Nadar
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat ExchangersSABIC
 
Thermal rating of Shell & Tube Heat Exchanger
Thermal rating of Shell & Tube Heat ExchangerThermal rating of Shell & Tube Heat Exchanger
Thermal rating of Shell & Tube Heat ExchangerVikram Sharma
 
SHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERSHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERClaire Canoy
 
Shell and tube Heat exchanger
Shell and tube Heat exchangerShell and tube Heat exchanger
Shell and tube Heat exchangerMasood Karim
 
Heat exchanger design handbook
Heat exchanger design handbookHeat exchanger design handbook
Heat exchanger design handbookvijayabhaskar83
 
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1Sanju Jacob
 
heat exchanger
heat exchangerheat exchanger
heat exchangerchin2990
 
heat exchanger
heat exchangerheat exchanger
heat exchangerAbdou Diga
 
Citizen Journalism Movement
Citizen Journalism MovementCitizen Journalism Movement
Citizen Journalism MovementYudha P Sunandar
 

En vedette (20)

Shell and tube heat exchanger
Shell and tube heat exchangerShell and tube heat exchanger
Shell and tube heat exchanger
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
New shell & tube heat exchanger
New shell & tube heat exchangerNew shell & tube heat exchanger
New shell & tube heat exchanger
 
HEAT EXCHANGERS
HEAT EXCHANGERSHEAT EXCHANGERS
HEAT EXCHANGERS
 
applications of the principles of heat transfer to design of heat exchangers
 applications of the principles of heat transfer to design of heat exchangers applications of the principles of heat transfer to design of heat exchangers
applications of the principles of heat transfer to design of heat exchangers
 
types of heat exchanger
types of heat exchangertypes of heat exchanger
types of heat exchanger
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
 
Thermal rating of Shell & Tube Heat Exchanger
Thermal rating of Shell & Tube Heat ExchangerThermal rating of Shell & Tube Heat Exchanger
Thermal rating of Shell & Tube Heat Exchanger
 
SHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERSHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGER
 
Shell and tube Heat exchanger
Shell and tube Heat exchangerShell and tube Heat exchanger
Shell and tube Heat exchanger
 
Heat exchanger design handbook
Heat exchanger design handbookHeat exchanger design handbook
Heat exchanger design handbook
 
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1
REDESIGN OF SHELL AND TUBE HEAT EXCHANGER 1
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Citizen Journalism Movement
Citizen Journalism MovementCitizen Journalism Movement
Citizen Journalism Movement
 
Heat exchanger
Heat exchangerHeat exchanger
Heat exchanger
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 

Similaire à Shell and Tube Heat Exchanger

Seminar proposal m. iskandar al hakim
Seminar proposal m. iskandar al hakimSeminar proposal m. iskandar al hakim
Seminar proposal m. iskandar al hakimIskandarquincyIndone
 
Seminar Proposal M. Iskandar Al Hakim.pptx
Seminar Proposal M. Iskandar Al Hakim.pptxSeminar Proposal M. Iskandar Al Hakim.pptx
Seminar Proposal M. Iskandar Al Hakim.pptxIskandarquincyIndone
 
fdokumen.com_alat2-penukar-panas.ppt
fdokumen.com_alat2-penukar-panas.pptfdokumen.com_alat2-penukar-panas.ppt
fdokumen.com_alat2-penukar-panas.pptRifqiSufra
 
Rekayasa Sistem
Rekayasa SistemRekayasa Sistem
Rekayasa SistemFitriah27
 
Alat reparasi pendingin UnnesTronik 085640049191 Semarang
Alat reparasi pendingin UnnesTronik 085640049191 SemarangAlat reparasi pendingin UnnesTronik 085640049191 Semarang
Alat reparasi pendingin UnnesTronik 085640049191 SemarangOkky Prasetiyo
 
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...Hendra Dinata
 
Instalasi perpipaan
Instalasi perpipaanInstalasi perpipaan
Instalasi perpipaanAmirul AmMu
 
207677667 pengetahuan-dasar-piping
207677667 pengetahuan-dasar-piping207677667 pengetahuan-dasar-piping
207677667 pengetahuan-dasar-pipingNico Domli
 
Uji eksperimental pressure drop & visualisasi aliran
Uji eksperimental pressure drop & visualisasi aliranUji eksperimental pressure drop & visualisasi aliran
Uji eksperimental pressure drop & visualisasi aliranNurnia Arifiani
 
Studi eksperimental karakteristik shell and tube heat exchanger
Studi eksperimental karakteristik shell and tube heat exchangerStudi eksperimental karakteristik shell and tube heat exchanger
Studi eksperimental karakteristik shell and tube heat exchangerNovan Ardhiyangga
 
1112 p1-spk-teknik distribusi tenaga listrik
1112 p1-spk-teknik distribusi tenaga listrik1112 p1-spk-teknik distribusi tenaga listrik
1112 p1-spk-teknik distribusi tenaga listrikWinarto Winartoap
 
MEDIA AJAR SISTEM_PENGAPIAN..pdf
MEDIA AJAR SISTEM_PENGAPIAN..pdfMEDIA AJAR SISTEM_PENGAPIAN..pdf
MEDIA AJAR SISTEM_PENGAPIAN..pdfagusprimanto
 
Poster maulydia ayu ningrum-1814071015-tep a
Poster maulydia ayu ningrum-1814071015-tep aPoster maulydia ayu ningrum-1814071015-tep a
Poster maulydia ayu ningrum-1814071015-tep aUniversitas Lampung
 
BAB IV MUAI PANJANG ZAT PADAT
BAB IV MUAI PANJANG ZAT PADATBAB IV MUAI PANJANG ZAT PADAT
BAB IV MUAI PANJANG ZAT PADATKhairi Ramdhani
 
dokumen.tips_sistem-perpipaan-ppt.pptx
dokumen.tips_sistem-perpipaan-ppt.pptxdokumen.tips_sistem-perpipaan-ppt.pptx
dokumen.tips_sistem-perpipaan-ppt.pptxFerryHariPrasetyo1
 
pemasangan-perangkat-hubung-bagi-tegangan-rendah
pemasangan-perangkat-hubung-bagi-tegangan-rendahpemasangan-perangkat-hubung-bagi-tegangan-rendah
pemasangan-perangkat-hubung-bagi-tegangan-rendahtesha saputra
 

Similaire à Shell and Tube Heat Exchanger (20)

Seminar proposal m. iskandar al hakim
Seminar proposal m. iskandar al hakimSeminar proposal m. iskandar al hakim
Seminar proposal m. iskandar al hakim
 
Seminar Proposal M. Iskandar Al Hakim.pptx
Seminar Proposal M. Iskandar Al Hakim.pptxSeminar Proposal M. Iskandar Al Hakim.pptx
Seminar Proposal M. Iskandar Al Hakim.pptx
 
fdokumen.com_alat2-penukar-panas.ppt
fdokumen.com_alat2-penukar-panas.pptfdokumen.com_alat2-penukar-panas.ppt
fdokumen.com_alat2-penukar-panas.ppt
 
Rekayasa Sistem
Rekayasa SistemRekayasa Sistem
Rekayasa Sistem
 
Alat reparasi pendingin UnnesTronik 085640049191 Semarang
Alat reparasi pendingin UnnesTronik 085640049191 SemarangAlat reparasi pendingin UnnesTronik 085640049191 Semarang
Alat reparasi pendingin UnnesTronik 085640049191 Semarang
 
SIDANG AGAM.pptx
SIDANG AGAM.pptxSIDANG AGAM.pptx
SIDANG AGAM.pptx
 
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...
Perencanaan Unit Mesin Pendingin Untuk Kebutuhan Pengkondisian Udara Pada Ged...
 
Chapter ii 4
Chapter ii 4Chapter ii 4
Chapter ii 4
 
Instalasi perpipaan
Instalasi perpipaanInstalasi perpipaan
Instalasi perpipaan
 
207677667 pengetahuan-dasar-piping
207677667 pengetahuan-dasar-piping207677667 pengetahuan-dasar-piping
207677667 pengetahuan-dasar-piping
 
Uji eksperimental pressure drop & visualisasi aliran
Uji eksperimental pressure drop & visualisasi aliranUji eksperimental pressure drop & visualisasi aliran
Uji eksperimental pressure drop & visualisasi aliran
 
Tugas heat exchanger
Tugas heat exchangerTugas heat exchanger
Tugas heat exchanger
 
Studi eksperimental karakteristik shell and tube heat exchanger
Studi eksperimental karakteristik shell and tube heat exchangerStudi eksperimental karakteristik shell and tube heat exchanger
Studi eksperimental karakteristik shell and tube heat exchanger
 
1112 p1-spk-teknik distribusi tenaga listrik
1112 p1-spk-teknik distribusi tenaga listrik1112 p1-spk-teknik distribusi tenaga listrik
1112 p1-spk-teknik distribusi tenaga listrik
 
MEDIA AJAR SISTEM_PENGAPIAN..pdf
MEDIA AJAR SISTEM_PENGAPIAN..pdfMEDIA AJAR SISTEM_PENGAPIAN..pdf
MEDIA AJAR SISTEM_PENGAPIAN..pdf
 
Poster maulydia ayu ningrum-1814071015-tep a
Poster maulydia ayu ningrum-1814071015-tep aPoster maulydia ayu ningrum-1814071015-tep a
Poster maulydia ayu ningrum-1814071015-tep a
 
BAB IV MUAI PANJANG ZAT PADAT
BAB IV MUAI PANJANG ZAT PADATBAB IV MUAI PANJANG ZAT PADAT
BAB IV MUAI PANJANG ZAT PADAT
 
dokumen.tips_sistem-perpipaan-ppt.pptx
dokumen.tips_sistem-perpipaan-ppt.pptxdokumen.tips_sistem-perpipaan-ppt.pptx
dokumen.tips_sistem-perpipaan-ppt.pptx
 
pemasangan-perangkat-hubung-bagi-tegangan-rendah
pemasangan-perangkat-hubung-bagi-tegangan-rendahpemasangan-perangkat-hubung-bagi-tegangan-rendah
pemasangan-perangkat-hubung-bagi-tegangan-rendah
 
Laporan Pendawaian
Laporan PendawaianLaporan Pendawaian
Laporan Pendawaian
 

Dernier

Manual Desain Perkerasan jalan 2017 FINAL.pptx
Manual Desain Perkerasan jalan 2017 FINAL.pptxManual Desain Perkerasan jalan 2017 FINAL.pptx
Manual Desain Perkerasan jalan 2017 FINAL.pptxRemigius1984
 
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptx
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptxMateri Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptx
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptxarifyudianto3
 
10.-Programable-Logic-Controller (1).ppt
10.-Programable-Logic-Controller (1).ppt10.-Programable-Logic-Controller (1).ppt
10.-Programable-Logic-Controller (1).ppttaniaalda710
 
Metode numerik Bidang Teknik Sipil perencanaan.pdf
Metode numerik Bidang Teknik Sipil perencanaan.pdfMetode numerik Bidang Teknik Sipil perencanaan.pdf
Metode numerik Bidang Teknik Sipil perencanaan.pdfArvinThamsir1
 
Strategi Pengembangan Agribisnis di Indonesia
Strategi Pengembangan Agribisnis di IndonesiaStrategi Pengembangan Agribisnis di Indonesia
Strategi Pengembangan Agribisnis di IndonesiaRenaYunita2
 
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdfTEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdfYogiCahyoPurnomo
 
MAteri:Penggunaan fungsi pada pemrograman c++
MAteri:Penggunaan fungsi pada pemrograman c++MAteri:Penggunaan fungsi pada pemrograman c++
MAteri:Penggunaan fungsi pada pemrograman c++FujiAdam
 
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdfAnonymous6yIobha8QY
 
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdf
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdfMODUL AJAR PENGANTAR SURVEY PEMETAAN.pdf
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdfihsan386426
 

Dernier (9)

Manual Desain Perkerasan jalan 2017 FINAL.pptx
Manual Desain Perkerasan jalan 2017 FINAL.pptxManual Desain Perkerasan jalan 2017 FINAL.pptx
Manual Desain Perkerasan jalan 2017 FINAL.pptx
 
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptx
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptxMateri Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptx
Materi Asesi SKK Manajer Pelaksana SPAM- jenjang 6.pptx
 
10.-Programable-Logic-Controller (1).ppt
10.-Programable-Logic-Controller (1).ppt10.-Programable-Logic-Controller (1).ppt
10.-Programable-Logic-Controller (1).ppt
 
Metode numerik Bidang Teknik Sipil perencanaan.pdf
Metode numerik Bidang Teknik Sipil perencanaan.pdfMetode numerik Bidang Teknik Sipil perencanaan.pdf
Metode numerik Bidang Teknik Sipil perencanaan.pdf
 
Strategi Pengembangan Agribisnis di Indonesia
Strategi Pengembangan Agribisnis di IndonesiaStrategi Pengembangan Agribisnis di Indonesia
Strategi Pengembangan Agribisnis di Indonesia
 
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdfTEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
 
MAteri:Penggunaan fungsi pada pemrograman c++
MAteri:Penggunaan fungsi pada pemrograman c++MAteri:Penggunaan fungsi pada pemrograman c++
MAteri:Penggunaan fungsi pada pemrograman c++
 
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf
4. GWTJWRYJJJJJJJJJJJJJJJJJJWJSNJYSRR.pdf
 
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdf
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdfMODUL AJAR PENGANTAR SURVEY PEMETAAN.pdf
MODUL AJAR PENGANTAR SURVEY PEMETAAN.pdf
 

Shell and Tube Heat Exchanger

  • 1. Heat Exchanger Shell & Tube Kelompok 3: 1. Wahyudi Mahaputra 2. Ikhwan Mutaqqin 3. Vania Anisya Albels 4. Eka Syafei 5. M. Ilham Chairat 6. Olivia Cesarah Tarigan 7. Aula Arief University of Indonesia
  • 2. KONSEP STANDAR RANGKA PRESENTASI RULES OF THUMB PROSEDUR PERHITUNGAN SOAL HITUNGAN P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 3. KONSEP HE SHELL & TUBE P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 4. Definisi Shell and Tube Heat Exchanger University of Indonesia
  • 5. Tujuan  STHE merupakan jenis HE yang sangat berguna dan banyak digunakan dalam proses industri.  Hal ini dikarenakan, industri membutuhkan jumlah hairpin double pipe yang cukup banyak. University of Indonesia
  • 6. Komponen Utama 1. Shell 2. Nozzles 3. Channels 4. Channel covers 5. Baffles University of Indonesia
  • 7. Perbandingan Single Pass Multiple Passes • Saat fluida dalam HE saling melewati hanya satu kali disebut singgle pass heat exchanger. • Tidak dapat menyediakan heat recovery • Saat fluida dalam HE saling melewati lebih dari satu kali disebut multi pass heat exchanger. • Untuk membuat fluida yang multiple passes ialah menggunakan U-tube HE dan menambah baffle. • Contoh 1-4,1-6,1-8,2-4. Angka pertama menunjukan jumlah shell dan angka kedua menunjukan jumlah passes. University of Indonesia
  • 8. University of Indonesia Single Pass & Multi Pass
  • 9. MULTIPASS STHE University of Indonesia X-X SHELL TUBE STHE
  • 10. MULTIPASS STHE University of Indonesia 4-8 SHELL TUBE STHE
  • 11. Istilah-istilah dalam HE Shell&Tube  BAFFLE  Merupakan penyokong agar tubes tidak bergetar atau bergerak  Terbagi 2 tipe:  PLATE  ROD University of Indonesia
  • 12. PLATE BAFFLE J e n i s B a f f l e p a d a S T H E University of Indonesia
  • 13. ROD BAFFLE J e n i s B a f f l e p a d a S T H E University of Indonesia
  • 14. Istilah-istilah dalam HE Shell&Tube  BAFFLE CUT  Sejumlah persenan dari tinggi yang dipotong dari keseluruhan setiap baffle untuk mempengaruhi aliran di dalam shell  Salah satu parameter penting dalam desain sebuah STHE  Pengaruhi keefisienan perpindahan panas di shellside  Biasa digunakan sekitar 15%-40% dari shell inside diameter University of Indonesia
  • 15. Effect of Baffle Cut University of Indonesia B a f f l e c u t m e m p e n g a r u h i a l i r a n p a d a s h e l l s i d e
  • 16. Istilah-istilah dalam HE Shell&Tube  TUBE LAYOUT PATTERNS  Triangular  Rotated Triangular  Square  Rotated Square  Tipe 30° memberi lebih banyak tubes dalam shell  Tipe 60° lebih bersih karena pitch nya dekat pitch University of Indonesia
  • 17. Aplikasi HE Shell&Tube  Aplikasi sangat luas  STHE jenis Heat Exchanger yang paling umum dipergunakan pada proses Revinary, Oil and Gas, Petrochemical, dan perusahaan-perusahaan energi  Dapat bekerja pada range T dan P yang luas  Dapat terbuat dari berbagai macam material  Banyak supplier  Well established – desain dan kode nya sudah berkembang melalui pengalaman  Pada power plants biasanya menggunkan 2-4 STHE Desain dikarenakan lebih simple karena aliran masuk dan keluar disisi yang sama (economizer) University of Indonesia
  • 18. Aplikasi S h e l l a n d t u b e h e a t e x c h a n g e r p a d a o i l a n d g a s i n d u s t r y University of Indonesia
  • 19. STANDAR HE SHELL & TUBE P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 20. Shell and Tube Heat Exchanger Standards American Petroleum Institute (API) ANSI/API Standard 660 (8th Ed) tahun 2007 TEMA (Tubular Exchanger Manufactures Association) University of Indonesia
  • 21. Design STHE  Temperatur Harus mempunyai Maximum Design Temperaute dan Minimum Design Metal Temperature (MDMT)  Cladding for Corrosion Allowance Design Temperature harus dipengaruhi oleh shell dan tube Ketebalan Minimum 10 mm (3/8 in) University of Indonesia
  • 22. Design Tubes  Diameter minimim luar tubes harus 19.05 mm (3/4 in),  Radius rata-rata dari lengkungan-U, tidak boleh kurang dari 1.5 kali diameter luar. University of Indonesia
  • 23. Materials  Tubes  Integrally finned tubes of copper alloy shall be furnished in the annealed-temper condition, such as described in ASTM B 359/B 359M.  Gaskets – seal mekanis yang mengisi ruang antara dua permukaan rapat untuk mencegah kebooran  Gaskets shall not contain asbestos. Gasket University of Indonesia
  • 26. TEMA (Tubular Exchanger Manufactures Association) University of Indonesia
  • 28. RULES OF THUMB HE SHELL & TUBE P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 29. RULE OF THUMB #1 1. Kecepatan maksimum pada shellside Kecepatan harus dijaga tidak terlalu cepat , hal ini ditujukan untuk mencegah terjadinya erosi ketika terdapat moisture dan partikel dalam aliran. Untuk mengurangi pressure drop yang tinggi dapat menggunakan kecepatan aliran di bawah maksimum pada kondisi operasi tertentu Kecepatan pada nozzle boleh diizinkan sampai 1,2 dan 1,4 kali lipatnya University of Indonesia
  • 30. RULE OF THUMB #2 2. Kecepatan maksimum pada nozzle Penurunan tekanan dalam heat exchanger harus selalu diperhatikan , terutama pada sistem yang menggunakan aliran bertekanan rendah University of Indonesia
  • 31. RULE OF THUMB #3 3. Jangan digunakan untuk menurunkan temperatur yang terlalu tinggi Ilustrasi : pada pencairan Hidrogen dan neon Udara (umpan dimana mengandung hidrogen dan neon), tidak langsung didinginkan menggunakan nitrogen cair, akan tetapi didinginkan secara bertahap dahulu, yaitu didinginkan dengan air pada kondisi normal, lalu kemudian didinignkan menggunakan cairan nitrogen. 4. Penempatan fluida pada heat exchanger • Fluida korosif ditempatkan pada bagian tubeside • Fluida yang memiliki tekanan dan temperatur tinggi diletakkan dalam tubeside • Fluida yang memiliki kecepatan tinggi ditempatkan dalam tubeside • Fluida yang memiliki kekotoran, ditempatkan pada bagian tubeside • Aliran yang memiliki debit besar diletakkan pada bagian yang berdiameter lebih besar, begitu sebaliknya University of Indonesia
  • 32. RULE OF THUMB #4 Untuk sistem yang relatif bersih (kotoran) dan memiliki perbedaan temperatur antara shell dan tube yang tidak terlalu tinggi, maka digunakan BEM Untuk sistem yang heat exchanger yang akan mengakomodasi ekspansi thermal yang secara signifikan antara tube dan shell, maka digunaan BEU University of Indonesia
  • 33. PROSEDUR PERHITUNGAN HE SHELL & TUBE P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 34. Shell and Tube Design Flowsheet University of Indonesia
  • 36. Determining Temperature Difference University of Indonesia
  • 37. Determining Physical Properties University of Indonesia
  • 38. Determining Heat Transfer Overall Coefficient University of Indonesia
  • 40. Determining Tube Side Coefficient University of Indonesia
  • 41. Determining Bundle Diameter University of Indonesia
  • 42. Shell Diameter and Baffle Spacing University of Indonesia
  • 43. Colborn Coefficient (jH) University of Indonesia
  • 45. Tube Side Friction Factor University of Indonesia
  • 46. Shell Friction Factor University of Indonesia
  • 47. Check Pressure Drop University of Indonesia
  • 48. EXAMPLE 8.1 (KERN) P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3 University of Indonesia
  • 49. Calculation of a 2-4 Oil Cooler A 33.5˚API oil has viscosity of 1.0 centipoise at 180˚F and 2.0 centipoise at 100˚F.49,600lb/hr of oil leaving a distilling column at 358˚F and is to be used in an absorption process at 100˚F.Cooling will be achieved by water from 90˚F to 120˚F.Pressure drop allowances of 10psi may be used on both streams along with a combined dirt factor of 0.004. University of Indonesia
  • 50.  Available for this service from a discontinued operation is 35in.ID 2-4exchanger having 454 1in.OD ,11BWG tubes ״ 0׳ 12 long laid out on 1¼-in.squre pitch. The bundle is arranged for six tube passes and vertical cut baffles are spaced 7in. apart. The longitudinal baffle is welded to the shell.  Is it necessary to use a 2-4 exchanger?  Will the available exchanger fulfill the requirements? University of Indonesia
  • 51. 2-6 Shell and tube heat exchanger University of Indonesia
  • 52. Temperature profile: T1(358) t2(120) T2(100) t1(90) L
  • 53. Solution:- Exchanger shell side Tube side ID=35in. Number=454 Baffle spacing=7in. Length=12 ״ 0׳ Passes=2 OD,BWG=1in.,11 Pitch=1¼in.squre Passes=6
  • 54. Hot fluid Cold fluid difference T1=358˚F t2=120˚F Δt1=238˚F T2=100˚F t1=90˚F Δt2=10˚F Temperature range:- (T1-T2) (t2-t1) 258˚F 30˚F
  • 55. LMTD:- LMTD= Δt1-Δt2 ln(Δt1/Δt2) LMTD = 238-10 ln(238/10) LMTD =72˚F
  • 56. Correction factor:- R= (T1-T2)/(t2 - t1) R=238/30 R=8.6 S=(t2-t1)/(T1-t1) S=30/(358-90) S=0.112
  • 57.
  • 58. True temperature difference:- Δt=FT×LMTD From table: FT=0.93 LMTD=72˚F Δt=0.93×72 Δt=66.96˚F
  • 59. Heat balance:- Oil Q=W ×cp×(T1-T2) Q=49,600×0.545×(358-100) Q=6,980,000Btu/hr Water Q=m×cp×(t2-t1) Q=23,2666.67×1.0×(120-90) Q=6,980,000.1Btu/hr
  • 60.
  • 61. Caloric temperatures:- Δt2/Δt1=10/238=0.042 For API=33.5˚ and temperature range(258˚F) Kc=0.47(from table) For Kc=0.47 and Δt2/Δt1=0.042 Fc=0.267
  • 62.
  • 63. Caloric temperature of hot fluid: Tc=T2+Fc×(T1-T2) Tc=100+0.267×(258) Tc=165˚F Caloric temperature of cold fluid: tc=t1+Fc×(t2-t1) tc=90+0.267×(30) tc=98˚F
  • 64. Hot fluid: shell side Flow area as=1/2(ID×C ׳×B)/144PT as=1/2(35×0.25×7)/144×1.25 as=0.17ft2 Mass velocity Gs=W/as Gs=49,600/0.17 Gs=292000lb/(hr)(ft2)
  • 65. Viscosity: At Tc=165F (from table) μ=1.12cp μ=1.12×2.42 μ=2.71lb/(ft)(hr) Equivalent diameter: De=0.99 in. (from table) De=0.99/12 De=0.0825ft
  • 66.
  • 67.
  • 68. Reynolds number: Res=DeGs/μ Res=0.0825×292000/2.71 Res=8900 jH=52.5 (from table) Prandtl number:- Pr=(cμ/k) For API=33.5˚ and μ=2.71 (from table) k(Pr)⅓=0.20Btu/(hr)(ft2)(˚F)
  • 69.
  • 70.
  • 71.
  • 72. Film coefficient: ho=jH× (k/De) × (Pr)⅓×Φs ho/Φs= 52.5 ×0.2/0.0825 ho/Φs=127 Cold fluid: tube side Flow area: a ׳t=0.455 in. square at=(Nt×a ׳t)/(144×n) at=(454×0.455)/(144×6) at=0.239ft2
  • 73.
  • 74. Mass velocity: Gt=m/at Gt=232666.67/0.239 Gt=973500lb/(hr)(ft2) Fluid velocity: V=Gt/(3600×ρ) V=973500/(3600×62.37) V=4.33fps
  • 75. Diameter: D=0.76 in./12 (from table) D=0.0633ft Viscosity: At tc=98˚F μ=0.73 cp (from table) μ=0.73×2.42 μ=1.77 lb/(hr)(ft)
  • 76.
  • 77. Reynolds number: Ret=D× Gt/μ Ret=(0.0633 ×973500)/1.77 Ret=348156 Film coefficient: For V=4.33fps (from table) hi=1010×0.96 hi=970 Btu/(hr)(ft2)(ºF)
  • 78.
  • 79. hio=hi×(ID/OD) hio=970×(0.76/1.0) hio=737 Btu/(hr)(ft2)(ºF) Tube-wall temperature: tw=tc+ ho × (Tc-tc) (ho+hio) tw=98+ 127 × (165-98) (127+737) tw=108ºF
  • 80. At tw: μw=1.95×2.42 μw=4.72 lb/(hr)(ft) Φs=(μ/μw)¼ Φs=(2.71/4.72)¼ Φs=0.92 ho=127×0.92 ho=117 Btu/(hr)(ft2)(ºF)
  • 81. Clean overall coefficient Uc: Uc= (hio×ho)/ (hio+ho) Uc=(737×117)/(737+117) Uc=101 Btu/(hr)(ft2)(ºF)
  • 82. Design overall coefficient UD: UD=Q/(A× Δt) A(total)=454×12ft×(0.2618ft2/lin ft) A=1425ft2 UD=6980000/(1425×66.96) UD=73.15 Btu/(hr)(ft2)(ºF)
  • 83. Dirt factor Rd: Rd=(Uc-UD)/UcUD Rd=(101-73.15)/(101×73.15) Rd=0.00377 (hr)(ft2)(ºF)/Btu Rd (required) 0.004 Rd(calculated) 0.00377
  • 84. Pressure drop: (on shell side) For Res=8900 (from table) f=0.00215ft2/in.2 No of crosses, N+1=12L/B N+1=(12 × 12)/7 N+1=20.1 ( Say,21) Ds=35 in./12 Ds=2.92ft
  • 85.
  • 87. ΔPs = f×Gs2×Ds×(N+1) 5.22×1010×De×s×Φs ΔPs =0.00215×2920002×2.92×42 5.22×1010×0.0825×0.82×0.92 ΔPs =7.0psi (allowable=10psi)
  • 88. Pressure drop: (on tube side) Ret =34815.6 (from fig.) f=0.000195ft2/in.2 ΔPt=(f×Gt2×L×n)/(5.22×1010×Ds×Φt) ΔPt= 4 psi Gt=973500,v2/2g=0.13 (from fig.) ΔPr=(4×n×v2)/(2g×s) ΔPr=3.2 psi ΔPT=ΔPt+ΔPr=7.2psi(allowable=10psi)
  • 89.
  • 90.
  • 91. 2-4 Shell and tube heat exchanger:-
  • 92. Only replace value of n=6 to n=4 At=0.3585 Gt=649000 V=2.89fps Ret=23210 hi=760 Btu/(hr)(ft2)(ºF) hio=577 Btu/(hr)(ft2)(ºF) tw=110ºF ho=117 Btu/(hr)(ft2)(ºF)
  • 93. Uc=94 Btu/(hr)(ft2)(ºF) Rd=0.003 (hr)(ft2)(ºF)/Btu F=0.00025 ΔPt=1.53 psi ,v2/2g =0.065 ΔPr=1.04 psi ΔPT=ΔPt+ΔPr=2.57psi (allowable=10psi)s So,2-6 STHE is more suitable as compare to 2-4 STHE.
  • 94. EXAMPLE 8.2 KERN C O N T O H P E R H I T U N G A N S T H E University of Indonesia
  • 95. CALCULATION OF AN ACETONE-ACETIC ACID EXCHANGER Acetone (s=0.79) at 250oF is to be sent to storage at 100oF and at a rate of 60,000 lb/hr. The heat will be recieved by 168,000 lb/hr of 100 per cent acetic acid (s=1.07) coming from storage at 90oC and heated to 150oC. Pressure drops of 10.0 psi are available for both fluids, and a combined dirt factor of 0.004 should be provided. Available for the service are a large number of 1-2 exchangers having 21 ¼ in. ID shells with 270 tubes ¾ in. OD, 14 BWG, 16’0’’ long and laid out 1-in. Square pitch. The bundles are arranged for two tube passes with segmental baffles spaced in. apart. How many of the 1-2 exchangers should be installed in series? Diketahui :
  • 96. Table 9. Tube Sheet Layout Table 10. Heat Exchanger and Condenser Tube Data
  • 97. PEMBAHASAN 1. HEAT BALANCE  Q = WC (T1-T2) Aceton Acetic acid Q = 60,000 x 0.57 (250-100) = 5,130,000 Btu/hr Q = 168,000 x 0.51 (150- 90) = 5,130,000 Btu/hr 2. TEMPERATURE DIFFERENCE ( = LMTD. FT Fig. 18 (HE 1-2)  FT = tidak memotong Fig. 19 (HE 2-4)  FT = 0.67 (masih terlalu rendah, minimal 0.75) Fig. 20 (HE 3-6)  FT = 0.88 (pilih tipe HE 3-6)  FT merupakan pertimbangan pemilihan jumlah shell and tube. Terlebih dahulu menghitung R dan S = LMTD. FT = 39.1 x 0.88 = 34.4 F
  • 100. FIG. 20 0. 88
  • 101. 3. CALORIC TEMPERATURE Tc and tc. These liquids are not viscous, and the viscosity correction will be negligible, . Average temperatures may be used. Aceton  Ta = (250+100)/2 = 175 F , Acetic acid  ta = (150+90)/2 = 120 F 4. FLOW AREA Keterangan : ID = Inner Diameter C’ = PT – OD tube B = Baffle
  • 103. Aceton 100% Ta = 175 F x = 14.5 y = 7.2 Acetic acid 100% ta = 120 F x = 12.1 y = 14.2
  • 104. Shell : aceton D = de/12 [Fig. 10] Tube : acetic acid D = ID/12 [Fig. 10]
  • 106. 13 7
  • 107. 55
  • 108. 8. Ta, c, k
  • 109. FIG. 2
  • 110. 9. ho, hi 10. hio 13. CLEAN OVERALL COEFFICIENT(Uc)
  • 111. 14. DESIGN OVERALL COEFFICIENT (Uc)
  • 116.
  • 117. FIG. 27 0. 63
  • 118. THANK YOU  P e r a n c a n g a n A l a t P r o s e s 2 0 1 4 – K e l o m p o k 3