SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
What you should know after these
           lectures?


               Elena Punskaya
         www-sigproc.eng.cam.ac.uk/~op205




                                            1
Introduction to DSP

•   Understand what is Digital Signal Processing
•   Be able to provide very briefly some examples of applications of DSP
•   Be able to state briefly main DSP limitations
     – aliasing (cannot distinguish between higher and lower frequencies,
       how to prevent – sampling theorem, correct reconstruction – antialias
       filter)
     – frequency resolution (sample for a limited period of time, does not
       pick up relatively slow changes)
     – quantisation error (sampling, loss of info, limited precision)
•   Be able to describe advantages of Digital over Analogue Signal
    Processing
     – reprogrammable / easily portable / duplicable
     – better control of accuracy
     – can be easily stored
     – precise mathematical operations
                                                                       2
DTFT and DFT
•   Be aware of time-domain and frequency-domain analyses
•   Be comfortable with performing fundamental operations for sampled
    signals
     – DTFT, Inverse DTFT
•   Be able to state main problems with computing DTFT on a computer,
    explain how they can be overcome to obtain DFT
•   Be able to derive DFT from DFTF
     – by taking DFTF of the windowed signal
•   Be able to derive
     – spectrum of the windowed signal
     – rectangular window spectrum
•   Be aware of
     – zero-padding
     – Inverse DFT, circular convolution
     – Use of DFT and IDFT to compute standard convolution and thus
        perform linear filtering
                                                                3
FFT

•   Know the basic principles behind radix-2 FFT algorithms
     – N is a power of 2
     – FFT butterfly structure
     – decomposition to reduce evaluation to single point DFT
     – bit reversal operations
     – in place computation
     – the number of computations required to compute one butterfly
     – the total number of stages required
•   Be able to show the total number of complex and real operation
    required to compute N-point FFT
•   Be able to demonstrate the efficiency of FFT compared to DFT (based
    on the total operations count)
•   Be able to five (briefly) examples of applications


                                                                    4
Basics of Digital Filters
•   Be very familiar with the main characteristics
     – time-domain
           linear difference equations
           filter’s unit-sample (impulse) response (linear convolution causal LTI)
     – frequency-domain
           more general, Z-transform domain
             – system transfer function
             – poles and zeros diagram in the z-plane (stability)
           Fourier domain
             – frequency response (distance to poles and zeros, close to pole – magnitude rises,
               close to zero – magnitude falls)
             – spectrum of the signal
•   Be able to state and identify on the diagram main elements of Digital
    Filters
     – adders/multipliers/delays/advances
•   Be able to state four basic ideal filter types
     – lowpass/high-pass/band-pass/band-stop
    and their main characteristics
     – magnitude response and linear phase response
•   Be able to explain briefly why it is impossible to implement an ideal filter
     – needs to be causal to be realised
                                                                                              5
Design of FIR Filters

•   Know main characteristics
     – difference equation/transfer function/impulse response
•   Be aware of FIR using DFT and IDFT implementation
•   Know why linear phase filters are used/understand principles
•   Understand the window method for FIR filters
     – infinite response of the ideal filter and, hence, the need for truncation and shift to the
       right
     – truncation = pre-multiplication by rectangular window
          • a filter of large order has a narrow transition band
          • sharp discontinuity results in side-lobe interference
     – use of windows with no abrupt discontinuity can
•   Know how to use the window method for FIR filters (steps)
•   Be able to explain why the window method is not optimal
     – pass-band and stop-band parameters are equal thus unnecessary high accuracy in the
       pass band
     – the ripple of the window is not uniform – more freedom can be allowed
    Hence be able to give brief examples of other (optimal) methods of FIR
    filter design                                                     6
Design of IIR filters

•   Know main characteristics
    –   difference equation/transfer function/impulse response/stability issue
•   Be familiar with the main concepts of impulse invariant, matched z-
    transform and backward difference method and their disadvantages
•   Be able to state main properties of bilinear transform
    –   produces a digital filter whose frequency response has the same
        characteristics as the frequency response of the analogue filter
    –   maps the Left half s-plane onto the interior of the unit circle in the z-plane,
        ensures stability
        •    monotonic Ω↔ ω mapping
             Ω= 0 is mapped to ω = 0, and Ω = ∞ is mapped to ω = π (half the sampling frequency).
        •
        •    mapping between the frequency variables

•   Know how to use bilinear transform to design IIR filters (steps)
•   Know how to design highpass/bandpass/bandstop filters using frequency
    transformation
•   Be able to state the main problem with bilinear transform
    –   performs a nonlinear mapping of the phase leading to a distortion (or
        warping) of the digital frequency response – hence pre-warping

                                                                                             7
Implementation of Digital Filters

•   Be able to compare IIR and FIR filters
•   Be able to state main concerns of filter implementation and ways of
    addressing them
      – Speed/power (+memory)
•   Be familiar with different forms of realization structures
      – Direct Form I/II
      – cascade/parallel/feedback
      and be able to briefly explain why they are of use
•   Be able to state the undesirable consequences of finite-precision
    filter implementation and explain the strategies for overcoming them
      – Overflow (scaling and saturation arithmetic)
•   Be familiar with roundoff (quantisation) noise generation, limit cycles
    and deadbands


                                                                      8
Thank you!



             9

Contenu connexe

Tendances

Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter designSushant Shankar
 
Design of FIR Filters
Design of FIR FiltersDesign of FIR Filters
Design of FIR FiltersAranya Sarkar
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filtersop205
 
Design of iir digital highpass butterworth filter using analog to digital map...
Design of iir digital highpass butterworth filter using analog to digital map...Design of iir digital highpass butterworth filter using analog to digital map...
Design of iir digital highpass butterworth filter using analog to digital map...Subhadeep Chakraborty
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGNnaimish12
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesAmr E. Mohamed
 
presentation on digital signal processing
presentation on digital signal processingpresentation on digital signal processing
presentation on digital signal processingsandhya jois
 
design of sampling filter
design of sampling filter design of sampling filter
design of sampling filter Anuj Arora
 
Real-Time Signal Processing: Implementation and Application
Real-Time Signal Processing:  Implementation and ApplicationReal-Time Signal Processing:  Implementation and Application
Real-Time Signal Processing: Implementation and Applicationsathish sak
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingAmr E. Mohamed
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filtersop205
 

Tendances (20)

Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
 
digital filters
digital filtersdigital filters
digital filters
 
Design of FIR Filters
Design of FIR FiltersDesign of FIR Filters
Design of FIR Filters
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
 
Lecture 18 (5)
Lecture 18 (5)Lecture 18 (5)
Lecture 18 (5)
 
Signal Filtering
Signal FilteringSignal Filtering
Signal Filtering
 
Digital filter structures
Digital filter structuresDigital filter structures
Digital filter structures
 
Digital signal processor part4
Digital signal processor part4Digital signal processor part4
Digital signal processor part4
 
Design of iir digital highpass butterworth filter using analog to digital map...
Design of iir digital highpass butterworth filter using analog to digital map...Design of iir digital highpass butterworth filter using analog to digital map...
Design of iir digital highpass butterworth filter using analog to digital map...
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGN
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 
Convolution
ConvolutionConvolution
Convolution
 
presentation on digital signal processing
presentation on digital signal processingpresentation on digital signal processing
presentation on digital signal processing
 
1 digital filters (fir)
1 digital filters (fir)1 digital filters (fir)
1 digital filters (fir)
 
Fir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshresthaFir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshrestha
 
design of sampling filter
design of sampling filter design of sampling filter
design of sampling filter
 
Real-Time Signal Processing: Implementation and Application
Real-Time Signal Processing:  Implementation and ApplicationReal-Time Signal Processing:  Implementation and Application
Real-Time Signal Processing: Implementation and Application
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
 
Dsp algorithms 02
Dsp algorithms 02Dsp algorithms 02
Dsp algorithms 02
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 

En vedette

Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filtersop205
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1op205
 
Brief Review of Fourier Analysis
Brief Review of Fourier AnalysisBrief Review of Fourier Analysis
Brief Review of Fourier Analysisop205
 
3 f6 security
3 f6 security3 f6 security
3 f6 securityop205
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filtersop205
 
Implementation of Digital Filters
Implementation of Digital FiltersImplementation of Digital Filters
Implementation of Digital Filtersop205
 
Introduction to Digital Signal Processing
Introduction to Digital Signal ProcessingIntroduction to Digital Signal Processing
Introduction to Digital Signal Processingop205
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transformop205
 
3 f6 9_distributed_systems
3 f6 9_distributed_systems3 f6 9_distributed_systems
3 f6 9_distributed_systemsop205
 
Lecture 6 Software Engineering and Design Good Design
Lecture 6 Software Engineering and Design Good Design Lecture 6 Software Engineering and Design Good Design
Lecture 6 Software Engineering and Design Good Design op205
 
Lecture 7 Software Engineering and Design User Interface Design
Lecture 7 Software Engineering and Design User Interface Design Lecture 7 Software Engineering and Design User Interface Design
Lecture 7 Software Engineering and Design User Interface Design op205
 
More on DFT
More on DFTMore on DFT
More on DFTop205
 
Sound and hearing by mairasadiq
Sound and hearing by mairasadiqSound and hearing by mairasadiq
Sound and hearing by mairasadiqmairasadiq
 
Ecg compression using fft
Ecg compression using fftEcg compression using fft
Ecg compression using fftcjsupreme
 
Advantages of blackman window over hamming window method for designing fir fi...
Advantages of blackman window over hamming window method for designing fir fi...Advantages of blackman window over hamming window method for designing fir fi...
Advantages of blackman window over hamming window method for designing fir fi...Subhadeep Chakraborty
 

En vedette (20)

Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filters
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1
 
Brief Review of Fourier Analysis
Brief Review of Fourier AnalysisBrief Review of Fourier Analysis
Brief Review of Fourier Analysis
 
3 f6 security
3 f6 security3 f6 security
3 f6 security
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filters
 
Implementation of Digital Filters
Implementation of Digital FiltersImplementation of Digital Filters
Implementation of Digital Filters
 
Introduction to Digital Signal Processing
Introduction to Digital Signal ProcessingIntroduction to Digital Signal Processing
Introduction to Digital Signal Processing
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
Filters
FiltersFilters
Filters
 
3 f6 9_distributed_systems
3 f6 9_distributed_systems3 f6 9_distributed_systems
3 f6 9_distributed_systems
 
Lecture 6 Software Engineering and Design Good Design
Lecture 6 Software Engineering and Design Good Design Lecture 6 Software Engineering and Design Good Design
Lecture 6 Software Engineering and Design Good Design
 
Lecture 7 Software Engineering and Design User Interface Design
Lecture 7 Software Engineering and Design User Interface Design Lecture 7 Software Engineering and Design User Interface Design
Lecture 7 Software Engineering and Design User Interface Design
 
Filters
FiltersFilters
Filters
 
More on DFT
More on DFTMore on DFT
More on DFT
 
Fft
FftFft
Fft
 
3 (3)
3 (3)3 (3)
3 (3)
 
Sound and hearing by mairasadiq
Sound and hearing by mairasadiqSound and hearing by mairasadiq
Sound and hearing by mairasadiq
 
Ecg compression using fft
Ecg compression using fftEcg compression using fft
Ecg compression using fft
 
Low pass filter
Low pass filterLow pass filter
Low pass filter
 
Advantages of blackman window over hamming window method for designing fir fi...
Advantages of blackman window over hamming window method for designing fir fi...Advantages of blackman window over hamming window method for designing fir fi...
Advantages of blackman window over hamming window method for designing fir fi...
 

Similaire à Digital Signal Processing Summary

Signal & Image Processing And Analysis For Scientists And Engineers Technical...
Signal & Image Processing And Analysis For Scientists And Engineers Technical...Signal & Image Processing And Analysis For Scientists And Engineers Technical...
Signal & Image Processing And Analysis For Scientists And Engineers Technical...Jim Jenkins
 
Elint Interception & Analysis
Elint Interception & AnalysisElint Interception & Analysis
Elint Interception & AnalysisJim Jenkins
 
Analysis of vibration signals to identify cracks in a gear unit
Analysis of vibration signals to identify cracks in a gear unitAnalysis of vibration signals to identify cracks in a gear unit
Analysis of vibration signals to identify cracks in a gear unitsushanthsjce
 
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORM
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORMA seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORM
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORMमनीष राठौर
 
Digital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsDigital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsFrancois Charlot
 
Filters two design_with_matlab
Filters two design_with_matlabFilters two design_with_matlab
Filters two design_with_matlabresearchwork
 
FIR Filter Design.pptx
FIR Filter Design.pptxFIR Filter Design.pptx
FIR Filter Design.pptxCShiva
 
DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1Sergey Dickey
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
 
Op amp applications filters cw final (2)
Op amp applications filters cw final (2)Op amp applications filters cw final (2)
Op amp applications filters cw final (2)JUNAID SK
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Design of Low Pass Digital FIR Filter Using Cuckoo Search Algorithm
Design of Low Pass Digital FIR Filter Using Cuckoo Search AlgorithmDesign of Low Pass Digital FIR Filter Using Cuckoo Search Algorithm
Design of Low Pass Digital FIR Filter Using Cuckoo Search AlgorithmIJERA Editor
 
Performance Analysis of FIR Filter using FDATool
Performance Analysis of FIR Filter using FDAToolPerformance Analysis of FIR Filter using FDATool
Performance Analysis of FIR Filter using FDAToolijtsrd
 
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...Arthur Sluÿters
 

Similaire à Digital Signal Processing Summary (20)

Signal & Image Processing And Analysis For Scientists And Engineers Technical...
Signal & Image Processing And Analysis For Scientists And Engineers Technical...Signal & Image Processing And Analysis For Scientists And Engineers Technical...
Signal & Image Processing And Analysis For Scientists And Engineers Technical...
 
Elint Interception & Analysis
Elint Interception & AnalysisElint Interception & Analysis
Elint Interception & Analysis
 
Analysis of vibration signals to identify cracks in a gear unit
Analysis of vibration signals to identify cracks in a gear unitAnalysis of vibration signals to identify cracks in a gear unit
Analysis of vibration signals to identify cracks in a gear unit
 
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORM
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORMA seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORM
A seminar on INTRODUCTION TO MULTI-RESOLUTION AND WAVELET TRANSFORM
 
Digital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsDigital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 years
 
Filters two design_with_matlab
Filters two design_with_matlabFilters two design_with_matlab
Filters two design_with_matlab
 
FIR Filter Design.pptx
FIR Filter Design.pptxFIR Filter Design.pptx
FIR Filter Design.pptx
 
DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1
 
Dsp lecture vol 6 design of fir
Dsp lecture vol 6 design of firDsp lecture vol 6 design of fir
Dsp lecture vol 6 design of fir
 
Digital Filters Part 1
Digital Filters Part 1Digital Filters Part 1
Digital Filters Part 1
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
Vibration signal filtering
Vibration signal filteringVibration signal filtering
Vibration signal filtering
 
Op amp applications filters cw final (2)
Op amp applications filters cw final (2)Op amp applications filters cw final (2)
Op amp applications filters cw final (2)
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
dsp-1.pdf
dsp-1.pdfdsp-1.pdf
dsp-1.pdf
 
Digital Filters Part 2
Digital Filters Part 2Digital Filters Part 2
Digital Filters Part 2
 
Design of Low Pass Digital FIR Filter Using Cuckoo Search Algorithm
Design of Low Pass Digital FIR Filter Using Cuckoo Search AlgorithmDesign of Low Pass Digital FIR Filter Using Cuckoo Search Algorithm
Design of Low Pass Digital FIR Filter Using Cuckoo Search Algorithm
 
Performance Analysis of FIR Filter using FDATool
Performance Analysis of FIR Filter using FDAToolPerformance Analysis of FIR Filter using FDATool
Performance Analysis of FIR Filter using FDATool
 
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...
Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeli...
 
Fft analysis
Fft analysisFft analysis
Fft analysis
 

Plus de op205

3 f6 11_softdevmethodologies
3 f6 11_softdevmethodologies3 f6 11_softdevmethodologies
3 f6 11_softdevmethodologiesop205
 
3 f6 8_databases
3 f6 8_databases3 f6 8_databases
3 f6 8_databasesop205
 
3 f6 10_testing
3 f6 10_testing3 f6 10_testing
3 f6 10_testingop205
 
3 f6 9a_corba
3 f6 9a_corba3 f6 9a_corba
3 f6 9a_corbaop205
 
3 f6 9a_corba
3 f6 9a_corba3 f6 9a_corba
3 f6 9a_corbaop205
 
Lecture 5 Software Engineering and Design Design Patterns
Lecture 5 Software Engineering and Design Design PatternsLecture 5 Software Engineering and Design Design Patterns
Lecture 5 Software Engineering and Design Design Patternsop205
 
Lecture 4 Software Engineering and Design Brief Introduction to Programming
Lecture 4 Software Engineering and Design Brief Introduction to ProgrammingLecture 4 Software Engineering and Design Brief Introduction to Programming
Lecture 4 Software Engineering and Design Brief Introduction to Programmingop205
 
Lecture 3 Software Engineering and Design Introduction to UML
Lecture 3 Software Engineering and Design Introduction to UMLLecture 3 Software Engineering and Design Introduction to UML
Lecture 3 Software Engineering and Design Introduction to UMLop205
 
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...Lecture 2 Software Engineering and Design Object Oriented Programming, Design...
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...op205
 
Lecture 1 Software Engineering and Design Introduction
Lecture 1 Software Engineering and Design Introduction Lecture 1 Software Engineering and Design Introduction
Lecture 1 Software Engineering and Design Introduction op205
 

Plus de op205 (10)

3 f6 11_softdevmethodologies
3 f6 11_softdevmethodologies3 f6 11_softdevmethodologies
3 f6 11_softdevmethodologies
 
3 f6 8_databases
3 f6 8_databases3 f6 8_databases
3 f6 8_databases
 
3 f6 10_testing
3 f6 10_testing3 f6 10_testing
3 f6 10_testing
 
3 f6 9a_corba
3 f6 9a_corba3 f6 9a_corba
3 f6 9a_corba
 
3 f6 9a_corba
3 f6 9a_corba3 f6 9a_corba
3 f6 9a_corba
 
Lecture 5 Software Engineering and Design Design Patterns
Lecture 5 Software Engineering and Design Design PatternsLecture 5 Software Engineering and Design Design Patterns
Lecture 5 Software Engineering and Design Design Patterns
 
Lecture 4 Software Engineering and Design Brief Introduction to Programming
Lecture 4 Software Engineering and Design Brief Introduction to ProgrammingLecture 4 Software Engineering and Design Brief Introduction to Programming
Lecture 4 Software Engineering and Design Brief Introduction to Programming
 
Lecture 3 Software Engineering and Design Introduction to UML
Lecture 3 Software Engineering and Design Introduction to UMLLecture 3 Software Engineering and Design Introduction to UML
Lecture 3 Software Engineering and Design Introduction to UML
 
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...Lecture 2 Software Engineering and Design Object Oriented Programming, Design...
Lecture 2 Software Engineering and Design Object Oriented Programming, Design...
 
Lecture 1 Software Engineering and Design Introduction
Lecture 1 Software Engineering and Design Introduction Lecture 1 Software Engineering and Design Introduction
Lecture 1 Software Engineering and Design Introduction
 

Dernier

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Dernier (20)

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

Digital Signal Processing Summary

  • 1. What you should know after these lectures? Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 1
  • 2. Introduction to DSP • Understand what is Digital Signal Processing • Be able to provide very briefly some examples of applications of DSP • Be able to state briefly main DSP limitations – aliasing (cannot distinguish between higher and lower frequencies, how to prevent – sampling theorem, correct reconstruction – antialias filter) – frequency resolution (sample for a limited period of time, does not pick up relatively slow changes) – quantisation error (sampling, loss of info, limited precision) • Be able to describe advantages of Digital over Analogue Signal Processing – reprogrammable / easily portable / duplicable – better control of accuracy – can be easily stored – precise mathematical operations 2
  • 3. DTFT and DFT • Be aware of time-domain and frequency-domain analyses • Be comfortable with performing fundamental operations for sampled signals – DTFT, Inverse DTFT • Be able to state main problems with computing DTFT on a computer, explain how they can be overcome to obtain DFT • Be able to derive DFT from DFTF – by taking DFTF of the windowed signal • Be able to derive – spectrum of the windowed signal – rectangular window spectrum • Be aware of – zero-padding – Inverse DFT, circular convolution – Use of DFT and IDFT to compute standard convolution and thus perform linear filtering 3
  • 4. FFT • Know the basic principles behind radix-2 FFT algorithms – N is a power of 2 – FFT butterfly structure – decomposition to reduce evaluation to single point DFT – bit reversal operations – in place computation – the number of computations required to compute one butterfly – the total number of stages required • Be able to show the total number of complex and real operation required to compute N-point FFT • Be able to demonstrate the efficiency of FFT compared to DFT (based on the total operations count) • Be able to five (briefly) examples of applications 4
  • 5. Basics of Digital Filters • Be very familiar with the main characteristics – time-domain linear difference equations filter’s unit-sample (impulse) response (linear convolution causal LTI) – frequency-domain more general, Z-transform domain – system transfer function – poles and zeros diagram in the z-plane (stability) Fourier domain – frequency response (distance to poles and zeros, close to pole – magnitude rises, close to zero – magnitude falls) – spectrum of the signal • Be able to state and identify on the diagram main elements of Digital Filters – adders/multipliers/delays/advances • Be able to state four basic ideal filter types – lowpass/high-pass/band-pass/band-stop and their main characteristics – magnitude response and linear phase response • Be able to explain briefly why it is impossible to implement an ideal filter – needs to be causal to be realised 5
  • 6. Design of FIR Filters • Know main characteristics – difference equation/transfer function/impulse response • Be aware of FIR using DFT and IDFT implementation • Know why linear phase filters are used/understand principles • Understand the window method for FIR filters – infinite response of the ideal filter and, hence, the need for truncation and shift to the right – truncation = pre-multiplication by rectangular window • a filter of large order has a narrow transition band • sharp discontinuity results in side-lobe interference – use of windows with no abrupt discontinuity can • Know how to use the window method for FIR filters (steps) • Be able to explain why the window method is not optimal – pass-band and stop-band parameters are equal thus unnecessary high accuracy in the pass band – the ripple of the window is not uniform – more freedom can be allowed Hence be able to give brief examples of other (optimal) methods of FIR filter design 6
  • 7. Design of IIR filters • Know main characteristics – difference equation/transfer function/impulse response/stability issue • Be familiar with the main concepts of impulse invariant, matched z- transform and backward difference method and their disadvantages • Be able to state main properties of bilinear transform – produces a digital filter whose frequency response has the same characteristics as the frequency response of the analogue filter – maps the Left half s-plane onto the interior of the unit circle in the z-plane, ensures stability • monotonic Ω↔ ω mapping Ω= 0 is mapped to ω = 0, and Ω = ∞ is mapped to ω = π (half the sampling frequency). • • mapping between the frequency variables • Know how to use bilinear transform to design IIR filters (steps) • Know how to design highpass/bandpass/bandstop filters using frequency transformation • Be able to state the main problem with bilinear transform – performs a nonlinear mapping of the phase leading to a distortion (or warping) of the digital frequency response – hence pre-warping 7
  • 8. Implementation of Digital Filters • Be able to compare IIR and FIR filters • Be able to state main concerns of filter implementation and ways of addressing them – Speed/power (+memory) • Be familiar with different forms of realization structures – Direct Form I/II – cascade/parallel/feedback and be able to briefly explain why they are of use • Be able to state the undesirable consequences of finite-precision filter implementation and explain the strategies for overcoming them – Overflow (scaling and saturation arithmetic) • Be familiar with roundoff (quantisation) noise generation, limit cycles and deadbands 8