SlideShare une entreprise Scribd logo
1  sur  29
Télécharger pour lire hors ligne
MASTERS THESIS DEFENSE


REMOVAL OF LUNAR DUST INSIDE CONFINED SPACE AND
   EFFECT OF SHAPE IRREGULARITY ON PARTICLE
                  MIGRATION


                      Presented By
                  Prashant M. Ghadge
                Advisor : Dr. Xianchang Li




             Department of Mechanical Engineering
              (Lamar University, Beaumont, Texas)
Part I
Tracking of Irregular Shaped
Particle

             Part II
         Modeling and Simulation
          of Lunar Dust Remover
PART I: TASKS

1.   Literature review
2.   Effect of shape on force coefficients
3.   Tracking algorithm
4.   Application of UDF
5.   Particle tracking
6.   Results
STUDY OF SHAPE
Various Shapes    Moon dust from Apollo 11




                    Source:<www.sandgrains.com>
MOTION STUDY
           ΔT (Time Step)
           ΔT




Translation + Rotation
(CD & CL)     (T & θ)
TRANSLATION
                START
          I, m, θ, CD, CL & T

             From θ  T

                 α=T/I             CD & C L
              ω = ω0 + αt

          θp = θ0 + ωt + ½ αt2

         θf = tan-1(Vyrel/Vxrel)
Y
               θ = θp - θ f

 Steps      θ  CD and FD
  or       θ0 = θ and ω0= ω
Domain
N
STOP
MODEL TO STUDY TRANSLATION
              Elliptical Barrier

V


      Y

          X




                                   0.05 X 0.1 m
                                   2D flow path

                                    Elliptical barrier tilted
                                    at different angle
FORCES ACTING ON THE BARRIER

                                         FD = Drag force (N)
                                          FD = CD 1/2 ρ V2 A
               Lift                      FL = Lift force (N)
                        Drag              FL = CL 1/2 ρ V2 A
              Gravity                    CD = Drag coefficient
                                         CL = Lift coefficient
                                         ρ = Density of fluid
                                         V = Flow velocity
                                         A = Characteristic frontal
Velocity vectors at elliptical barrier        area of the body
VARIATION WITH ANGLE




Variation of Coefficient   Variation of Coefficient
        of Drag                     of Lift
VARIATION OF CD WITH ANGLE
ROTATION
               START
         I, m, θ, CD, CL & T

             From θ  T

                 α=T/I             Torque T
              ω = ω0 + αt

         θp = θ0 + ωt + ½ αt2

         θf = tan-1(Vyrel/Vxrel)
Y
               θ = θp - θ f

 Steps      θ  CD and FD
  or       θ0 = θ and ω0= ω
Domain
N
STOP
STUDY OF TORQUE




Shear Force      Pressure Force

Torque = Force × Displacement
VARYING TORQUE WITH ANGLE
UDF FOR ELLIPTICAL PARTICLE

                         Relative Reynolds
                         Number


                         Drag

                                Lift




                          Relative Angle
STRAIGHT CHANNEL
                     6.4




Spherical
Particle Track

                    0 Sec




                                  Comparison of
                            Spherical & Elliptical
                                   Particle Track
ELBOW CHANNEL
                5m
 133




                          5m


        Y

            X
0 Sec


                                     Comparison of
        Spherical
                               Spherical & Elliptical
        Particle Track
                                      Particle Track
RESULTS AND DISCUSSION
From the study of forces
   CD and CL decreases with Re
   T increases with Re
   Graph follows similar pattern
   SHAPE is important factor
PART II : LUNAR DUST REMOVER
                                Inlet
                                                      Inner Door




                       Blower
 Air
 Filter                   Dust
                          Remover          Enclosed
                                           Capsule

          Outer Door                       Wall



                                        Outlet
BOUNDARY CONDITIONS AND PARAMETERS

Boundary Conditions         Parameters
1. Inlet : Velocity inlet   1. Velocity = 4 m/s
2. Outlet : Pressure Outlet 2. Swirl components :
3. Sidewall : Wall             Radial = 0.3
                               Tangential = 0.3
4. Object : Wall               Axial = -1
                            3. Re = 250,000
RECTANGULAR MODEL
                                    18




                                   0 Sec




              Velocity Pathlines           Particle Track
Pro-E model   Simple flow                  Swirl flow
CYLINDRICAL MODEL
               11.8               1




              0 Sec             0 m/s




               Particle Track    Velocity Pathlines
Pro-E model   Simple flow               Swirl flow
MORE DUST REMOVER MODEL




Dome Shaped Model   Pear Shaped Model
DOME SHAPED MODEL




Velocity pathlines and vectors   Particle track
       Simple flow               Swirl flow
PEAR SHAPED MODEL




Velocity vectors   Particle track
  Swirl flow        Swirl flow
COMPARISON: PARTICLE ESCAPED
                            Particle Escaped
   Model       Flow type       out of 100
                           In 30 Sec.   In 60 Sec.
              Simple          28           37
Rectangular
              Swirl           30           54
              Simple          52           75
Cylindrical
              Swirl           32           50
              Simple          85           89
Dome Shape
              Swirl           57           87
              Simple          47           49
Pear Shape
              Swirl          100          100
COMPARISON OF MODELS




 Particles
Removed
Out of 100


                     Models
RESULTS AND DISCUSSION
From the study of Lunar dust remover
   Pear Shaped Model:
    I. Particle Escaped = 100
    II. Maximum Time = 21 Sec
    III. Mass of Air Needed = 12.6 kg
    IV. Better Design
CONCLUSION
1.   UDF for lift, drag and torque
2.   Tracking of elliptical particle
3.   Model: Pear shaped
4.   Flow: Swirl
THANK YOU

Contenu connexe

En vedette

Problems faced by smart school
Problems faced by smart schoolProblems faced by smart school
Problems faced by smart school
Umi Biee
 
The State of Inbound Marketing - HubSpot Report - January 2009
The State of Inbound Marketing - HubSpot Report - January 2009The State of Inbound Marketing - HubSpot Report - January 2009
The State of Inbound Marketing - HubSpot Report - January 2009
Steven Duque
 
Lab dr rosmila
Lab dr rosmilaLab dr rosmila
Lab dr rosmila
Umi Biee
 
Syllubus form4
Syllubus form4Syllubus form4
Syllubus form4
Umi Biee
 
Lowry vs biuret final (1)
Lowry vs biuret final (1)Lowry vs biuret final (1)
Lowry vs biuret final (1)
Umi Biee
 
P h indicator
P h indicatorP h indicator
P h indicator
Umi Biee
 
Food energy
Food energyFood energy
Food energy
Umi Biee
 
Lab report lipid
Lab report lipidLab report lipid
Lab report lipid
Umi Biee
 
Fonctionnaires
FonctionnairesFonctionnaires
Fonctionnaires
upsi
 
Todos los paises tienen su capullo
Todos los paises tienen su capulloTodos los paises tienen su capullo
Todos los paises tienen su capullo
papapelos
 
Cochessucios
CochessuciosCochessucios
Cochessucios
papapelos
 
Cada pais tiene su capullo.
Cada pais tiene su capullo.Cada pais tiene su capullo.
Cada pais tiene su capullo.
papapelos
 

En vedette (20)

Problems faced by smart school
Problems faced by smart schoolProblems faced by smart school
Problems faced by smart school
 
San Francisco Distress Index
San Francisco Distress IndexSan Francisco Distress Index
San Francisco Distress Index
 
The State of Inbound Marketing - HubSpot Report - January 2009
The State of Inbound Marketing - HubSpot Report - January 2009The State of Inbound Marketing - HubSpot Report - January 2009
The State of Inbound Marketing - HubSpot Report - January 2009
 
Future of Consumerism - MITX FutureM Conference 2010 - AMP Agency Presentation
Future of Consumerism - MITX FutureM Conference 2010 - AMP Agency Presentation Future of Consumerism - MITX FutureM Conference 2010 - AMP Agency Presentation
Future of Consumerism - MITX FutureM Conference 2010 - AMP Agency Presentation
 
Irregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust RemoIrregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust Remo
 
Lab dr rosmila
Lab dr rosmilaLab dr rosmila
Lab dr rosmila
 
Social Recruiting | How to Get Started | a Free e-Book by Bullhorn Reach
Social Recruiting | How to Get Started | a Free e-Book by Bullhorn ReachSocial Recruiting | How to Get Started | a Free e-Book by Bullhorn Reach
Social Recruiting | How to Get Started | a Free e-Book by Bullhorn Reach
 
Syllubus form4
Syllubus form4Syllubus form4
Syllubus form4
 
Lowry vs biuret final (1)
Lowry vs biuret final (1)Lowry vs biuret final (1)
Lowry vs biuret final (1)
 
P h indicator
P h indicatorP h indicator
P h indicator
 
Kamburov group learning strategies
Kamburov group learning strategiesKamburov group learning strategies
Kamburov group learning strategies
 
Today’s consumer and how contact data affects relationships - An Experian QAS...
Today’s consumer and how contact data affects relationships - An Experian QAS...Today’s consumer and how contact data affects relationships - An Experian QAS...
Today’s consumer and how contact data affects relationships - An Experian QAS...
 
Optimization of Thermal Systems
Optimization of Thermal SystemsOptimization of Thermal Systems
Optimization of Thermal Systems
 
Food energy
Food energyFood energy
Food energy
 
Lab report lipid
Lab report lipidLab report lipid
Lab report lipid
 
Fonctionnaires
FonctionnairesFonctionnaires
Fonctionnaires
 
Todos los paises tienen su capullo
Todos los paises tienen su capulloTodos los paises tienen su capullo
Todos los paises tienen su capullo
 
Cochessucios
CochessuciosCochessucios
Cochessucios
 
Minitash
MinitashMinitash
Minitash
 
Cada pais tiene su capullo.
Cada pais tiene su capullo.Cada pais tiene su capullo.
Cada pais tiene su capullo.
 

Similaire à Defense prashant

Mec3609 ht radiation
Mec3609 ht radiationMec3609 ht radiation
Mec3609 ht radiation
Faez Rudin
 

Similaire à Defense prashant (20)

Unit Operation-II (Settling and Sedimentation-1).pdf
Unit Operation-II (Settling and Sedimentation-1).pdfUnit Operation-II (Settling and Sedimentation-1).pdf
Unit Operation-II (Settling and Sedimentation-1).pdf
 
ch05_.pdf.pdf
ch05_.pdf.pdfch05_.pdf.pdf
ch05_.pdf.pdf
 
Introduction to Dynamics
Introduction to DynamicsIntroduction to Dynamics
Introduction to Dynamics
 
Chap2 s11b
Chap2 s11bChap2 s11b
Chap2 s11b
 
IARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdfIARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdf
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...
 
Modeling and Roll, Pitch and Yaw Simulation of Quadrotor.
Modeling and Roll, Pitch and Yaw Simulation of Quadrotor.Modeling and Roll, Pitch and Yaw Simulation of Quadrotor.
Modeling and Roll, Pitch and Yaw Simulation of Quadrotor.
 
Kaplan turbines
Kaplan turbinesKaplan turbines
Kaplan turbines
 
Ch05
Ch05Ch05
Ch05
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Cyclones
CyclonesCyclones
Cyclones
 
Master Thesis Presentation: Numerical Simulation of Modelled Blood Cells in a...
Master Thesis Presentation: Numerical Simulation of Modelled Blood Cells in a...Master Thesis Presentation: Numerical Simulation of Modelled Blood Cells in a...
Master Thesis Presentation: Numerical Simulation of Modelled Blood Cells in a...
 
Ch05 ppts callister7e
Ch05 ppts callister7eCh05 ppts callister7e
Ch05 ppts callister7e
 
Mec3609 ht radiation
Mec3609 ht radiationMec3609 ht radiation
Mec3609 ht radiation
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary Layer
 
Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction
 
chapter8.ppt
chapter8.pptchapter8.ppt
chapter8.ppt
 
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
 
2014.10.dartmouth
2014.10.dartmouth2014.10.dartmouth
2014.10.dartmouth
 
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
 

Defense prashant

  • 1. MASTERS THESIS DEFENSE REMOVAL OF LUNAR DUST INSIDE CONFINED SPACE AND EFFECT OF SHAPE IRREGULARITY ON PARTICLE MIGRATION Presented By Prashant M. Ghadge Advisor : Dr. Xianchang Li Department of Mechanical Engineering (Lamar University, Beaumont, Texas)
  • 2. Part I Tracking of Irregular Shaped Particle Part II Modeling and Simulation of Lunar Dust Remover
  • 3. PART I: TASKS 1. Literature review 2. Effect of shape on force coefficients 3. Tracking algorithm 4. Application of UDF 5. Particle tracking 6. Results
  • 4. STUDY OF SHAPE Various Shapes Moon dust from Apollo 11 Source:<www.sandgrains.com>
  • 5. MOTION STUDY ΔT (Time Step) ΔT Translation + Rotation (CD & CL) (T & θ)
  • 6. TRANSLATION START I, m, θ, CD, CL & T From θ  T α=T/I CD & C L ω = ω0 + αt θp = θ0 + ωt + ½ αt2 θf = tan-1(Vyrel/Vxrel) Y θ = θp - θ f Steps θ  CD and FD or θ0 = θ and ω0= ω Domain N STOP
  • 7. MODEL TO STUDY TRANSLATION Elliptical Barrier V Y X 0.05 X 0.1 m 2D flow path Elliptical barrier tilted at different angle
  • 8. FORCES ACTING ON THE BARRIER FD = Drag force (N) FD = CD 1/2 ρ V2 A Lift FL = Lift force (N) Drag FL = CL 1/2 ρ V2 A Gravity CD = Drag coefficient CL = Lift coefficient ρ = Density of fluid V = Flow velocity A = Characteristic frontal Velocity vectors at elliptical barrier area of the body
  • 9. VARIATION WITH ANGLE Variation of Coefficient Variation of Coefficient of Drag of Lift
  • 10. VARIATION OF CD WITH ANGLE
  • 11. ROTATION START I, m, θ, CD, CL & T From θ  T α=T/I Torque T ω = ω0 + αt θp = θ0 + ωt + ½ αt2 θf = tan-1(Vyrel/Vxrel) Y θ = θp - θ f Steps θ  CD and FD or θ0 = θ and ω0= ω Domain N STOP
  • 12. STUDY OF TORQUE Shear Force Pressure Force Torque = Force × Displacement
  • 14. UDF FOR ELLIPTICAL PARTICLE Relative Reynolds Number Drag Lift Relative Angle
  • 15. STRAIGHT CHANNEL 6.4 Spherical Particle Track 0 Sec Comparison of Spherical & Elliptical Particle Track
  • 16. ELBOW CHANNEL 5m 133 5m Y X 0 Sec Comparison of Spherical Spherical & Elliptical Particle Track Particle Track
  • 17. RESULTS AND DISCUSSION From the study of forces  CD and CL decreases with Re  T increases with Re  Graph follows similar pattern  SHAPE is important factor
  • 18. PART II : LUNAR DUST REMOVER Inlet Inner Door Blower Air Filter Dust Remover Enclosed Capsule Outer Door Wall Outlet
  • 19. BOUNDARY CONDITIONS AND PARAMETERS Boundary Conditions Parameters 1. Inlet : Velocity inlet 1. Velocity = 4 m/s 2. Outlet : Pressure Outlet 2. Swirl components : 3. Sidewall : Wall Radial = 0.3 Tangential = 0.3 4. Object : Wall Axial = -1 3. Re = 250,000
  • 20. RECTANGULAR MODEL 18 0 Sec Velocity Pathlines Particle Track Pro-E model Simple flow Swirl flow
  • 21. CYLINDRICAL MODEL 11.8 1 0 Sec 0 m/s Particle Track Velocity Pathlines Pro-E model Simple flow Swirl flow
  • 22. MORE DUST REMOVER MODEL Dome Shaped Model Pear Shaped Model
  • 23. DOME SHAPED MODEL Velocity pathlines and vectors Particle track Simple flow Swirl flow
  • 24. PEAR SHAPED MODEL Velocity vectors Particle track Swirl flow Swirl flow
  • 25. COMPARISON: PARTICLE ESCAPED Particle Escaped Model Flow type out of 100 In 30 Sec. In 60 Sec. Simple 28 37 Rectangular Swirl 30 54 Simple 52 75 Cylindrical Swirl 32 50 Simple 85 89 Dome Shape Swirl 57 87 Simple 47 49 Pear Shape Swirl 100 100
  • 26. COMPARISON OF MODELS Particles Removed Out of 100 Models
  • 27. RESULTS AND DISCUSSION From the study of Lunar dust remover  Pear Shaped Model: I. Particle Escaped = 100 II. Maximum Time = 21 Sec III. Mass of Air Needed = 12.6 kg IV. Better Design
  • 28. CONCLUSION 1. UDF for lift, drag and torque 2. Tracking of elliptical particle 3. Model: Pear shaped 4. Flow: Swirl