SlideShare une entreprise Scribd logo
1  sur  41
ASYNCHRONOUS TRANSFER MODE
BROADBAND DIGITAL NETWORK
Group Members:
SANIA DANISH
SHUAIB ALI
ZILLAY HUMA
RAMSHA JAMAL
ZAHID ALI
DAWOOD UNIVERSITY OF ENGINEERING AND TECHNOLOGY
Main Objectives
Introduction of ATM
Why ATM
Architecture of ATM
How ATM Works
ATM Layers
The term broadband is used to describe a type of data transmission in
which a single medium (wire) can carry several channels at once. Cable
TV, for example, uses broadband transmission. and DSL modems
(which use your existing phone line).
 Relationship Between ATM and B-ISDN
ATM evolved from the standardization efforts for B-ISDN.
ATM is the technology upon which B-ISDN is based.
 BROADBAND
 WHAT’S ATM?
• ATM is Asynchronous Transfer Mode.
• ATM is a connection-oriented, high-speed, low-delay switching and
transmission technology that uses short and fixed-size packets, called
cells, to transport information.
• ATM is originally the transfer mode for implementing Broadband ISDN
(B-ISDN) but it is also implemented in non-ISDN environments where
very high data rates are required
ATM Overview
• Used in both WAN and LAN settings
• Packets are called cells (53 bytes)
• 5-byte header + 48-byte payload
• Commonly transmitted over SONET
• other physical layers possible
• Connections can be switched (SVC), or permanent (PVC).
• ATM operates on a best effort basis.
• ATM guarantees that cells will not be disordered.
5 octets 48 octets
53 octets
Header Information
Asynchronous TDM
• ATM uses asynchronous time-division
multiplexing-that is why it is called
Asynchronous Transfer Mode-to
multiplex cells corning from different
channels. It uses fixed-size slots (size of
a cell). ATM multiplexers fill a slot with a
cell from any input channel that has a
cell; the slot is empty if none of the
channels has a cell to send
WHY ATM ??
International standard-based technology (for interoperability)
Low variance of delay (for voice and video transmission)
Guaranteed quality of service
High capacity switching (multi-giga bits per second)
Bandwidth flexibility (dynamically assigned to users)
Medium not shared for ATM LAN (no degradation in performance as traffic load or
number of users increases)
Supports a wide range of user access speeds
Supports audio, video, imagery, and data traffic (for integrated services)
Problems
• Frame Networks
Before ATM, data communications at the data
link layer had been based on frame switching and
frame networks. Different protocols use frames of
varying size and intricacy. As networks become
more complex, the information that must be
carried in the header becomes more extensive.
The result is larger and larger headers relative to
the size of the data unit.
 Problems (cont.)
• Large Data Fields
In response, some protocols have enlarged
the size of the data unit to make header use
more efficient (sending more data with the
same size header). Unfortunately, large data
fields create waste. If there is not much
information to transmit, much of the field
goes unused. To improve utilization, some
protocols provide variable frame sizes to
users.
Problems(cont.)
• Mixed Network Traffic
As you can imagine, the variety of frame sizes makes traffic
unpredictable. Internetworking among the different frame
networks is slow and expensive at best, and impossible at
worst.
Another problem is that of providing consistent data rate
delivery when frame sizes are unpredictable and can vary so
dramatically
ATM provides the solution
• Cell Networks
• Many of the problems associated with frame
internetworking are solved by adopting a concept called
cell networking.
• A cell is a small data unit of fixed size. In a cell network, which uses
the cell as the basic unit of data exchange, all data are loaded into
identical cells that can be transmitted with complete predictability
and uniformity.
As frames of different sizes and formats reach
the cell network from a tributary network, they
are split into multiple small data units of equal
length and are loaded into cells. The cells are
then multiplexed with other cells and routed
through the cell network. Because each cell is
the same size and all are small, the problems
associated with multiplexing different-sized
frames are avoided.
ARCHITECTURE OF ATM
Consider a SWITCH..
For WAN, Lots of Switches
Lots of Switches leads to lots of Users
U
N
I
U
N
I
NNI NNI
NNI
N
NI
NNI
UNI= USER to NETWORK INTERFACE
NNI= NETWORK To NETWORK
INTERFACE
User 1
User 2
User 3
User 4
User 1
User 2
User 3
User 4
Transmission Path
Transmission Path
Transmission path (TP)
• A transmission path (TP) is the physical connection (wire, cable, satellite, and so
on) between an endpoint and a switch or between two switches. Think of two
switches as two cities.
• A transmission path is divided into several virtual paths. A virtual path (VP)
provides a connection or a set of connections between two switches.
• Cell networks are based on virtual circuits (VCs). All cells belonging to a single
message follow the same virtual circuit and remain in their original order until
they reach their destination.
Identifiers
• In a virtual circuit network, to route data
from one endpoint to another, the virtual
connections need to be identified.
• Virtual path identifier (VPI) : defines the
specific VP
• Virtual-circuit identifier (VCl): defines a
particular VC inside the VP.
• The VPI is the same for all virtual
connections that are bundled (logically)
into one VP.
VPI
VCI
VPI=Virtual path identifier
VCI=Virtual Circuit Identifier
Length of Identifiers
 Length of VPI in User Network Interface:
8 bits
 Length of VPI in Network To Network Interface:
12 bits
 Length of VCI will remain same in UNI and NNI:
16 bits
ATM Cell Format
 ATM cell is only 53 bytes long with 5 bytes allocated to the header
and 48 bytes carrying the payload.
 ATM header
also contain
different fields
except VPI
and VCI
GFC - the Generic Flow Control: field provides local functions such as identifying
multiple stations that share a single ATM interface
VPI - the Virtual Path Identifier: is used together with the Virtual Channel
Identifier (VCI) to identify the virtual circuit.
VCI - the Virtual Channel Identifier: is used together with the Virtual Path
Identifier (VPI) to identify the virtual circuit along which the cell will be directed as it
passes through an ATM network on the way to its destination (values of 0 to 31 are
reserved).
PT –Payload Type:
• If 1st bit=1, then cell has Control data
• If 1st bit=0, then cell contains User data
• If 2nd bit=1, Congestion occurs
• If 2nd bit=0, No Congestion
• If 3rd bit=1, this cell is the last one
CLP - the Cell Loss Priority: bit field indicates whether the cell should . be discarded
if it encounters extreme congestion as it moves through the network. If set to 1, the cell
should be discarded before cells that have the bit set to 0.
HEC - the Header Error Control: field contains a checksum calculated on the first 4
bytes of the header. It can be used to correct a single bit error in these byte.
ATM uses two types of connections:
• ATM provides permanent virtual
connections and switched virtual
connections.
 Permanent Virtual Connections (PVC)
Permanent connections set up manually by
network manager.
 Switched Virtual Connections (SVC)
Set up and released on
demand by the end user
via signaling procedures.
STEPS Of Establishing ATM Connection:
• Source PC uses Q.2931 procedures (VPI=0/VCI=5) to setup an ATM connection.
The local ATM switch receives the signaling message and passes it to the
Connection Manager. The Connection Manager the level of services for that
machine calculates the bandwidth required to setup this connection for the
forward and reverse paths. If the bandwidth on either the reverse channel or
the forward channel is not available, alternate paths are examined.
• The setup message is then sent back to the
Network Switch to allocate the necessary
links.
• The Network switch forwards the connection setup request to the
destination machine.
• The Network switch receives the connection-accept message from the
destination machine.
• Once the Network switch receives the connection-accept message from the
called PC, it passes the information to the Connection Manager.
• The Connection Manager allocates the reverse channel capacity for the
called party.
• Connection Manager informs the Local switch that the connection has been
accepted.
• Connection Manager confirms the connection to the destination PC.
• Connection Manager informs the source PC and data transmission can
begin.
STEPS cont.
How ATM works to connect a setup:
The ATM routing protocol
• The Private Network Node Interface (PNNI) protocol provides both topology-
discovery and call-establishment services.
• PNNI uses the same shortest-path-first algorithm (OSPF).
• A PNNI routing table within each switch maintains information about network
routes and the bandwidth available on individual links.
• PNNI routing table to determine a path to the intended destination that meets
the specified Quality of Service (QoS).
SERVICE CATEGORIES:
• Represents particular combination of traffic and QoS parameters:
 Constant Bit Rate (CBR):Supports real-time applications. Supports real-time
applications requiring tightly constrained delay variation.
 Real-Time Variable Bit Rate (RT-VBR):Deals with real-time applications with
bursty traffic.
Non Real-Time Variable Bit Rate (NRT-
VBR):Deals with non-real time
applications wit bursty traffic.
Unspecified Bit Rate (UBR):Represents
“best effort service” for non real-time
applications.
Available Bit Rate (ABR):Similar to UBR
but enhanced to handle applications of
low bandwidth
Revised ATM Service Categories
ATM LAYERS
ATM Layers
• ATM works on three basic layers:
ATM adaption Layer
ATM Layer
Physical Layer
PMD Sublayer
Transmission Convergence
Sublayer
Physical Layer:
• The physical layer provides for the
transmission and reception of ATM cells
across a physical medium between two
ATM devices. This can be a transmission
between an ATM endpoint and an ATM
switch, or it can be between two ATM
switches.
• The physical layer is subdivided into a
Physical Medium Dependent sublayer
and Transmission Convergence sublayer.
Physical
PMD
Transmission Convergence
ATM
ATM ADAPTION
Data
Transfer
PMD Sublayer
• The Physical Medium
Dependent (PMD) sublayer is
responsible for the transmission
and reception of individual bits
on a physical medium.
• These responsibilities
encompass bit timing, signal
encoding, interacting with the
physical medium, and the cable
or wire itself.
PMD
Transmission Convergence
ATM
ATM ADAPTION
Data
Transfer
Physical
Transmission Convergence
Sublayer
• The Transmission Convergence
(TC) sublayer functions as a
converter between the bit stream
of ATM cells and the PMD
sublayer.
• When transmitting, the TC
sublayer maps ATM cells onto the
format of the PMD sublayer
PMD
Transmission Convergence
ATM
ATM ADAPTION
Data
Transfer
Physical
ATM Layer
• The ATM layer multiplexes and de-
multiplexes and routes ATM cells,
and ensures their sequence from end
to end.
• If a cell is dropped by a switch due to
congestion or corruption, it is not the
responsibility of the ATM layer to
correct the dropped cell by means of
retransmission or to notify other
layers of the dropped cell.
• Layers above the ATM layer must
detect the lost cell and decide
whether to correct it or disregard it.
PMD
Transmission Convergence
ATM
ATM ADAPTION
Data
Transfer
Physical
ATM Adaptation Layer
• The ATM Adaptation Layer (AAL)
creates and receives 48-byte
payloads through the lower
layers of ATM on behalf of
different types of applications.
• There are five different types of
AALs, each providing a distinct
class of service.
PMD
Transmission Convergence
ATM
ATM ADAPTION
Data
Transfer
Physical
ATM Adaptation Layer (AAL) Types
In order for ATM to support a variety of services with different traffic
characteristics and system requirements:
• It is necessary to adapt the different classes of applications to the ATM layer.
• This function is performed by the AAL, which is service-dependent.
• Four types of AAL were proposed, but two of these (3 and 4) have now been
merged into one, AAL 3/4:
– AAL 1: Supports connection-oriented, constant bit rate, time-dependent services.
– AAL 2: Supports connection-oriented services that do not require constant bit
rates.
– AAL 3/4: Intended for both connectionless and connection oriented variable bit
rate services.
– AAL 5: Supports connection-oriented variable bit rate data services.
• More efficient compared with AAL 3/4 at the expense of error recovery and built in
retransmission.
 Conclusion
ATM has received a lot of attention recently because of its exciting promises.
With ATM, the bottlenecks of the current networks will be solved, networked
multimedia capabilities like video conferencing, home shopping, home
education, video library, etc. will be brought to the desktops.
Due to its high speed and the integration of traffic types (voice, data, and video
can be transported on the same network).
ATM can accommodate the upcoming new teleservices easily even the
requirements for these services are unknown. It also improves the efficiency and
simplifies the management of the network by using the same technology for all
levels of the network.
The ATM Forum has sponsored interoperability demonstrations to prove the
technology and continues to meet to discuss the uncertain problems of ATM. At
the moment, ATM coexists with current LAN/WAN Technology. Equipment,
Services and Applications are available today and are being used in live networks.
The telecommunications industry is converging on ATM!
ATM

Contenu connexe

Tendances

Tendances (20)

Unit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.pptUnit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.ppt
 
Cellular communication
Cellular communicationCellular communication
Cellular communication
 
Sonet (synchronous optical networking )
Sonet (synchronous optical networking )Sonet (synchronous optical networking )
Sonet (synchronous optical networking )
 
Optical networking
Optical networkingOptical networking
Optical networking
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniques
 
Energy conservation in wireless sensor networks
Energy conservation in wireless sensor networksEnergy conservation in wireless sensor networks
Energy conservation in wireless sensor networks
 
VIRTUAL CIRCUIT NETWORKS, atm , frame relay
VIRTUAL CIRCUIT NETWORKS, atm , frame relayVIRTUAL CIRCUIT NETWORKS, atm , frame relay
VIRTUAL CIRCUIT NETWORKS, atm , frame relay
 
Wavelength division multiplexing
Wavelength division multiplexingWavelength division multiplexing
Wavelength division multiplexing
 
TDMA
TDMATDMA
TDMA
 
Atm intro
Atm introAtm intro
Atm intro
 
SPINS: Security Protocols for Sensor Networks
SPINS: Security Protocols for Sensor NetworksSPINS: Security Protocols for Sensor Networks
SPINS: Security Protocols for Sensor Networks
 
Pulse code modulation and Demodulation
Pulse code modulation and DemodulationPulse code modulation and Demodulation
Pulse code modulation and Demodulation
 
ATM Networking Concept
ATM Networking ConceptATM Networking Concept
ATM Networking Concept
 
IEEE 802.11
IEEE 802.11IEEE 802.11
IEEE 802.11
 
OFDM
OFDMOFDM
OFDM
 
Atm
AtmAtm
Atm
 
Wireless local loop
Wireless local loopWireless local loop
Wireless local loop
 
Ofdm
OfdmOfdm
Ofdm
 
SRAM
SRAMSRAM
SRAM
 
UNIT-3 : CHANNEL CODING
UNIT-3 : CHANNEL CODINGUNIT-3 : CHANNEL CODING
UNIT-3 : CHANNEL CODING
 

Similaire à ATM

Similaire à ATM (20)

Asynchronous Transfer ModeATM is originally the transfer mode for implementin...
Asynchronous Transfer ModeATM is originally the transfer mode for implementin...Asynchronous Transfer ModeATM is originally the transfer mode for implementin...
Asynchronous Transfer ModeATM is originally the transfer mode for implementin...
 
Ch 02 (1)
Ch 02 (1)Ch 02 (1)
Ch 02 (1)
 
Ch 02 (1)
Ch 02 (1)Ch 02 (1)
Ch 02 (1)
 
Atm Percobaan
Atm PercobaanAtm Percobaan
Atm Percobaan
 
Asynchronous Transfer Mode (ATM)
Asynchronous Transfer Mode (ATM)Asynchronous Transfer Mode (ATM)
Asynchronous Transfer Mode (ATM)
 
Asynchronous transfer mode (atm) in computer network
Asynchronous transfer mode (atm) in computer networkAsynchronous transfer mode (atm) in computer network
Asynchronous transfer mode (atm) in computer network
 
Group#04-PPT-IA&P.pptx
Group#04-PPT-IA&P.pptxGroup#04-PPT-IA&P.pptx
Group#04-PPT-IA&P.pptx
 
Asynchronous transfer mode (ATM)
Asynchronous transfer mode (ATM)Asynchronous transfer mode (ATM)
Asynchronous transfer mode (ATM)
 
Asynchronous Transfer Mode
Asynchronous Transfer ModeAsynchronous Transfer Mode
Asynchronous Transfer Mode
 
ATM.pdf
ATM.pdfATM.pdf
ATM.pdf
 
Atm( Asynchronous Transfer mode )
Atm( Asynchronous Transfer mode )Atm( Asynchronous Transfer mode )
Atm( Asynchronous Transfer mode )
 
Atm 090904084052-phpapp02
Atm 090904084052-phpapp02Atm 090904084052-phpapp02
Atm 090904084052-phpapp02
 
Frame relay
Frame relayFrame relay
Frame relay
 
Asynchronous Transfer Mode ATM
Asynchronous Transfer Mode  ATMAsynchronous Transfer Mode  ATM
Asynchronous Transfer Mode ATM
 
ATM (asynchronous transfer mode)
ATM (asynchronous transfer mode)ATM (asynchronous transfer mode)
ATM (asynchronous transfer mode)
 
S dutta
S duttaS dutta
S dutta
 
high speed network notes for both cse and ece students
high speed network notes for both cse and ece studentshigh speed network notes for both cse and ece students
high speed network notes for both cse and ece students
 
Asychronous transfer mode(atm)
Asychronous transfer mode(atm)Asychronous transfer mode(atm)
Asychronous transfer mode(atm)
 
Doc 20191126-wa0106
Doc 20191126-wa0106Doc 20191126-wa0106
Doc 20191126-wa0106
 
Switching systems lecture6
Switching  systems lecture6Switching  systems lecture6
Switching systems lecture6
 

Dernier

2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs
2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs
2nd Solid Symposium: Solid Pods vs Personal Knowledge GraphsEleniIlkou
 
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort Service
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort ServiceBusty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort Service
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort ServiceDelhi Call girls
 
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrStory Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrHenryBriggs2
 
Microsoft Azure Arc Customer Deck Microsoft
Microsoft Azure Arc Customer Deck MicrosoftMicrosoft Azure Arc Customer Deck Microsoft
Microsoft Azure Arc Customer Deck MicrosoftAanSulistiyo
 
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445ruhi
 
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...kajalverma014
 
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...SUHANI PANDEY
 
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...SUHANI PANDEY
 
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...SUHANI PANDEY
 
Katraj ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For S...
Katraj ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For S...Katraj ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For S...
Katraj ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For S...tanu pandey
 
Trump Diapers Over Dems t shirts Sweatshirt
Trump Diapers Over Dems t shirts SweatshirtTrump Diapers Over Dems t shirts Sweatshirt
Trump Diapers Over Dems t shirts Sweatshirtrahman018755
 
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋nirzagarg
 
APNIC Updates presented by Paul Wilson at ARIN 53
APNIC Updates presented by Paul Wilson at ARIN 53APNIC Updates presented by Paul Wilson at ARIN 53
APNIC Updates presented by Paul Wilson at ARIN 53APNIC
 
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...roncy bisnoi
 
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...Neha Pandey
 
Russian Call Girls Pune (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...
Russian Call Girls Pune  (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...Russian Call Girls Pune  (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...
Russian Call Girls Pune (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...SUHANI PANDEY
 

Dernier (20)

2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs
2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs
2nd Solid Symposium: Solid Pods vs Personal Knowledge Graphs
 
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort Service
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort ServiceBusty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort Service
Busty Desi⚡Call Girls in Vasundhara Ghaziabad >༒8448380779 Escort Service
 
Low Sexy Call Girls In Mohali 9053900678 🥵Have Save And Good Place 🥵
Low Sexy Call Girls In Mohali 9053900678 🥵Have Save And Good Place 🥵Low Sexy Call Girls In Mohali 9053900678 🥵Have Save And Good Place 🥵
Low Sexy Call Girls In Mohali 9053900678 🥵Have Save And Good Place 🥵
 
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrStory Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Story Board.pptxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
 
Microsoft Azure Arc Customer Deck Microsoft
Microsoft Azure Arc Customer Deck MicrosoftMicrosoft Azure Arc Customer Deck Microsoft
Microsoft Azure Arc Customer Deck Microsoft
 
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
 
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...
best call girls in Hyderabad Finest Escorts Service 📞 9352988975 📞 Available ...
 
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...
VVIP Pune Call Girls Sinhagad WhatSapp Number 8005736733 With Elite Staff And...
 
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...
VIP Model Call Girls NIBM ( Pune ) Call ON 8005736733 Starting From 5K to 25K...
 
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...
Pirangut | Call Girls Pune Phone No 8005736733 Elite Escort Service Available...
 
Katraj ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For S...
Katraj ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For S...Katraj ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For S...
Katraj ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For S...
 
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
 
Trump Diapers Over Dems t shirts Sweatshirt
Trump Diapers Over Dems t shirts SweatshirtTrump Diapers Over Dems t shirts Sweatshirt
Trump Diapers Over Dems t shirts Sweatshirt
 
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Salem Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
 
APNIC Updates presented by Paul Wilson at ARIN 53
APNIC Updates presented by Paul Wilson at ARIN 53APNIC Updates presented by Paul Wilson at ARIN 53
APNIC Updates presented by Paul Wilson at ARIN 53
 
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...
Call Girls Sangvi Call Me 7737669865 Budget Friendly No Advance BookingCall G...
 
Call Girls in Prashant Vihar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Prashant Vihar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Prashant Vihar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Prashant Vihar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Himatnagar 7001035870 Whatsapp Number, 24/07 Booking
 
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
 
Russian Call Girls Pune (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...
Russian Call Girls Pune  (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...Russian Call Girls Pune  (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...
Russian Call Girls Pune (Adult Only) 8005736733 Escort Service 24x7 Cash Pay...
 

ATM

  • 1. ASYNCHRONOUS TRANSFER MODE BROADBAND DIGITAL NETWORK Group Members: SANIA DANISH SHUAIB ALI ZILLAY HUMA RAMSHA JAMAL ZAHID ALI DAWOOD UNIVERSITY OF ENGINEERING AND TECHNOLOGY
  • 2. Main Objectives Introduction of ATM Why ATM Architecture of ATM How ATM Works ATM Layers
  • 3.
  • 4. The term broadband is used to describe a type of data transmission in which a single medium (wire) can carry several channels at once. Cable TV, for example, uses broadband transmission. and DSL modems (which use your existing phone line).  Relationship Between ATM and B-ISDN ATM evolved from the standardization efforts for B-ISDN. ATM is the technology upon which B-ISDN is based.  BROADBAND
  • 5.  WHAT’S ATM? • ATM is Asynchronous Transfer Mode. • ATM is a connection-oriented, high-speed, low-delay switching and transmission technology that uses short and fixed-size packets, called cells, to transport information. • ATM is originally the transfer mode for implementing Broadband ISDN (B-ISDN) but it is also implemented in non-ISDN environments where very high data rates are required
  • 6. ATM Overview • Used in both WAN and LAN settings • Packets are called cells (53 bytes) • 5-byte header + 48-byte payload • Commonly transmitted over SONET • other physical layers possible • Connections can be switched (SVC), or permanent (PVC). • ATM operates on a best effort basis. • ATM guarantees that cells will not be disordered. 5 octets 48 octets 53 octets Header Information
  • 7. Asynchronous TDM • ATM uses asynchronous time-division multiplexing-that is why it is called Asynchronous Transfer Mode-to multiplex cells corning from different channels. It uses fixed-size slots (size of a cell). ATM multiplexers fill a slot with a cell from any input channel that has a cell; the slot is empty if none of the channels has a cell to send
  • 8.
  • 9. WHY ATM ?? International standard-based technology (for interoperability) Low variance of delay (for voice and video transmission) Guaranteed quality of service High capacity switching (multi-giga bits per second) Bandwidth flexibility (dynamically assigned to users) Medium not shared for ATM LAN (no degradation in performance as traffic load or number of users increases) Supports a wide range of user access speeds Supports audio, video, imagery, and data traffic (for integrated services)
  • 10. Problems • Frame Networks Before ATM, data communications at the data link layer had been based on frame switching and frame networks. Different protocols use frames of varying size and intricacy. As networks become more complex, the information that must be carried in the header becomes more extensive. The result is larger and larger headers relative to the size of the data unit.
  • 11.  Problems (cont.) • Large Data Fields In response, some protocols have enlarged the size of the data unit to make header use more efficient (sending more data with the same size header). Unfortunately, large data fields create waste. If there is not much information to transmit, much of the field goes unused. To improve utilization, some protocols provide variable frame sizes to users.
  • 12. Problems(cont.) • Mixed Network Traffic As you can imagine, the variety of frame sizes makes traffic unpredictable. Internetworking among the different frame networks is slow and expensive at best, and impossible at worst. Another problem is that of providing consistent data rate delivery when frame sizes are unpredictable and can vary so dramatically
  • 13. ATM provides the solution • Cell Networks • Many of the problems associated with frame internetworking are solved by adopting a concept called cell networking. • A cell is a small data unit of fixed size. In a cell network, which uses the cell as the basic unit of data exchange, all data are loaded into identical cells that can be transmitted with complete predictability and uniformity. As frames of different sizes and formats reach the cell network from a tributary network, they are split into multiple small data units of equal length and are loaded into cells. The cells are then multiplexed with other cells and routed through the cell network. Because each cell is the same size and all are small, the problems associated with multiplexing different-sized frames are avoided.
  • 16. For WAN, Lots of Switches
  • 17. Lots of Switches leads to lots of Users
  • 18. U N I U N I NNI NNI NNI N NI NNI UNI= USER to NETWORK INTERFACE NNI= NETWORK To NETWORK INTERFACE User 1 User 2 User 3 User 4 User 1 User 2 User 3 User 4 Transmission Path Transmission Path
  • 19. Transmission path (TP) • A transmission path (TP) is the physical connection (wire, cable, satellite, and so on) between an endpoint and a switch or between two switches. Think of two switches as two cities. • A transmission path is divided into several virtual paths. A virtual path (VP) provides a connection or a set of connections between two switches. • Cell networks are based on virtual circuits (VCs). All cells belonging to a single message follow the same virtual circuit and remain in their original order until they reach their destination.
  • 20. Identifiers • In a virtual circuit network, to route data from one endpoint to another, the virtual connections need to be identified. • Virtual path identifier (VPI) : defines the specific VP • Virtual-circuit identifier (VCl): defines a particular VC inside the VP. • The VPI is the same for all virtual connections that are bundled (logically) into one VP. VPI VCI VPI=Virtual path identifier VCI=Virtual Circuit Identifier
  • 21. Length of Identifiers  Length of VPI in User Network Interface: 8 bits  Length of VPI in Network To Network Interface: 12 bits  Length of VCI will remain same in UNI and NNI: 16 bits
  • 22. ATM Cell Format  ATM cell is only 53 bytes long with 5 bytes allocated to the header and 48 bytes carrying the payload.  ATM header also contain different fields except VPI and VCI
  • 23. GFC - the Generic Flow Control: field provides local functions such as identifying multiple stations that share a single ATM interface VPI - the Virtual Path Identifier: is used together with the Virtual Channel Identifier (VCI) to identify the virtual circuit. VCI - the Virtual Channel Identifier: is used together with the Virtual Path Identifier (VPI) to identify the virtual circuit along which the cell will be directed as it passes through an ATM network on the way to its destination (values of 0 to 31 are reserved). PT –Payload Type: • If 1st bit=1, then cell has Control data • If 1st bit=0, then cell contains User data • If 2nd bit=1, Congestion occurs • If 2nd bit=0, No Congestion • If 3rd bit=1, this cell is the last one CLP - the Cell Loss Priority: bit field indicates whether the cell should . be discarded if it encounters extreme congestion as it moves through the network. If set to 1, the cell should be discarded before cells that have the bit set to 0. HEC - the Header Error Control: field contains a checksum calculated on the first 4 bytes of the header. It can be used to correct a single bit error in these byte.
  • 24.
  • 25. ATM uses two types of connections: • ATM provides permanent virtual connections and switched virtual connections.  Permanent Virtual Connections (PVC) Permanent connections set up manually by network manager.  Switched Virtual Connections (SVC) Set up and released on demand by the end user via signaling procedures.
  • 26. STEPS Of Establishing ATM Connection: • Source PC uses Q.2931 procedures (VPI=0/VCI=5) to setup an ATM connection. The local ATM switch receives the signaling message and passes it to the Connection Manager. The Connection Manager the level of services for that machine calculates the bandwidth required to setup this connection for the forward and reverse paths. If the bandwidth on either the reverse channel or the forward channel is not available, alternate paths are examined. • The setup message is then sent back to the Network Switch to allocate the necessary links.
  • 27. • The Network switch forwards the connection setup request to the destination machine. • The Network switch receives the connection-accept message from the destination machine. • Once the Network switch receives the connection-accept message from the called PC, it passes the information to the Connection Manager. • The Connection Manager allocates the reverse channel capacity for the called party. • Connection Manager informs the Local switch that the connection has been accepted. • Connection Manager confirms the connection to the destination PC. • Connection Manager informs the source PC and data transmission can begin. STEPS cont.
  • 28. How ATM works to connect a setup:
  • 29. The ATM routing protocol • The Private Network Node Interface (PNNI) protocol provides both topology- discovery and call-establishment services. • PNNI uses the same shortest-path-first algorithm (OSPF). • A PNNI routing table within each switch maintains information about network routes and the bandwidth available on individual links. • PNNI routing table to determine a path to the intended destination that meets the specified Quality of Service (QoS).
  • 30. SERVICE CATEGORIES: • Represents particular combination of traffic and QoS parameters:  Constant Bit Rate (CBR):Supports real-time applications. Supports real-time applications requiring tightly constrained delay variation.  Real-Time Variable Bit Rate (RT-VBR):Deals with real-time applications with bursty traffic. Non Real-Time Variable Bit Rate (NRT- VBR):Deals with non-real time applications wit bursty traffic. Unspecified Bit Rate (UBR):Represents “best effort service” for non real-time applications. Available Bit Rate (ABR):Similar to UBR but enhanced to handle applications of low bandwidth
  • 33. ATM Layers • ATM works on three basic layers: ATM adaption Layer ATM Layer Physical Layer PMD Sublayer Transmission Convergence Sublayer
  • 34. Physical Layer: • The physical layer provides for the transmission and reception of ATM cells across a physical medium between two ATM devices. This can be a transmission between an ATM endpoint and an ATM switch, or it can be between two ATM switches. • The physical layer is subdivided into a Physical Medium Dependent sublayer and Transmission Convergence sublayer. Physical PMD Transmission Convergence ATM ATM ADAPTION Data Transfer
  • 35. PMD Sublayer • The Physical Medium Dependent (PMD) sublayer is responsible for the transmission and reception of individual bits on a physical medium. • These responsibilities encompass bit timing, signal encoding, interacting with the physical medium, and the cable or wire itself. PMD Transmission Convergence ATM ATM ADAPTION Data Transfer Physical
  • 36. Transmission Convergence Sublayer • The Transmission Convergence (TC) sublayer functions as a converter between the bit stream of ATM cells and the PMD sublayer. • When transmitting, the TC sublayer maps ATM cells onto the format of the PMD sublayer PMD Transmission Convergence ATM ATM ADAPTION Data Transfer Physical
  • 37. ATM Layer • The ATM layer multiplexes and de- multiplexes and routes ATM cells, and ensures their sequence from end to end. • If a cell is dropped by a switch due to congestion or corruption, it is not the responsibility of the ATM layer to correct the dropped cell by means of retransmission or to notify other layers of the dropped cell. • Layers above the ATM layer must detect the lost cell and decide whether to correct it or disregard it. PMD Transmission Convergence ATM ATM ADAPTION Data Transfer Physical
  • 38. ATM Adaptation Layer • The ATM Adaptation Layer (AAL) creates and receives 48-byte payloads through the lower layers of ATM on behalf of different types of applications. • There are five different types of AALs, each providing a distinct class of service. PMD Transmission Convergence ATM ATM ADAPTION Data Transfer Physical
  • 39. ATM Adaptation Layer (AAL) Types In order for ATM to support a variety of services with different traffic characteristics and system requirements: • It is necessary to adapt the different classes of applications to the ATM layer. • This function is performed by the AAL, which is service-dependent. • Four types of AAL were proposed, but two of these (3 and 4) have now been merged into one, AAL 3/4: – AAL 1: Supports connection-oriented, constant bit rate, time-dependent services. – AAL 2: Supports connection-oriented services that do not require constant bit rates. – AAL 3/4: Intended for both connectionless and connection oriented variable bit rate services. – AAL 5: Supports connection-oriented variable bit rate data services. • More efficient compared with AAL 3/4 at the expense of error recovery and built in retransmission.
  • 40.  Conclusion ATM has received a lot of attention recently because of its exciting promises. With ATM, the bottlenecks of the current networks will be solved, networked multimedia capabilities like video conferencing, home shopping, home education, video library, etc. will be brought to the desktops. Due to its high speed and the integration of traffic types (voice, data, and video can be transported on the same network). ATM can accommodate the upcoming new teleservices easily even the requirements for these services are unknown. It also improves the efficiency and simplifies the management of the network by using the same technology for all levels of the network. The ATM Forum has sponsored interoperability demonstrations to prove the technology and continues to meet to discuss the uncertain problems of ATM. At the moment, ATM coexists with current LAN/WAN Technology. Equipment, Services and Applications are available today and are being used in live networks. The telecommunications industry is converging on ATM!