SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
Coordenadas Rectangulares

     En es un sistema de referencia respecto a un eje (recta), dos ejes
perpendiculares (plano), o tres ejes perpendiculares entre si (en el
espacio)

Sistema de coordenadas lineal

     Un punto cualquiera de una recta puede asociarse y representarse
con un número real, positivo si está situado a la derecha de un Punto O,
y negativo si esta a la izquierda. Dicho punto se llama centro de
coordenadas O (letra O) y se asocia al valor 0 (cero).




     Este sistema de coordenadas es un espacio vectorial de dimensión
uno, y se le pueden aplicar todas las operaciones correspondientes a
espacios vectoriales; en ocasiones también se llama recta real.

Sistema de coordenadas plano

      Con un sistema de referencia conformado por dos rectas
perpendiculares que se cortan en el origen, cada punto del plano puede
nombrarse mediante dos números: (x, y) las coordenadas del punto,
llamadas abscisa y ordenada, las distancias ortogonales a los ejes
cartesianos.




      La ecuación del eje x es y = 0, y la del eje y es x = 0, rectas que
se cortan en el origen O, cuyas coordenadas son, obviamente, (0, 0).
Los ejes dividen el espacio en cuatro cuadrantes en los que los
signos de las coordenadas alternan de positivo a negativo (por ejemplo,
las dos coordenadas del punto A serán positivas, mientras que las del
punto B serán ambas negativas).

      Las coordenadas de un punto cualquiera vendrán dadas por las
proyecciones del segmento entre el origen y el punto sobre cada uno de
los ejes.

Sistema de coordenadas espacial

Si tenemos un sistema de referencia formado por tres rectas
perpendiculares entre sí (X, Y, Z), que se cortan en el origen (0, 0, 0),
cada punto del espacio puede nombrarse mediante tres números: (x, y,
z) denominados coordenadas del punto, que son las distancias
ortogonales a los tres planos principales: los que contienen las parejas
de ejes YZ, XZ e YX, respectivamente.




Los planos de referencia XY (z = 0); XZ (y = 0); e YZ (x = 0) dividen el
espacio en ocho cuadrantes en los que como en el caso del plano los
signos de las coordenadas pueden ser positivos o negativos.

      Las leyes del electromagnetismo son independientes del sistema
de coordenadas, para la resolución de problemas prácticos se requiere
qué las expresiones derivadas de esta leyes se expresen en un sistema
de coordenadas apropiado para la geometría del problema

                       Coordenadas Rectangulares

       Un punto P(x,y,z) en coordenadas Cartesianas( Rectangulares) es
la intersección de tres planos especificando por x=   , y=    , z=   ,
como se ilustra en la figura 1
Figura 1

      Los tres vectores mutuamente perpendiculares,    ,   y     en
dirección de las tres coordenadas, se denominan vectores base. En el
caso de un sistema de mano derecha (Ver Figura 2) tenemos las
siguientes propiedades cíclicas.

  x    =

  x    =

  x    =

Las siguientes relaciones se deducen directamente

  .    =   x    =    x    =0
  .    =   x    =    x    =1
Figura 2


El vector de posición del punto P ( , , ) es el vector trazado desde
el origen O hasta P y sus componentes en las direcciones    ,    ,
son, y sus magnitudes respectivamente        ,   ,

   =        +        +

Podemos escribir un vector A en coordenadas cartesianas con
componentes     , ,y

Vector en coordenadas            A=          +       +
Cartesianas

Longitud diferencial vectorial   dl =        +       +

Diferencial de Volumen           dv =
Producto escalar de A y B       A.B=         +      +

Producto vectorial de A y B
                                AXB=




                            Coordenadas Cilíndricas

      En coordenadas Cilíndricas, un punto P(ri, Φ1, z1), es la
intersección de una superficie cilíndrica circular r= r1, un plano con el
eje z como arista y que forma un ángulo Φ = Φ1, con el plano xy, y un
paralelo al plano xy en z =z1. Tenemos que:

(u1, u2, u3) = (r, Φ, z)

Como se ilustra en la figura 3, r es la distancia radial medida desde el
eje z y el ángulo Φ se mide a partir del eje x positivo. El vector    es
tangente a la superficie cilíndrica. Las direcciones    y    cambian de
acuerdo con las posiciones del plano P. La siguiente relación de la mano
derecha se aplica a ,     ,

  x    =
  x    =
  x    =




                                Figura 3.a
Figura 3.b

       Dos de los tres coordenadas r y z (u1, u3) son longitudinales,
pero Φ (u2) es un ángulo, por lo que se requiere de un coeficiente de
multiplicación (un coeficiente métrico) r para convertir un cambio
diferencial de ángulo    en un cambio diferenciar de longitud como se
ilustra en la figura 4

      Los coeficientes métricos para    y    son unitarios. Si denotamos
los coeficientes métricos en tres direcciones   ,    ,    con h1, h2, h3,
respectivamente tenemos que para las coordenadas cilíndricas h1= 1,
h2= r, h3= 1, esto se indica en la tabla. Los coeficientes métricos en
coordenadas cartesianas en los tres direcciones          de coordenadas
unitarias (h1 = h2= h3 = 1), ya que las tres coordenadas (x, y, z) son
longitudinales.

La expresión general para una longitud diferencial vectorial en
coordenadas cilíndricas es        la suma      vectorial de los cambios
diferenciales en longitud en las tres direcciones de coordenadas
Figura 4



Longitud diferencial vectorial en coordenadas cilíndricas

  =

Diferencia de volumen en coordenadas cilíndricas

      Un volumen es el producto de los cambios diferenciales en
longitud en las tres Direcciones de coordenadas.

  = r       .

Vector A en coordenadas cilíndricas

      Las coordenadas cilíndricas son importantes con corrientes o con
largas líneas de carga y en lugares donde existen contornos cilíndricos
o circulares.

A=
Los vectores expresados en coordenadas cilíndricas pueden
transformarse y expresarse en coordenadas cartesianas, y viceversa.
Supongamos que queremos expresar A =                          , en
coordenadas cartesianas; es decir queremos escribir A como

A =         +        +         y determinar       ,   ,    . En primer
lugar, observamos que      la componente de z de A, no cambia con la
transformación de coordenadas cilíndricas a cartesianas. Para encontrar
   , igualamos los productos punto de ambas expresiones de A con      ,
Así,

   =A∙

   =            +                         (1)

      El término que contiene      desaparece por que            = 0.
Remitiéndonos a la figura 5 donde se muestran las posiciones relativas
de los vectores base   ,   ,         en el plano xy




                               Figura 5
=                     (2)

Y que

            =           =-            (3)

Al sustituir la ecuación 2,3 en 1, obtenemos

    =               -

     En forma similar, para hallar A, tomamos los puntos de ambas
expresiones de A con

    =A∙

    =               +

A partir de la figura tenemos que

        =               =       (4)

Y               =       (5)

De 4, 5 obtenemos

        =



Transformación de las componentes de un vector de coordenadas
cilíndricas a coordenadas cartesianas

x= r

y= r

z=z

                              Coordenadas Esféricas



      Un punto p ( ,      ,   ) en coordenadas esféricas se especifica
como la intersección de las tres superficies siguiente: una esférica en el
origen con radio R = ; Un cono circular recto con vértice en el origen,
su eje coincidente con el eje +z y con un ángulo θ =     y un semiplano
con el eje z como arista y que forma un ángulo Φ =      , con el plan zx.
Tenemos

( ,    ,       ) = (R, θ, Φ)

      Las tres superficies se ilustran en la figura 6. Observe que el
vector base    en P es radial desde el origen y bastante diferente de ,
en coordenadas cilíndricas, ya que este último es perpendicular al eje z.

      El vector base      está en el plano Φ =      y es tangencial a la
superficie esférica, mientras que el vector base     es el mismo que en
las coordenadas cilíndricas. Los vectores base se ilustra en la figura 4.
En un sistema de la mano derecha tenemos

  x        =

  x    =

   x       =

      Las coordenadas esféricas son importantes en problemas que
comprenden fuentes puntuales y regiones con contornos esféricos.
Cuando un observador está muy lejos de una región fuente puede
considerarse aproximadamente como un punto. Por lo tanto, podría
elegirse como origen de un sistema de coordenadas esféricas para que
se pueda efectuar aproximaciones apropiadas que simplifiquen el
problema. Es por esto que se usan coordenadas esféricas para resolver
problemas de antenas en el campo lejano.

Vector en coordenadas esféricas

A=

Longitud diferenciar vectorial en coordenadas esféricas

  =
Figura 6

      En coordenadas esféricas R es una longitud. Las otras dos
coordenadas θ y Φ son ángulos, en la figura 7 se muestra un elemento
volumen diferencial típico, vemos que se requieren los coeficientes
métricos    = R y     = R     para convertir         , respectivamente,
longitudes diferenciales (R) y (R     )    la expresión general es:

  =

Diferencia en volumen en coordenadas esféricas

      Un volumen diferenciar es el producto de los cambios diferenciales
en longitud en las tres direcciones de coordenadas

  =
Figura 7



      En la tabla 1, se presenta los vectores base, los coeficientes
métricos y las expresiones para un volumen diferenciar en los tres
sistemas básicos de coordenadas ortogonales.

Transformación de un punto           en   coordenadas     esféricas   a
coordenadas cartesianas.

     En la figura 8 se muestra la interrelación de las variables
espaciales (x,y,z), (r,Φ,z) y (R,θ,Φ) que especifican la situación de un
punto P

x= R
y= R
z=R
Figura 8

      Tabla 1: Sistema Básico de Coordenadas Ortogonales

              Coordenadas Coordenadas Coordenadas
              Cartesianas Cilíndricas Esféricas
              (x,y,z)     (r, Φ, z)   (R, θ,Φ)
  Vector
   base



Coeficiente
métrico




Diferencial
de             =              =          r   =
volumen
                                  .

Contenu connexe

Tendances

PRODUCTO INTERNO Norma de un vector
PRODUCTO INTERNO  Norma de un vectorPRODUCTO INTERNO  Norma de un vector
PRODUCTO INTERNO Norma de un vector
algebra
 
funciones trigonometricas
funciones trigonometricasfunciones trigonometricas
funciones trigonometricas
guest0edf07
 

Tendances (20)

Sistema de coordenadas.
Sistema de coordenadas.Sistema de coordenadas.
Sistema de coordenadas.
 
Cortes del cono
Cortes del conoCortes del cono
Cortes del cono
 
PRODUCTO INTERNO Norma de un vector
PRODUCTO INTERNO  Norma de un vectorPRODUCTO INTERNO  Norma de un vector
PRODUCTO INTERNO Norma de un vector
 
Espacios vectoriales.g.2017
Espacios vectoriales.g.2017Espacios vectoriales.g.2017
Espacios vectoriales.g.2017
 
CENTRO DE MASA O GRAVEDAD
CENTRO DE MASA O GRAVEDADCENTRO DE MASA O GRAVEDAD
CENTRO DE MASA O GRAVEDAD
 
Elipse presentacion
Elipse presentacionElipse presentacion
Elipse presentacion
 
Conjunto ortonormal
Conjunto ortonormal Conjunto ortonormal
Conjunto ortonormal
 
Desigualdades y sus propiedades
Desigualdades y sus propiedadesDesigualdades y sus propiedades
Desigualdades y sus propiedades
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfas1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfas
 
Limites y aplicaciones
Limites y aplicacionesLimites y aplicaciones
Limites y aplicaciones
 
Funciones Trigonométricas
Funciones TrigonométricasFunciones Trigonométricas
Funciones Trigonométricas
 
Producto escalar de dos vectores
Producto escalar de dos vectoresProducto escalar de dos vectores
Producto escalar de dos vectores
 
Funciones trigonometricas
Funciones trigonometricasFunciones trigonometricas
Funciones trigonometricas
 
Traslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvasTraslación, Giro de ejes y Determinación de curvas
Traslación, Giro de ejes y Determinación de curvas
 
Trabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioTrabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacio
 
Metodo completando cuadrado
Metodo completando cuadradoMetodo completando cuadrado
Metodo completando cuadrado
 
funciones trigonometricas
funciones trigonometricasfunciones trigonometricas
funciones trigonometricas
 
Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial
 
Parábola y su uso
Parábola y su usoParábola y su uso
Parábola y su uso
 

Similaire à Sistemas de coordenadas

Diapositivas funciones de varias variables
Diapositivas funciones de varias variablesDiapositivas funciones de varias variables
Diapositivas funciones de varias variables
Kenny Fereira
 

Similaire à Sistemas de coordenadas (20)

Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Geometraenelespacio 160807232856
Geometraenelespacio 160807232856Geometraenelespacio 160807232856
Geometraenelespacio 160807232856
 
Plano Numerico.docx
Plano Numerico.docxPlano Numerico.docx
Plano Numerico.docx
 
Diapositivas funciones de varias variables
Diapositivas funciones de varias variablesDiapositivas funciones de varias variables
Diapositivas funciones de varias variables
 
planos y rectas en el espacio
planos y rectas en el espacioplanos y rectas en el espacio
planos y rectas en el espacio
 
Plano-numerico.pdf
Plano-numerico.pdfPlano-numerico.pdf
Plano-numerico.pdf
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_a
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_a
 
Presentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina PerezPresentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina Perez
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
 
Robotica Guia 3
Robotica Guia 3Robotica Guia 3
Robotica Guia 3
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
 
Robotica Guia 3
Robotica Guia 3Robotica Guia 3
Robotica Guia 3
 
Asignacion 3 javier dominguez matematica 2_ saiaa
Asignacion 3  javier dominguez  matematica 2_ saiaaAsignacion 3  javier dominguez  matematica 2_ saiaa
Asignacion 3 javier dominguez matematica 2_ saiaa
 
Coordenades
CoordenadesCoordenades
Coordenades
 
Plano numérico.docx............................
Plano numérico.docx............................Plano numérico.docx............................
Plano numérico.docx............................
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptx
 
ECUACIÓN DE LA RECTA
ECUACIÓN DE LA RECTAECUACIÓN DE LA RECTA
ECUACIÓN DE LA RECTA
 
Funciones de Varias Variables
Funciones de Varias VariablesFunciones de Varias Variables
Funciones de Varias Variables
 
Teoria ayuda 3
Teoria   ayuda 3Teoria   ayuda 3
Teoria ayuda 3
 

Dernier

NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
pvtablets2023
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Dernier (20)

NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 

Sistemas de coordenadas

  • 1. Coordenadas Rectangulares En es un sistema de referencia respecto a un eje (recta), dos ejes perpendiculares (plano), o tres ejes perpendiculares entre si (en el espacio) Sistema de coordenadas lineal Un punto cualquiera de una recta puede asociarse y representarse con un número real, positivo si está situado a la derecha de un Punto O, y negativo si esta a la izquierda. Dicho punto se llama centro de coordenadas O (letra O) y se asocia al valor 0 (cero). Este sistema de coordenadas es un espacio vectorial de dimensión uno, y se le pueden aplicar todas las operaciones correspondientes a espacios vectoriales; en ocasiones también se llama recta real. Sistema de coordenadas plano Con un sistema de referencia conformado por dos rectas perpendiculares que se cortan en el origen, cada punto del plano puede nombrarse mediante dos números: (x, y) las coordenadas del punto, llamadas abscisa y ordenada, las distancias ortogonales a los ejes cartesianos. La ecuación del eje x es y = 0, y la del eje y es x = 0, rectas que se cortan en el origen O, cuyas coordenadas son, obviamente, (0, 0).
  • 2. Los ejes dividen el espacio en cuatro cuadrantes en los que los signos de las coordenadas alternan de positivo a negativo (por ejemplo, las dos coordenadas del punto A serán positivas, mientras que las del punto B serán ambas negativas). Las coordenadas de un punto cualquiera vendrán dadas por las proyecciones del segmento entre el origen y el punto sobre cada uno de los ejes. Sistema de coordenadas espacial Si tenemos un sistema de referencia formado por tres rectas perpendiculares entre sí (X, Y, Z), que se cortan en el origen (0, 0, 0), cada punto del espacio puede nombrarse mediante tres números: (x, y, z) denominados coordenadas del punto, que son las distancias ortogonales a los tres planos principales: los que contienen las parejas de ejes YZ, XZ e YX, respectivamente. Los planos de referencia XY (z = 0); XZ (y = 0); e YZ (x = 0) dividen el espacio en ocho cuadrantes en los que como en el caso del plano los signos de las coordenadas pueden ser positivos o negativos. Las leyes del electromagnetismo son independientes del sistema de coordenadas, para la resolución de problemas prácticos se requiere qué las expresiones derivadas de esta leyes se expresen en un sistema de coordenadas apropiado para la geometría del problema Coordenadas Rectangulares Un punto P(x,y,z) en coordenadas Cartesianas( Rectangulares) es la intersección de tres planos especificando por x= , y= , z= , como se ilustra en la figura 1
  • 3. Figura 1 Los tres vectores mutuamente perpendiculares, , y en dirección de las tres coordenadas, se denominan vectores base. En el caso de un sistema de mano derecha (Ver Figura 2) tenemos las siguientes propiedades cíclicas. x = x = x = Las siguientes relaciones se deducen directamente . = x = x =0 . = x = x =1
  • 4. Figura 2 El vector de posición del punto P ( , , ) es el vector trazado desde el origen O hasta P y sus componentes en las direcciones , , son, y sus magnitudes respectivamente , , = + + Podemos escribir un vector A en coordenadas cartesianas con componentes , ,y Vector en coordenadas A= + + Cartesianas Longitud diferencial vectorial dl = + + Diferencial de Volumen dv =
  • 5. Producto escalar de A y B A.B= + + Producto vectorial de A y B AXB= Coordenadas Cilíndricas En coordenadas Cilíndricas, un punto P(ri, Φ1, z1), es la intersección de una superficie cilíndrica circular r= r1, un plano con el eje z como arista y que forma un ángulo Φ = Φ1, con el plano xy, y un paralelo al plano xy en z =z1. Tenemos que: (u1, u2, u3) = (r, Φ, z) Como se ilustra en la figura 3, r es la distancia radial medida desde el eje z y el ángulo Φ se mide a partir del eje x positivo. El vector es tangente a la superficie cilíndrica. Las direcciones y cambian de acuerdo con las posiciones del plano P. La siguiente relación de la mano derecha se aplica a , , x = x = x = Figura 3.a
  • 6. Figura 3.b Dos de los tres coordenadas r y z (u1, u3) son longitudinales, pero Φ (u2) es un ángulo, por lo que se requiere de un coeficiente de multiplicación (un coeficiente métrico) r para convertir un cambio diferencial de ángulo en un cambio diferenciar de longitud como se ilustra en la figura 4 Los coeficientes métricos para y son unitarios. Si denotamos los coeficientes métricos en tres direcciones , , con h1, h2, h3, respectivamente tenemos que para las coordenadas cilíndricas h1= 1, h2= r, h3= 1, esto se indica en la tabla. Los coeficientes métricos en coordenadas cartesianas en los tres direcciones de coordenadas unitarias (h1 = h2= h3 = 1), ya que las tres coordenadas (x, y, z) son longitudinales. La expresión general para una longitud diferencial vectorial en coordenadas cilíndricas es la suma vectorial de los cambios diferenciales en longitud en las tres direcciones de coordenadas
  • 7. Figura 4 Longitud diferencial vectorial en coordenadas cilíndricas = Diferencia de volumen en coordenadas cilíndricas Un volumen es el producto de los cambios diferenciales en longitud en las tres Direcciones de coordenadas. = r . Vector A en coordenadas cilíndricas Las coordenadas cilíndricas son importantes con corrientes o con largas líneas de carga y en lugares donde existen contornos cilíndricos o circulares. A=
  • 8. Los vectores expresados en coordenadas cilíndricas pueden transformarse y expresarse en coordenadas cartesianas, y viceversa. Supongamos que queremos expresar A = , en coordenadas cartesianas; es decir queremos escribir A como A = + + y determinar , , . En primer lugar, observamos que la componente de z de A, no cambia con la transformación de coordenadas cilíndricas a cartesianas. Para encontrar , igualamos los productos punto de ambas expresiones de A con , Así, =A∙ = + (1) El término que contiene desaparece por que = 0. Remitiéndonos a la figura 5 donde se muestran las posiciones relativas de los vectores base , , en el plano xy Figura 5
  • 9. = (2) Y que = =- (3) Al sustituir la ecuación 2,3 en 1, obtenemos = - En forma similar, para hallar A, tomamos los puntos de ambas expresiones de A con =A∙ = + A partir de la figura tenemos que = = (4) Y = (5) De 4, 5 obtenemos = Transformación de las componentes de un vector de coordenadas cilíndricas a coordenadas cartesianas x= r y= r z=z Coordenadas Esféricas Un punto p ( , , ) en coordenadas esféricas se especifica como la intersección de las tres superficies siguiente: una esférica en el origen con radio R = ; Un cono circular recto con vértice en el origen,
  • 10. su eje coincidente con el eje +z y con un ángulo θ = y un semiplano con el eje z como arista y que forma un ángulo Φ = , con el plan zx. Tenemos ( , , ) = (R, θ, Φ) Las tres superficies se ilustran en la figura 6. Observe que el vector base en P es radial desde el origen y bastante diferente de , en coordenadas cilíndricas, ya que este último es perpendicular al eje z. El vector base está en el plano Φ = y es tangencial a la superficie esférica, mientras que el vector base es el mismo que en las coordenadas cilíndricas. Los vectores base se ilustra en la figura 4. En un sistema de la mano derecha tenemos x = x = x = Las coordenadas esféricas son importantes en problemas que comprenden fuentes puntuales y regiones con contornos esféricos. Cuando un observador está muy lejos de una región fuente puede considerarse aproximadamente como un punto. Por lo tanto, podría elegirse como origen de un sistema de coordenadas esféricas para que se pueda efectuar aproximaciones apropiadas que simplifiquen el problema. Es por esto que se usan coordenadas esféricas para resolver problemas de antenas en el campo lejano. Vector en coordenadas esféricas A= Longitud diferenciar vectorial en coordenadas esféricas =
  • 11. Figura 6 En coordenadas esféricas R es una longitud. Las otras dos coordenadas θ y Φ son ángulos, en la figura 7 se muestra un elemento volumen diferencial típico, vemos que se requieren los coeficientes métricos = R y = R para convertir , respectivamente, longitudes diferenciales (R) y (R ) la expresión general es: = Diferencia en volumen en coordenadas esféricas Un volumen diferenciar es el producto de los cambios diferenciales en longitud en las tres direcciones de coordenadas =
  • 12. Figura 7 En la tabla 1, se presenta los vectores base, los coeficientes métricos y las expresiones para un volumen diferenciar en los tres sistemas básicos de coordenadas ortogonales. Transformación de un punto en coordenadas esféricas a coordenadas cartesianas. En la figura 8 se muestra la interrelación de las variables espaciales (x,y,z), (r,Φ,z) y (R,θ,Φ) que especifican la situación de un punto P x= R y= R z=R
  • 13. Figura 8 Tabla 1: Sistema Básico de Coordenadas Ortogonales Coordenadas Coordenadas Coordenadas Cartesianas Cilíndricas Esféricas (x,y,z) (r, Φ, z) (R, θ,Φ) Vector base Coeficiente métrico Diferencial de = = r = volumen .