SlideShare une entreprise Scribd logo
1  sur  48
Télécharger pour lire hors ligne
CONJUNTO DOS
NÚMEROS
COMPLEXOS
PROFESSORA ROSÂNIA
Girolamo Cardano nasceu em Pavia, em 1501 e
faleceu em Roma, em 1576. Sua vida foi
marcada por contrastes e extremos. Sabe-se que
era excepcional cientista, mas que também era
violento, traidor, invejoso e outras qualificações
não muito edificantes. Foi autor do Liber de Ludo
Aleae, onde introduziu a ideia de probabilidade e
também ensinou maneiras de trapacear nos jogos.
Sua maior obra, entretanto, foi o Ars Magna,
publicada na Alemanha em 1545, que na época era
o maior compendio algébrico existente.
Nicolo Fontana, apelidado de Tartaglia, só tinha em
comum com Cardano a nacionalidade
italiana e o talento matemático. Nascido em Brescia
em 1500, na infância, pobre, foi gravemente
ferido por golpes de sabre e, por causa deste
incidente, com com profunda cicatriz na boca que
lhe provocou um permanente defeito na fala. Da ter
sido apelidado de Tartaglia, que significa
gago. Ao longo de sua vida publicou diversas obras
mas o que o colocou definitivamente nos anais
da Matemática foram suas disputas com Cardano.
Consta que, por volta de 1510, um matemático
italiano de nome Scipione del Ferro encontrou
uma forma geral de resolver equações do tipo
x³ + px + q = 0, mas morreu sem publicar sua
descoberta. Seu aluno Antonio Maria Fior
conhecia tal solução e tentou ganhar
notoriedade com
ela. Na época eram comuns os desafios entre
sábios.
Como Tartaglia era um nome que começava
a se destacar nos meios culturais da época, Fior
propôs a Tartaglia um desafio. Tartaglia, apesar
de não saber resolver ainda tais equações, aceitou o
desafio, confiando em seu potencial. Sabendo
que Fior conhecia a solução das equações acima
citadas, não só deduziu a resolução para este caso,
como também resolveu as equações do tipo x³ + px²
+ q = 0. O resultado deste desafio foi que
Fior saiu humilhado.
Nesta época Cardano, ao saber que Tartaglia achara a
solução geral
da equação de grau 3 pediu-lhe que a revelasse, para que
fosse publicada em seu próximo livro.
Tartaglia não concordou, alegando que ele mesmo iria
publicar sua descoberta. Cardano acusou-o
de mesquinho e egoísta, e não desistiu. Apos muitas
conversas e suplicas este, jurando não divulgar
tal descoberta, conseguiu que Tartaglia lhe revelasse a
solução. Conforme qualquer um poderia
prever, Cardano quebrou todas as promessas e, em 1545,
fez publicar na Ars Magna a formula de
Tartaglia. No final, como em muitos outros casos, a
posteridade não fez justica a Tartaglia: sua
formula e ate hoje conhecida como “Formula de Cardano."
Professora Rosânia
PARA COMPREENDER VAMOS RELEMBRAR OS
TIPOS DE CONJUNTOS

N
N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ....}
IN

Z

(naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....}
(inteiros) Z = { ... -2, -1, 0, 1, 2, ....}
Q
N

Z

Q

(naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....}
(inteiros) Z = { ... -2, -1, 0, 1, 2, ....}

(racionais) Q = {podem ser escritos na forma de fração}

Os N, Z, dízimas periódicas.
Q
N

Z

Q

I
(naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....}
(inteiros) Z = { ... -2, -1, 0, 1, 2, ....}
(racionais) Q = {podem ser escritos na forma de fração}
Os N, Z, dízimas periódicas.
(irracionais) I = {não podem ser escritos na forma de

fração} ∏,

𝟐

,

𝟑

𝟕
N
Z

Q

I

Reais (R) = são todos os números exceto as
raízes quadradas nos números negativos
N
Z

Q

I

Complexos (C) = são todos os reais além das
raízes quadradas nos números negativos.
NÚMEROS COMPLEXOS-NÚMEROS
IMAGINÁRIOS
• Iremos representar
essa proposição
utilizando uma
unidade imaginária i,
assim poderemos
dizer que o quadrado
de um número é um
número negativo

• então i . i = - 1,
isto é, i² = - 1 .

Professora Rosânia
UNIDADE IMAGINÁRIA ( i )
convenção

−𝟏 = i
i² = -1
FORMA ALGÉBRICA
Z = a + bi
a = parte real
b = parte imaginária
a = 0 e b ≠ 0 .......... imaginário puro
b = 0 ....................... real puro
z = 2 + 4i : Re(z) = 2 Im(z) = 4
z = 5 – 2i : Re (z) = 5 Im (z) = –2
Professora Rosânia
Veja alguns exemplos de como identificar a parte real e a
parte imaginária de um número complexo:
z = - 3 + 5i
Re(z) = -3
Im(z) = 5
z = -5 + 10i
Re(z) = -5
Im(z) = 10
z = 1/2 + (1/3)i
Re(z) = 1/2
Im(z) = 1/3

Professora Rosânia
As coordenadas a e b podem assumir
qualquer valor real, dependendo do valor
que eles assumirem o número complexo irá
receber um nome diferente:
Quando a e b forem diferentes de zero dizemos
que o número complexo é imaginário:
z = 2 + 5i

Professora Rosânia
Quando o valor de a é igual a
zero e o de b é diferente de zero
dizemos que o número complexo
é imaginário puro:
z = 0 + 2i
z = 2i
Professora Rosânia
Quando a diferente de zero e b
igual a zero dizemos que o
número complexo será real.
z = 5 – 0i
z=5

Professora Rosânia
Tornar um complexo real ou
imaginário puro
Z = (x – 3) + (x² - 25)i
REAL – TORNAR A PARTE IMAGINÁRIA NULA
(x² - 25) = 0
IMAGINÁRIO – TORNAR A PARTE REAL NULA
x–3=0
EQUAÇÕES EM C
CASO 1
A equação do 2º grau x² + 25 = 0 é impossível de
ser resolvida no conjunto dos números Reais, mas
pode ser resolvida dentro do conjunto dos
números Complexos, da seguinte forma:
x² + 81 = 0 (Equação incompleta do 2º grau)
x² = –81
x = ±√–81
Temos x = ±9i

Professora Rosânia
CASO 2
2x² - 16x + 50 = 0 (Equação completa do 2º grau)
a = 2, b = -16, c = 50
∆ = b² - 4ac
∆ = (-16)² - 4 . 2 . 50
∆ = 256 – 400
∆ = -144
Temos (±12i)² = 144i² = 144.(-1) = -144.
x’ = 4 + 3i e

x’’ = 4

– 3i
Professora Rosânia
EQUAÇÕES EM C
x² + 2x + 10 = 0
−𝟐 ±

−𝟐 ±

𝟐 𝟐 − 𝟒. 𝟏. 𝟏𝟎
𝟐. 𝟏

−𝑏 ±

𝟒 − 𝟒𝟎
𝟐.

−𝟐 ± − 𝟑𝟔
𝟐

x’ = - 1 + 3i

−𝟐 ± 𝟔 𝒊
=
𝟐

x’’ = - 1 – 3i

𝑏 2 − 4𝑎𝑐
2𝑎
Potências de i
i0 = 1
i1 = i

i5 = i4 . i = 1 . i = i

i6 = i4 . i2 = 1 . (-1) = -1

i2 = -1

i3

=

i2

i7 = i4 . i3 = 1 (-i) = -i

. i = -1 . i = -i

i4 = i2 . i2 = (-1) . (-1) = 1
Professora Rosânia

𝒊𝒏 = 𝒊𝒓
Então, para simplificar
𝒏

𝒊 = 𝒊
Ex: i26
26 4
2

6

i² = -1
Professora Rosânia

𝒓
IGUALDADE DE COMPLEXOS
Z1 = (a + 1) + 3i e Z2 = 4 + ( 2- b)i

Real = Real
Imaginária = Imaginária
a+1=4
a=4–1
a=3

2–b=3
-b=3-2
-b=1
b = -1
Aritmética dos números
complexos
Adição e Subtração

Professora Rosânia
Adição
(a + bi) + (c + di) = (a + c) + (b + d)i
Para adicionarmos dois números
complexos, adicionamos as partes
reais e as partes imaginárias

Professora Rosânia
Exemplos
(3 + 4i) + (- 7 + 8i) =
(3 - 7) + (4 + 8) i = - 4 + 12i
Na prática temos:
(3 + 4i) + (-7 + 8i) =

Professora Rosânia
Subtração
(a + bi) - (c + di) =
(a – c) + (b – d)i
Para subtrairmos dois números
complexos, subtraímos as partes
reais e as partes imaginárias

Professora Rosânia
EXEMPLOS

(- 5 + 6i) - (4 - 2i) =
(- 5 - 4) + [6 - (- 2)] i = - 9 + 8i
NA PRATICA TEMOS:

Professora Rosânia
Exemplos

Multiplicação
(a + bi) . (c + di) = (ac – bd) + (ad + bc)i
Multiplicamos números
complexos como multiplicamos
binômios, usando i2 = - 1

6 – 8i + 9i – 12i2
6 + i – 12 . (-1) =
= 6 + i + 12
= 18 + i
Professora Rosânia
O conjugado e a divisão
O conjugado de um número complexo a
+ bi é a - bi, e o conjugado de a - bi é a
+ bi.
Os números complexos a + bi e a - bi são
chamados complexos conjugados.
Para um número complexo z, seu
conjugado é representado com ; então,
se z = a + bi escrevemos = a - bi.

Professora Rosânia
Dividindo dois números complexos
Para escrevermos o quociente
na forma a + bi:

multiplicamos o numerador e o
denominador pelo conjugado do
denominador

Professora Rosânia
Exemplo:

Professora Rosânia
BONS ESTUDOS!

Contenu connexe

Tendances

PosiçãO Relativa Entre Reta E CircunferêNcia
PosiçãO Relativa Entre Reta E CircunferêNciaPosiçãO Relativa Entre Reta E CircunferêNcia
PosiçãO Relativa Entre Reta E CircunferêNcia
ISJ
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
leilamaluf
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
marmorei
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
betencourt
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
leilamaluf
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
con_seguir
 
Mat exercicios equacao do segundo grau parte i
Mat exercicios equacao do segundo grau   parte iMat exercicios equacao do segundo grau   parte i
Mat exercicios equacao do segundo grau parte i
trigono_metria
 

Tendances (20)

PosiçãO Relativa Entre Reta E CircunferêNcia
PosiçãO Relativa Entre Reta E CircunferêNciaPosiçãO Relativa Entre Reta E CircunferêNcia
PosiçãO Relativa Entre Reta E CircunferêNcia
 
Números complexos
Números complexos Números complexos
Números complexos
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
 
Função afim-linear-constante-gráficos
Função  afim-linear-constante-gráficosFunção  afim-linear-constante-gráficos
Função afim-linear-constante-gráficos
 
Fatoração
FatoraçãoFatoração
Fatoração
 
(63 alíneas) Exercicios resolvidos sobre logaritmos e equações logaritmicas
(63 alíneas) Exercicios resolvidos sobre logaritmos e equações logaritmicas (63 alíneas) Exercicios resolvidos sobre logaritmos e equações logaritmicas
(63 alíneas) Exercicios resolvidos sobre logaritmos e equações logaritmicas
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Adição algébrica
Adição algébricaAdição algébrica
Adição algébrica
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 
Mat exercicios equacao do segundo grau parte i
Mat exercicios equacao do segundo grau   parte iMat exercicios equacao do segundo grau   parte i
Mat exercicios equacao do segundo grau parte i
 
GEOMETRIA ESPACIAL DE POSIÇÃO
GEOMETRIA ESPACIAL DE POSIÇÃOGEOMETRIA ESPACIAL DE POSIÇÃO
GEOMETRIA ESPACIAL DE POSIÇÃO
 
Atividades 1 - 2o Ano - Teorema de Pitágoras e Trigonometria
Atividades 1  - 2o Ano - Teorema de Pitágoras e TrigonometriaAtividades 1  - 2o Ano - Teorema de Pitágoras e Trigonometria
Atividades 1 - 2o Ano - Teorema de Pitágoras e Trigonometria
 
Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)
 
Conjuntos dos números racionais
Conjuntos dos números racionaisConjuntos dos números racionais
Conjuntos dos números racionais
 

En vedette

Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
Winny18
 
Forma trigonométrica
Forma trigonométricaForma trigonométrica
Forma trigonométrica
Winny18
 
Quadrinhos n° complexos
Quadrinhos   n° complexosQuadrinhos   n° complexos
Quadrinhos n° complexos
Winny18
 
Quadrinhos - potência de i
Quadrinhos -  potência de iQuadrinhos -  potência de i
Quadrinhos - potência de i
Winny18
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericos
earana
 
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
SlideShare
 

En vedette (20)

www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
www.AulasEnsinoMedio.com.br - Matemática -  Números Complexoswww.AulasEnsinoMedio.com.br - Matemática -  Números Complexos
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Forma trigonométrica
Forma trigonométricaForma trigonométrica
Forma trigonométrica
 
Quadrinhos n° complexos
Quadrinhos   n° complexosQuadrinhos   n° complexos
Quadrinhos n° complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Quadrinhos - potência de i
Quadrinhos -  potência de iQuadrinhos -  potência de i
Quadrinhos - potência de i
 
Números Complexos - Representação Geométrica
Números Complexos - Representação GeométricaNúmeros Complexos - Representação Geométrica
Números Complexos - Representação Geométrica
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01
 
Teoria dos Conjuntos
Teoria dos ConjuntosTeoria dos Conjuntos
Teoria dos Conjuntos
 
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericos
 
Slide shere
Slide shereSlide shere
Slide shere
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
 
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
 
How To Get More From SlideShare - Super-Simple Tips For Content Marketing
How To Get More From SlideShare - Super-Simple Tips For Content MarketingHow To Get More From SlideShare - Super-Simple Tips For Content Marketing
How To Get More From SlideShare - Super-Simple Tips For Content Marketing
 

Similaire à Conjunto dos números complexos

(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
7ª SéRie MatemáTica 1º Semestre
7ª SéRie   MatemáTica   1º Semestre7ª SéRie   MatemáTica   1º Semestre
7ª SéRie MatemáTica 1º Semestre
PROFESSOR FABRÍCIO
 

Similaire à Conjunto dos números complexos (20)

Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
História dos números complexos
História dos números complexosHistória dos números complexos
História dos números complexos
 
Aula.número.complexo
Aula.número.complexoAula.número.complexo
Aula.número.complexo
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
NúMeros Complexos Bom
NúMeros Complexos BomNúMeros Complexos Bom
NúMeros Complexos Bom
 
7ª SéRie MatemáTica 1º Semestre
7ª SéRie   MatemáTica   1º Semestre7ª SéRie   MatemáTica   1º Semestre
7ª SéRie MatemáTica 1º Semestre
 

Plus de rosania39

Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
rosania39
 
Acessibilidade e o publico alvo da educação especial cris
Acessibilidade e o publico alvo da educação especial crisAcessibilidade e o publico alvo da educação especial cris
Acessibilidade e o publico alvo da educação especial cris
rosania39
 
A importância da articulação intersetorial no processo de inclusão educaciona...
A importância da articulação intersetorial no processo de inclusão educaciona...A importância da articulação intersetorial no processo de inclusão educaciona...
A importância da articulação intersetorial no processo de inclusão educaciona...
rosania39
 
A formação continuada de professores
A formação continuada de professoresA formação continuada de professores
A formação continuada de professores
rosania39
 
A escola na perspectiva da educ inclusiva
A escola na perspectiva da educ inclusivaA escola na perspectiva da educ inclusiva
A escola na perspectiva da educ inclusiva
rosania39
 

Plus de rosania39 (20)

Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia central
 
Matrizes
MatrizesMatrizes
Matrizes
 
Sequencias
SequenciasSequencias
Sequencias
 
Matemática financeira parte 3
Matemática financeira parte 3Matemática financeira parte 3
Matemática financeira parte 3
 
Matemática financeira 2
Matemática financeira 2Matemática financeira 2
Matemática financeira 2
 
Matemática financeira 1
Matemática financeira 1Matemática financeira 1
Matemática financeira 1
 
Ferramentas necessárias ao cálculo estatísco
Ferramentas necessárias ao cálculo estatíscoFerramentas necessárias ao cálculo estatísco
Ferramentas necessárias ao cálculo estatísco
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
Como encontrar a medida certa
Como encontrar a medida certa Como encontrar a medida certa
Como encontrar a medida certa
 
Livro o diabo dos números roteiro de trabalho
Livro o diabo dos números   roteiro de trabalhoLivro o diabo dos números   roteiro de trabalho
Livro o diabo dos números roteiro de trabalho
 
Roteiro de trabalho como encontrar a medida certa
Roteiro de trabalho como encontrar a medida certaRoteiro de trabalho como encontrar a medida certa
Roteiro de trabalho como encontrar a medida certa
 
Como encontrar a medida certa pdf pp
Como encontrar a medida certa pdf ppComo encontrar a medida certa pdf pp
Como encontrar a medida certa pdf pp
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Noções de geometria
Noções de geometriaNoções de geometria
Noções de geometria
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
Pa pdf
Pa pdfPa pdf
Pa pdf
 
Acessibilidade e o publico alvo da educação especial cris
Acessibilidade e o publico alvo da educação especial crisAcessibilidade e o publico alvo da educação especial cris
Acessibilidade e o publico alvo da educação especial cris
 
A importância da articulação intersetorial no processo de inclusão educaciona...
A importância da articulação intersetorial no processo de inclusão educaciona...A importância da articulação intersetorial no processo de inclusão educaciona...
A importância da articulação intersetorial no processo de inclusão educaciona...
 
A formação continuada de professores
A formação continuada de professoresA formação continuada de professores
A formação continuada de professores
 
A escola na perspectiva da educ inclusiva
A escola na perspectiva da educ inclusivaA escola na perspectiva da educ inclusiva
A escola na perspectiva da educ inclusiva
 

Dernier

Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
CleidianeCarvalhoPer
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
TailsonSantos1
 

Dernier (20)

Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenos
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 

Conjunto dos números complexos

  • 2.
  • 3.
  • 4.
  • 5.
  • 6. Girolamo Cardano nasceu em Pavia, em 1501 e faleceu em Roma, em 1576. Sua vida foi marcada por contrastes e extremos. Sabe-se que era excepcional cientista, mas que também era violento, traidor, invejoso e outras qualificações não muito edificantes. Foi autor do Liber de Ludo Aleae, onde introduziu a ideia de probabilidade e também ensinou maneiras de trapacear nos jogos. Sua maior obra, entretanto, foi o Ars Magna, publicada na Alemanha em 1545, que na época era o maior compendio algébrico existente.
  • 7. Nicolo Fontana, apelidado de Tartaglia, só tinha em comum com Cardano a nacionalidade italiana e o talento matemático. Nascido em Brescia em 1500, na infância, pobre, foi gravemente ferido por golpes de sabre e, por causa deste incidente, com com profunda cicatriz na boca que lhe provocou um permanente defeito na fala. Da ter sido apelidado de Tartaglia, que significa gago. Ao longo de sua vida publicou diversas obras mas o que o colocou definitivamente nos anais da Matemática foram suas disputas com Cardano.
  • 8. Consta que, por volta de 1510, um matemático italiano de nome Scipione del Ferro encontrou uma forma geral de resolver equações do tipo x³ + px + q = 0, mas morreu sem publicar sua descoberta. Seu aluno Antonio Maria Fior conhecia tal solução e tentou ganhar notoriedade com ela. Na época eram comuns os desafios entre sábios.
  • 9. Como Tartaglia era um nome que começava a se destacar nos meios culturais da época, Fior propôs a Tartaglia um desafio. Tartaglia, apesar de não saber resolver ainda tais equações, aceitou o desafio, confiando em seu potencial. Sabendo que Fior conhecia a solução das equações acima citadas, não só deduziu a resolução para este caso, como também resolveu as equações do tipo x³ + px² + q = 0. O resultado deste desafio foi que Fior saiu humilhado.
  • 10. Nesta época Cardano, ao saber que Tartaglia achara a solução geral da equação de grau 3 pediu-lhe que a revelasse, para que fosse publicada em seu próximo livro. Tartaglia não concordou, alegando que ele mesmo iria publicar sua descoberta. Cardano acusou-o de mesquinho e egoísta, e não desistiu. Apos muitas conversas e suplicas este, jurando não divulgar tal descoberta, conseguiu que Tartaglia lhe revelasse a solução. Conforme qualquer um poderia prever, Cardano quebrou todas as promessas e, em 1545, fez publicar na Ars Magna a formula de Tartaglia. No final, como em muitos outros casos, a posteridade não fez justica a Tartaglia: sua formula e ate hoje conhecida como “Formula de Cardano."
  • 11.
  • 12.
  • 14. PARA COMPREENDER VAMOS RELEMBRAR OS TIPOS DE CONJUNTOS N N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ....}
  • 15. IN Z (naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....} (inteiros) Z = { ... -2, -1, 0, 1, 2, ....}
  • 16. Q N Z Q (naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....} (inteiros) Z = { ... -2, -1, 0, 1, 2, ....} (racionais) Q = {podem ser escritos na forma de fração} Os N, Z, dízimas periódicas.
  • 17. Q N Z Q I (naturais) N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, ....} (inteiros) Z = { ... -2, -1, 0, 1, 2, ....} (racionais) Q = {podem ser escritos na forma de fração} Os N, Z, dízimas periódicas. (irracionais) I = {não podem ser escritos na forma de fração} ∏, 𝟐 , 𝟑 𝟕
  • 18. N Z Q I Reais (R) = são todos os números exceto as raízes quadradas nos números negativos
  • 19. N Z Q I Complexos (C) = são todos os reais além das raízes quadradas nos números negativos.
  • 20.
  • 21. NÚMEROS COMPLEXOS-NÚMEROS IMAGINÁRIOS • Iremos representar essa proposição utilizando uma unidade imaginária i, assim poderemos dizer que o quadrado de um número é um número negativo • então i . i = - 1, isto é, i² = - 1 . Professora Rosânia
  • 22. UNIDADE IMAGINÁRIA ( i ) convenção −𝟏 = i i² = -1
  • 23. FORMA ALGÉBRICA Z = a + bi a = parte real b = parte imaginária a = 0 e b ≠ 0 .......... imaginário puro b = 0 ....................... real puro
  • 24. z = 2 + 4i : Re(z) = 2 Im(z) = 4 z = 5 – 2i : Re (z) = 5 Im (z) = –2 Professora Rosânia
  • 25. Veja alguns exemplos de como identificar a parte real e a parte imaginária de um número complexo: z = - 3 + 5i Re(z) = -3 Im(z) = 5 z = -5 + 10i Re(z) = -5 Im(z) = 10 z = 1/2 + (1/3)i Re(z) = 1/2 Im(z) = 1/3 Professora Rosânia
  • 26. As coordenadas a e b podem assumir qualquer valor real, dependendo do valor que eles assumirem o número complexo irá receber um nome diferente: Quando a e b forem diferentes de zero dizemos que o número complexo é imaginário: z = 2 + 5i Professora Rosânia
  • 27. Quando o valor de a é igual a zero e o de b é diferente de zero dizemos que o número complexo é imaginário puro: z = 0 + 2i z = 2i Professora Rosânia
  • 28. Quando a diferente de zero e b igual a zero dizemos que o número complexo será real. z = 5 – 0i z=5 Professora Rosânia
  • 29. Tornar um complexo real ou imaginário puro Z = (x – 3) + (x² - 25)i REAL – TORNAR A PARTE IMAGINÁRIA NULA (x² - 25) = 0 IMAGINÁRIO – TORNAR A PARTE REAL NULA x–3=0
  • 30. EQUAÇÕES EM C CASO 1 A equação do 2º grau x² + 25 = 0 é impossível de ser resolvida no conjunto dos números Reais, mas pode ser resolvida dentro do conjunto dos números Complexos, da seguinte forma: x² + 81 = 0 (Equação incompleta do 2º grau) x² = –81 x = ±√–81 Temos x = ±9i Professora Rosânia
  • 31. CASO 2 2x² - 16x + 50 = 0 (Equação completa do 2º grau) a = 2, b = -16, c = 50 ∆ = b² - 4ac ∆ = (-16)² - 4 . 2 . 50 ∆ = 256 – 400 ∆ = -144 Temos (±12i)² = 144i² = 144.(-1) = -144. x’ = 4 + 3i e x’’ = 4 – 3i Professora Rosânia
  • 32. EQUAÇÕES EM C x² + 2x + 10 = 0 −𝟐 ± −𝟐 ± 𝟐 𝟐 − 𝟒. 𝟏. 𝟏𝟎 𝟐. 𝟏 −𝑏 ± 𝟒 − 𝟒𝟎 𝟐. −𝟐 ± − 𝟑𝟔 𝟐 x’ = - 1 + 3i −𝟐 ± 𝟔 𝒊 = 𝟐 x’’ = - 1 – 3i 𝑏 2 − 4𝑎𝑐 2𝑎
  • 33. Potências de i i0 = 1 i1 = i i5 = i4 . i = 1 . i = i i6 = i4 . i2 = 1 . (-1) = -1 i2 = -1 i3 = i2 i7 = i4 . i3 = 1 (-i) = -i . i = -1 . i = -i i4 = i2 . i2 = (-1) . (-1) = 1 Professora Rosânia 𝒊𝒏 = 𝒊𝒓
  • 34. Então, para simplificar 𝒏 𝒊 = 𝒊 Ex: i26 26 4 2 6 i² = -1 Professora Rosânia 𝒓
  • 35. IGUALDADE DE COMPLEXOS Z1 = (a + 1) + 3i e Z2 = 4 + ( 2- b)i Real = Real Imaginária = Imaginária
  • 37. Aritmética dos números complexos Adição e Subtração Professora Rosânia
  • 38. Adição (a + bi) + (c + di) = (a + c) + (b + d)i Para adicionarmos dois números complexos, adicionamos as partes reais e as partes imaginárias Professora Rosânia
  • 39. Exemplos (3 + 4i) + (- 7 + 8i) = (3 - 7) + (4 + 8) i = - 4 + 12i Na prática temos: (3 + 4i) + (-7 + 8i) = Professora Rosânia
  • 40. Subtração (a + bi) - (c + di) = (a – c) + (b – d)i Para subtrairmos dois números complexos, subtraímos as partes reais e as partes imaginárias Professora Rosânia
  • 41. EXEMPLOS (- 5 + 6i) - (4 - 2i) = (- 5 - 4) + [6 - (- 2)] i = - 9 + 8i NA PRATICA TEMOS: Professora Rosânia
  • 42. Exemplos Multiplicação (a + bi) . (c + di) = (ac – bd) + (ad + bc)i Multiplicamos números complexos como multiplicamos binômios, usando i2 = - 1 6 – 8i + 9i – 12i2 6 + i – 12 . (-1) = = 6 + i + 12 = 18 + i Professora Rosânia
  • 43. O conjugado e a divisão O conjugado de um número complexo a + bi é a - bi, e o conjugado de a - bi é a + bi. Os números complexos a + bi e a - bi são chamados complexos conjugados. Para um número complexo z, seu conjugado é representado com ; então, se z = a + bi escrevemos = a - bi. Professora Rosânia
  • 44. Dividindo dois números complexos Para escrevermos o quociente na forma a + bi: multiplicamos o numerador e o denominador pelo conjugado do denominador Professora Rosânia
  • 46.
  • 47.