SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Data scientists, data engineers, and data businesspeople are critical to leveraging data in any organization. A common complaint from data science managers is that data scientists invest time prototyping algorithms, and throw them over a proverbial fence to engineers to implement, only to find the algorithms must be rebuilt from scratch to scale. This is a symptom of a broader ailment -- that data teams are often designed as functional silos without proper communication and planning.
This talk outlines a framework to build and organize a data team that produces better results, minimizes wasted effort among team members, and ships great data products.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires