SlideShare une entreprise Scribd logo
1  sur  19
Télécharger pour lire hors ligne
Nature | Vol 617 | 4 May 2023 | 55
Article
Aninfraredtransientfromastarengulfinga
planet
Kishalay De1✉, Morgan MacLeod2
, Viraj Karambelkar3
, Jacob E. Jencson4
,
Deepto Chakrabarty1
, Charlie Conroy2
, Richard Dekany5
, Anna-Christina Eilers1
,
Matthew J. Graham3
, Lynne A. Hillenbrand3
, Erin Kara1
, Mansi M. Kasliwal3
, S. R. Kulkarni3
,
Ryan M. Lau6
, Abraham Loeb2,7
, Frank Masci8
, Michael S. Medford9,10
, Aaron M. Meisner6
,
Nimesh Patel2
, Luis Henry Quiroga-Nuñez11
, Reed L. Riddle5
, Ben Rusholme8
, Robert Simcoe1
,
Loránt O. Sjouwerman12
, Richard Teague2,13
& Andrew Vanderburg1
Planetswithshortorbitalperiods(roughlyunder10 days)arecommonaroundstars
liketheSun1,2
.Starsexpandastheyevolveandthusweexpecttheircloseplanetary
companionstobeengulfed,possiblypoweringluminousmassejectionsfromthe
hoststar3–5
.However,thisphasehasneverbeendirectlyobserved.Herewereport
observationsofZTFSLRN-2020,ashort-livedopticaloutburstintheGalacticdisk
accompaniedbybrightandlong-livedinfraredemission.Theresultinglightcurve
andspectrasharestrikingsimilaritieswiththoseofrednovae6,7
—aclassoferuptions
nowconfirmed8
toarisefrommergersofbinarystars.Itsexceptionallylowoptical
luminosity (approximately 1035
erg s−1
) and radiated energy (approximately
6.5 × 1041
erg)pointtotheengulfmentofaplanetoffewerthanroughlytenJupiter
massesbyitsSun-likehoststar.WeestimatetheGalacticrateofsuchsubluminousred
novaetoberoughlybetween 0.1andseveralperyear.FutureGalacticplanesurveys
shouldroutinelyidentifythese,showingthedemographicsofplanetaryengulfment
andtheultimatefateofplanetsintheinnerSolarSystem.
Using data from the Zwicky Transient Facility (ZTF) time domain
survey9
, we searched for slowly evolving outbursts near the Galactic
plane (Supplementary Information 1). We identified a transient opti-
cal source, named ZTF 20aazusyv, at celestial J2000 coordinates
α = 19:09:39.783, δ = +05:35:04.269 (Supplementary Information 5;
hereafter,ZTFSLRN-2020),thatexhibitedarapidrisefromquiescence
to peak outburst flux in approximately 10 days, subsequently fading
byabouttenfoldover6 months(Fig.1andExtendedDataFigs.1and2).
The long optical outburst duration, together with its faint peak flux,
distinguishesitfromcommonGalacticplanetransientsresultingfrom
whitedwarfswithclosebinarycompanions(the‘dwarf’and‘classical’
novae10
). The transient also exhibits a mid-infrared (IR) brightening
starting at around 7 months before the optical outburst, together
with bright mid-IR emission (over 50-fold brighter than the optical
r-bandat around 4 monthsafteropticalpeak),thatlastedforroughly
atleast 15 months.NoX-rayemissionwasdetectedinfollow-upobser-
vations during the outburst using the Swift telescope11
, ruling out an
unstable disk accretion episode around a neutron star or black hole12
(Supplementary Information 4).
The bright mid-IR emission during the outburst is suggestive
of emission from a warm dust shell surrounding the stellar photo-
sphere. We model the optical to mid-IR spectral energy distribution
(SED; Supplementary Information 12) at around 120 days after the
optical peak. The analysis shows a relatively hot inner photosphere
(approximately 9,000 K)surroundedbyawarmdustshellofapproxi-
mately 1,000 K, located behind a dust visual extinction column of AV
(approximately 3.6 mag; Fig. 2, Extended Data Figs. 5 and 6 and
Extended Data Table 3). Using the 90% confidence interval on the
foregroundextinction,togetherwiththree-dimensionalGalacticdust
distributionmaps(SupplementaryInformation13andExtendedData
Fig.7),weinferthesourcetobelocatedatadistanceof2–7 kpc.Ajoint
analysis of the overlap between the different dust maps suggests a
probable distance of roughly 4 kpc. Performing the same analysis at
around 320 days after peak, we find the SED to have predominantly
shifted into the IR bands caused by an increase in dust optical depth
that can be attributed to the formation of about 10−6
M⊙ of dust (for a
distance of 4 kpc).
Using the best estimate for foreground extinction, we construct
a bolometric luminosity light curve for the outburst (Fig. 2 and Sup-
plementary Information 13). The light curve is characterized by an
initialplateauataluminosityofaround 1035
× (d/4 kpc)2
erg s−1
lasting
approximately 25days(SupplementaryInformation13)beforefading
by a factor of 5 over the next (roughly) 100 days. The effective tem-
peratureofthephotosphereremainsconstantataround (6−7) × 103
K
duringtheplateauphase,presumablyregulatedbytherecombination
temperatureofhydrogen13
,beforefadingandcoolingtoabout 5 × 103
K.
https://doi.org/10.1038/s41586-023-05842-x
Received: 29 September 2022
Accepted: 14 February 2023
Published online: 3 May 2023
Check for updates
1
Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 2
Center for Astrophysics/Harvard & Smithsonian, Cambridge, MA, USA.
3
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, USA. 4
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA. 5
Caltech Optical
Observatories, California Institute of Technology, Pasadena, CA, USA. 6
NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA. 7
Black Hole Initiative, Harvard University,
Cambridge, MA, USA. 8
IPAC, California Institute of Technology, Pasadena, CA, USA. 9
Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA. 10
Lawrence Berkeley
National Laboratory, Berkeley, CA, USA. 11
Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL, USA. 12
National Radio Astronomy Observatory,
Array Operations Center, Socorro, NM, USA. 13
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. ✉e-mail: kde1@mit.edu
56 | Nature | Vol 617 | 4 May 2023
Article
Thetotalradiatedenergyisapproximately 6.5 × 1041
(d/4 kpc)2
ergover
the first (roughly) 150 days.
On UT 2020 November 20, we obtained an optical spectrum of the
transientusingtheKeck-Itelescope(ExtendedDataTable2).Thespec-
trum(Fig.3)exhibitsanalmostfeaturelessredcontinuumcontaining
onlyatomic(Na,Ba,HandMg)andmolecularabsorptionfeatures(VO
andTiO).Theabsenceofatomicemissionlinesduringtheoutburstis
inconsistentwithcommonGalacticplanetransientssuchasaccretion/
thermonuclearoutburstsindwarfandclassicalnovae10
,wherehotgas
produces emission lines due to atomic recombination and ions (Sup-
plementaryInformation11andExtendedDataFigs.3and4).Whereas
ZTF SLRN-2020 shows some similarities to outbursting young stars,
itexhibitsstrikingdifferencesinitsrapidcoolingtoaSEDdominated
by IR emission (suggestive of a cooling photosphere), complete lack
ofemissionlines(thatis,ubiquitousinhotgasaccretion)aswellasits
sky location away from known star-forming regions (Supplementary
Information 11). Instead, the molecular features are suggestive of a
cool outer photosphere consistent with an M4-III-type giant star and
effective temperature of around 3,600 K (Supplementary Informa-
tion11).Contemporaneousnear-IR(NIR)spectra(Fig.3)obtainedwith
the Palomar 200 inch telescope show only broad molecular absorp-
tion bands from H2O, and probably from TiO, VO and CO, consist-
ent with an M7-III-type giant possessing an extended, cool envelope
(SupplementaryInformation11).Late-timeNIRspectra(Fig.3)obtained
around 700 days after the optical peak with the Magellan Baade and
Keck-II telescopes show only a relatively featureless continuum with
broad H2O absorption.
The distinctively cool molecular spectroscopic features, together
withsubstantialreddeningoftheSEDduringtheoutburst,arereminis-
centoftheclassofrednovae8,14–17
.Directphotometricobservationsof
thebinaryorbitaldecaybeforetherednovaV1309Sco8
providestrong
evidence for the association of these events with catastrophic merg-
ers of binary stars. Because the primary star engulfs its companion, a
powerful outflow is launched from the binary system that gradually
cools and powers a ‘plateau’ in the light curve of the optical transient
via recombination of hydrogen6
. Subsequently, the expanding enve-
lopecoolsandformsdustleadingtotheemergenceofaphotosphere
dominated by molecular absorption and a luminous, long-lived IR
transient18,19
.
The photometric and spectroscopic properties of ZTF SLRN-2020
share striking similarities with both Galactic and extragalactic red
novae(SupplementaryInformation10andExtendedDataFigs.1and2).
Nevertheless, its remarkably low luminosity, even if placed on the
far side of the Galactic disk (no nore than around a few × 1036
erg s−1
),
makesitexceptionalamongthepopulationofrednovaethatreachthe
Eddingtonluminosityoftheprimarystars(around 1038
erg s−1
fora1 M⊙
20′′
N
E
2.0′′
–400 0 200 400
Time from i-band peak (MJD 58993; days)
10–3
10–2
10–1
100
101
Difference
in
flux
(mJy)
I O W
W
SED
outburst
SED
late
ZTF-r ZTF-g ZTF-i ATLAS-o ATLAS-c WISE-W1 WISE-W2
–40 0
10–2
10–1
UKIRT JHK composite
2007–2009
a unWISE W1+ W2
2020 October
b c WIRC JHK composite
2021 March
d Gemini-S/GSAOI J
2022 April
e
–20
–200
Fig.1|DiscoverylocationandmulticolourlightcurvesofZTFSLRN-2020.
a,AfaintprogenitoridentifiedinarchivalNIRimagesfromtheUKIRTGalactic
PlaneSurvey.b,Mid-IRtransientsourcedetectedinNEOWISEimagesfrom
2020.c,NIRcompositefollow-upimage(whitesquaremasksoutanearby
regionwithadetectorartefact)ofthetransientduring2021.Thespatialscales
inpanelsa–careidentical.d,Zoomed-in,high-spatial-resolutionimageofthe
IRremnantin2022.e,MulticolourlightcurvesoftheoutburstfromtheZTF9
,
ATLAS48
andNEOWISE49
surveys(asindicatedinthelegend).Errorbarsareshown
at1σconfidence,and5σupperlimitsareshownassymbolswithdownward
arrows.IandOindicatethetimesofNIRandopticalspectroscopyofthe
transient,respectively,withWshowingtheepochofP200NIRimaging.
VerticaldashedlinesrepresentthetimerangesusedtoperformSEDmodelling
duringtheoutburstin2020(SEDoutburst)andaftertheopticaltransienthad
fadedawayin2021(SEDlate).Insetshowsaclose-upoftheearly-timelight
curve(shadedingreyinthemainpanel),showingfainti-bandprecursor
emissionanddetectionofmid-IRemissionbeforetheonsetoftheoptical
outburst.
Nature | Vol 617 | 4 May 2023 | 57
star). We show ZTF SLRN-2020 in the phase space of luminosity and
timescales (Fig. 4 and Supplementary Information 13) for red novae,
togetherwithanalyticalcontoursforthemassandvelocityofejecta,in
modelsofstellarmergers7
.Theextremelylowluminosityisreasonably
explained by around only 10−5
−10−4
M⊙ of hydrogen launched in the
outflow7
. The small ejected mass is consistent with the nondetection
of radio molecular line emission in follow-up observations with the
SubmillimeterArray(SMA)andVeryLargeArray(VLA;Supplementary
Information 8 and 9).
Usingahigh-spatial-resolutionimageobtainedwiththeGemini-South
telescope about 2 years after the outburst peak, we identified a faint
progenitor source (Supplementary Information 14) in archival NIR
imagesfromtheUnitedKingdomInfraredTelescope(UKIRT)Galactic
planesurvey20
.Althoughlimitedbyphotometricerrors,itsbrightness
andcoloursareconsistentwithastarofaround 0.8−1.5 M⊙ onthemain
sequenceorearlyinthesub-giantbranch(radius,1−4 R⊙;ExtendedData
Fig. 8 and Extended Data Table 1). The IR progenitor is thus similar to
theSun,andtotheprimarystarofV1309Sco,whichwasamergerevent
involving a low-mass q = 0.1 companion, where q is the companion to
primary mass ratio8,21–24
.
We draw constraints on the mass of the merging object from both
the light curve and pre-outburst detections. ZTF SLRN-2020’s ejecta
massandradiatedenergyarebothapproximately 103
-foldlowerthan
thoseofV1309Sco(Fig.4).Linearlyscalingthecompanionmasswith
thesepropertiesimpliesagiantplanetcompanionofaround 0.1 MJ.The
presenceofpre-outburstdustandgassuggestsanongoinginteraction
(Extended Data Fig. 9) that escalates to produce the outburst22,24,25
,
rather than a direct collision. The pre-outburst dust model that best
matchesthedatahasq = 10−2
oracompanionmassofabout 10 MJ (Fig.4
and Supplementary Information 18). Therefore, all our estimates
100
Wavelength (μm)
10–13
10–12
Flux
OF
λ
(erg
cm
–2
s
–1
)
Phase +125 days AV = 3.6 mag
L = 5.0 L
W = 1.8
Td = 1,014 K
T* = 8,970 K
rin = 1.0 AU
a
100
10–13
10–12
Phase +320 days
L = 5.5 L
W = 13.0
Td = 415 K
T* = 4,300 K
rin = 3.7 AU
1034
1035
1036
L
(erg
s
−1
)
L ∝ t−4/5
V838 Mon ×10–4
V1309 Sco ×10–3
V4332 Sgr ×10–2
M31-OT 2015 ×10–4
AT2019zhd ×10–4
AT2018bwo ×10–5
2
4
6
8
T
(10
3
K)
ZTFSLRN-2020
101 102
Time since peak (days)
1011
1012
R
(cm)
V838Mon ×10–3
V1309Sco ×10–2
V4332Sgr ×10–2
M31-OT2015 ×10–2
AT2019zhd ×10–2
AT2018bwo ×10–3
c
b
Flux
OF
λ
(erg
cm
–2
s
–1
)
Wavelength (μm)
Fig.2|Temporalevolutionofthespectralenergydistributionand
integratedluminosityofZTFSLRN-2020.a,Best-fitmodel(parametersare
shown)fortheSEDofZTFSLRN-2020(shownasblackcircles)ataround 125 days
afteroutburstpeak.Blacksolidlinesdenotetotalflux,browndot-dashedlines
denotedustemissionandgreendashedandbluedottedlinesdenotescattered
andattenuatedstellaremission,respectively.b,Asinabutroughly 320 days
afteroutburstpeak.c,Bolometricluminosity(top),temperature(middle)and
radius(bottom)evolutionofZTFSLRN-2020foranestimateddistanceof4 kpc
andaforegroundinterstellarextinctionofAV = 3.6 mag.Redsquaresinthe
toppanelrepresentluminosityestimatedfromthetwoepochsofDUSTY
modelling.Forcomparison,wealsoshowtheevolutionoftheseparametersfor
previousrednovae,thebest-fitlightcurveplateaumodel(blackdottedline)and
theL ∝ t−4/5
luminositydecayexpectedforamergerremnant(blackdashedline;
SupplementaryInformation13).Theradiusandluminosityofarchivalevents
havebeenscaledasindicated.Errorbarsareshownat1σconfidence.
58 | Nature | Vol 617 | 4 May 2023
Article
squarely point to a close planetary companion to the primary star,
plausibly a Neptune- or Jupiter-like planet strikingly similar to known
systems26
.
Theoveralldurationofthelightcurvesuggestsamassejectionveloc-
ity of roughly 30 km s−1
(Fig. 4), which is substantially lower than the
stellarescapevelocity.Wecanunifytheseestimateswithourtheoretical
understandingofhowplanetaryengulfmentmightaffectahoststar.In
particular, the smaller the engulfed companion the less dramatic the
disturbance to the primary star and the smaller fraction of material
thatisexpectedtobeejectedatsufficientlyhighvelocitiestobecome
unbound27–29
. The short-lived (around 25 days) plateau phase in ZTF
SLRN-2020 may be powered by the ejection and unbinding of a small
amount(lessthanabout10−4
M⊙)ofmassatvelocitiesapproachingthe
stellarescapevelocity(about100 km s−1
;Fig.4).TheradiusofZTFSLRN-
2020(Fig.2)remainsroughlyconstantatabout 3 × 1011
× (d/4 kpc) cm
duringtheplateauandrecedesduringthefadingphase,similartothat
expectedforthegravitationalcontractionofamergerremnant19
.These
features suggest that the late-time decay over the next 100 days or so
is powered by hydrodynamic and thermal readjustment of the star
following the ingestion of its planetary companion.
Our interpretation of ZTF SLRN-2020 as the engulfment event of a
planetarymassobjectbyaSun-likestarprovidesevidenceforamissing
link in our understanding of the evolution and final fates of planetary
systems.Ithaslongbeenknownthatthepopulationofplanetsinshort
orbital periods1,2,30,31
has sufficiently low orbital angular momentum
suchthattheyareunstabletotidaldissipationandareboundtomerge
withtheirhoststars32–35
.Thisisconsistentwiththelackofoldplanetary
systems with short orbital periods36,37
, as well as the dearth of close
planets around sub-giant stars38–40
. Therefore, to our knowledge, the
observationsreportedhereofferthefirstdirectinsightintotheeffectof
planetaryengulfmentontheirhoststarstointerpretcommonindirect
techniques used to infer past planetary engulfment via its effects on
long-term stellar luminosity5,41
, chemical enrichment42–44
and stellar
rotation45–47
. With empirical and theoretical rate predictions ranging
from0.1toseveralperyear(SupplementaryInformation16and20)for
similar ‘subluminous red novae’, upcoming combined optical and IR
surveys of the Galactic plane may show many similar events via their
distinctive, short-lived optical outbursts accompanied by long-lived
IR emission.
Onlinecontent
Anymethods,additionalreferences,NaturePortfolioreportingsum-
maries, source data, extended data, supplementary information,
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wavelength (μm)
Scaled
F
λ
+
constant
TiO 8859
TiO 9209
Hα
TiO 9728
Na ID
Ba II
Mg II
TiO 7589
VO 7912 VO 8624
ZTFSLRN-2020
Keck/LRIS +180 days
HV2255 M4-III
V838Mon +61 days
AT2018bwo +51 days
a
0.58 0.60 0.62 0.64 0.66
Ba II Hα
Na D
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
P200/TSpec
P200/TSpec
+160 days
+160 days
AT2018bwo
+103 days
HD108849
M7-III
Magellan/Keck
Magellan/Keck
+690 days
+690 days
H2O
TiO
VO
TiO
VO
12CO
b
Scaled
F
λ
+
constant
Wavelength (μm)
H2O
Fig.3|OpticalandIRspectraofZTFSLRN-2020.a,Opticalspectrumofthe
outburst(black)obtainedabout 180 daysafterpeak.Thespectrumshows
clearatomicandmolecularabsorptionfeatures,similartotheM4-III-type
giantHV 2255.Forcomparison,late-timeopticalspectraofapreviousGalactic
rednova(V838 Mon,inorange)andanextragalacticluminousrednova
(AT 2018bwo,inmagenta)areshownafterapplyingtheinferredforeground
extinction50
.Theinsetshowsaclose-upofthespectraaroundtheregionof
atomiclinesNa D,HαandBa II.b,NIRspectrumofZTFSLRN-2020(black)at
around +160 daysandaround +690 daysafteropticalpeak,showingclear
broadmolecularabsorptionfeaturesofH2O,TiO,VOandprobablyCO,similar
totheM7-IIIgiantHD 108849(showninred).Similarfeaturesarealsoseenin
NIRspectraofthepreviouslyknownextragalacticrednovaAT 2018bwo(shown
inmagenta).
Nature | Vol 617 | 4 May 2023 | 59
acknowledgements,peerreviewinformation;detailsofauthorcontri-
butionsandcompetinginterests;andstatementsofdataandcodeavail-
ability are available at https://doi.org/10.1038/s41586-023-05842-x.
1. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems.
Ann. Rev. Astron. Astrophys. 53, 409–447 (2015).
2. Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Ann. Rev. Astron. Astrophys. 56,
175–221 (2018).
3. Metzger, B. D., Giannios, D. & Spiegel, D. S. Optical and X-ray transients from planet-star
mergers. Mon. Not. R. Astron. Soc. 425, 2778–2798 (2012).
4. MacLeod, M., Cantiello, M. & Soares-Furtado, M. Planetary engulfment in the Hertzsprung-
Russell Diagram. Astrophys. J. 853, L1 (2018).
5. Stephan, A. P., Naoz, S., Gaudi, B. S. & Salas, J. M. Eating planets for lunch and dinner:
signatures of planet consumption by evolving stars. Astrophys. J. 889, 45 (2020).
6. Ivanova, N., Justham, S., Avendano Nandez, J. L. & Lombardi, J. C. Identification of the
long-sought common-envelope events. Science 339, 433 (2013).
7. Matsumoto, T. & Metzger, B. D. Light curve model for luminous red novae and inferences
about the ejecta of stellar mergers. Astrophys. J. 938, 5 (2022).
8. Tylenda, R. et al. V1309 Scorpii: merger of a contact binary. Astron. Astrophys. 528, A114
(2011).
9. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first
results. Publ. Astron. Soc. Pac. 131, 018002 (2019).
10. Warner, B. Cataclysmic Variable Stars (Cambridge Univ. Press, 1995).
11. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020
(2004).
12. Corral-Santana, J. M. et al. BlackCAT: a catalogue of stellar-mass black holes in X-ray
transients. Astron. Astrophys. 587, A61 (2016).
13. Popov, D. V. An analytical model for the plateau stage of type II supernovae. Astrophys. J.
414, 712 (1993).
14. Rich, R. M., Mould, J., Picard, A., Frogel, J. A. & Davies, R. Luminous M giants in the bulge
of M31. Astrophys. J. 341, L51 (1989).
15. Martini, P. et al. Nova Sagittarii 1994 1 (V4332 Sagittarii): the discovery and evolution of an
unusual luminous red variable star. Astron. J. 118, 1034–1042 (1999).
16. Munari, U. et al. The mysterious eruption of V838 Mon. Astron. Astrophys. 389, L51–L56
(2002).
17. Tylenda, R. et al. OGLE-2002-BLG-360: from a gravitational microlensing candidate to an
overlooked red transient. Astron. Astrophys. 555, A16 (2013).
18. Loebman, S. R. et al. The continued optical to mid-infrared evolution of V838 Monocerotis.
Astron. J. 149, 17 (2015).
19. Tylenda, R. & Kamiński, T. Evolution of the stellar-merger red nova V1309 Scorpii: spectral
energy distribution analysis. Astron. Astrophys. 592, A134 (2016).
20. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc.
379, 1599–1617 (2007).
21. Nandez, J. L. A., Ivanova, N. & Lombardi Jr, J. C. V1309 Sco–understanding a merger.
Astrophys. J. 786, 39 (2014).
22. Pejcha, O. Burying a binary: dynamical mass loss and a continuous optically thick outflow
explain the candidate stellar merger V1309 Scorpii. Astrophys. J. 788, 22 (2014).
23. Zhu, L.-Y., Zhao, E.-G. & Zhou, X. A low-mass-ratio and deep contact binary as the progenitor
of the merger V1309 Sco. Res. Astron. Astrophys. 16, 68 (2016).
24. Pejcha, O., Metzger, B. D., Tyles, J. G. & Tomida, K. Pre-explosion spiral mass loss of a binary
star merger. Astrophys. J. 850, 59 (2017).
25. MacLeod, M. & Loeb, A. Runaway coalescence of pre-common-envelope stellar binaries.
Astrophys. J. 893, 106 (2020).
26. Hellier, C. et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature
460, 1098–1100 (2009).
27. Staff, J. E., De Marco, O., Wood, P., Galaviz, P. & Passy, J.-C. Hydrodynamic simulations of
the interaction between giant stars and planets. Mon. Not. R. Astron. Soc. 458, 832–844
(2016).
28. MacLeod, M., Ostriker, E. C. & Stone, J. M. Bound outflows, unbound ejecta, and the
shaping of bipolar remnants during stellar coalescence. Astrophys. J. 868, 136 (2018).
101 102
Outburst duration (days)
1035
1036
1037
1038
1039
1040
1041
Luminosity
L
90
(erg
s
−1
)
V4332 Sgr
V838 Mon
V1309 Sco
NGC 4490-OT2011
M31-OT2015
M101-OT2015
SNHunt 248
AT 2014ej AT 2017jfs
AT 2018bwo
AT2018hso
AT 2019zhd
AT 2020kog
AT2020hat
ZTFSLRN-2020
ZTFSLRN-2020
10−5 M(
10−4 M(
10−1 MJ
10–3 M(
100 MJ
10−2 M(
101
MJ
10−1 M(
102 MJ
100 M(
103 MJ
101 M(
104 MJ
102 M(
1,000 km s−1
a
−2.0 −1.5 −1.0 −0.5 0
Time from merger (years)
10−8
10−7
10−6
Dust
mass
(M
(
)
q = 10−1
q = 10−2
q = 10−3
100 km s−1
10 km s−1
b
10–2
MJ
Fig.4|ComparisonofZTFSLRN-2020outburstwiththephasespaceof
luminosity(L90)andtimescales(t90)forpreviouslyknownrednovae.
a, Contoursshowinferredejectaphysicalparameters7
—ejectamassinunitsof
solarandJupitermassontheleft-handside,andoutflowvelocityinunitsof
km s−1
(inmagenta)ontheright-handside.SolidandhollowstarsdenoteZTF
SLRN-2020viaitslightcurveplateaudurationandtimetakentorelease90%of
thetotalradiatedenergy,respectively(SupplementaryInformation13).The
inferredejectamassofZTFSLRN-2020is100-foldlowerthananyotherknown
rednova,andthecharacteristicvelocitiesarealsonearlyanorderofmagnitude
lower.b,Comparisonofpre-outburstdustmassestimatedfromprecursor
mid-IR emission of ZTF SLRN-2020 (denoted by stars) with models of
precoalescencemasslossfora1 M⊙ starevolvingoffthemainsequencewith
binarymassratioq = 10−3
−10−1
.Solidlinescorrespondtoaninitialradiusof2 R⊙,
andtheshadedregionshowsvariationsforradiiof1−4 R⊙.Errorbarsinpanelsa
andbareshownat1σconfidence.
60 | Nature | Vol 617 | 4 May 2023
Article
29. MacLeod, M. & Loeb, A. Pre-common-envelope mass loss from coalescing binary systems.
Astrophys. J. 895, 29 (2020).
30. Udry, S. & Santos, N. C. Statistical properties of exoplanets. Ann. Rev. Astron. Astrophys.
45, 397–439 (2007).
31. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J.
753, 160 (2012).
32. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).
33. Mardling, R. A. & Lin, D. N. C. Calculating the tidal, spin, and dynamical evolution of
extrasolar planetary systems. Astrophys. J. 573, 829–844 (2002).
34. Patra, K. C. et al. The continuing search for evidence of tidal orbital decay of hot Jupiters.
Astron. J. 159, 150 (2020).
35. Yee, S. W. et al. The orbit of WASP-12b is decaying. Astrophys. J. 888, L5 (2020).
36. Hamer, J. H. & Schlaufman, K. C. Hot Jupiters are destroyed by tides while their host stars
are on the main sequence. Astron. J. 158, 190 (2019).
37. Hamer, J. H. & Schlaufman, K. C. Ultra-short-period planets are stable against tidal
inspiral. Astron. J. 160, 138 (2020).
38. Johnson, J. A. et al. Retired A stars and their companions: exoplanets orbiting three
intermediate-mass subgiants. Astrophys. J. 665, 785–793 (2007).
39. Schlaufman, K. C. & Winn, J. N. Evidence for the tidal destruction of hot Jupiters by
subgiant stars. Astrophys. J. 772, 143 (2013).
40. Grunblatt, S. K. et al. Giant planet occurrence within 0.2 au of low-luminosity red giant
branch stars with K2. Astron. J. 158, 227 (2019).
41. Metzger, B. D., Shen, K. J. & Stone, N. Secular dimming of KIC 8462852 following its
consumption of a planet. Mon. Not. R. Astron. Soc. 468, 4399–4407 (2017).
42. Sandquist, E., Taam, R. E., Lin, D. N. C. & Burkert, A. Planet consumption and stellar
metallicity enhancements. Astrophys. J. 506, L65–L68 (1998).
43. Soares-Furtado, M., Cantiello, M., MacLeod, M. & Ness, M. K. Lithium enrichment
signatures of planetary engulfment events in evolved stars. Astron. J. 162, 273 (2021).
44. Spina, L. et al. Chemical evidence for planetary ingestion in a quarter of Sun-like stars.
Nat. Astron. 5, 1163–1169 (2021).
45. Soker, N. Can planets influence the horizontal branch morphology? Astron. J. 116,
1308–1313 (1998).
46. Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H. & Carlberg, J. K. On lithium-rich red
giants. I. Engulfment of substellar companions. Astrophys. J. 829, 127 (2016).
47. Qureshi, A., Naoz, S. & Shkolnik, E. L. Signature of planetary mergers on stellar spins.
Astrophys. J. 864, 65 (2018).
48. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130,
064505 (2018).
49. Mainzer, A. et al. Initial performance of the NEOWISE Reactivation Mission. Astrophys. J.
792, 30 (2014).
50. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac.
111, 63–75 (1999).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Springer Nature Limited 2023
Dataavailability
All the data used in this work are provided in Extended data.
Codeavailability
K.D. will provide python code used to analyse the observations, and
any data used to generate figures, on request. The RLOF code used to
model the pre-outburst light curve is publicly available.
51. Crause, L. A. et al. The post-outburst photometric behaviour of V838 Mon. Mon. Not. R.
Astron. Soc. 341, 785–791 (2003).
52. MacLeod, M. et al. Lessons from the onset of a common envelope episode: the remarkable
M31 2015 luminous red nova outburst. Astrophys. J. 835, 282 (2017).
53. Blagorodnova, N. et al. Progenitor, precursor, and evolution of the dusty remnant of the
stellar merger M31-LRN-2015. Mon. Not. R. Astron. Soc. 496, 5503–5517 (2020).
54. Pastorello, A. et al. Forbidden hugs in pandemic times. I. Luminous red nova AT 2019zhd,
a new merger in M 31. Astron. Astrophys. 646, A119 (2021).
55. Pastorello, A. et al. Luminous red novae: stellar mergers or giant eruptions? Astron.
Astrophys. 630, A75 (2019).
56. Pastorello, A. et al. The evolution of luminous red nova AT 2017jfs in NGC 4470. Astron.
Astrophys. 625, L8 (2019).
57. Cai, Y. Z. et al. The transitional gap transient AT 2018hso: new insights into the luminous
red nova phenomenon. Astron. Astrophys. 632, L6 (2019).
58. Pastorello, A. et al. Forbidden hugs in pandemic times. II. The luminous red nova variety:
AT 2020hat and AT 2020kog. Astron. Astrophys. 647, A93 (2021).
59. Blagorodnova, N. et al. The luminous red nova AT 2018bwo in NGC 45 and its binary yellow
supergiant progenitor. Astron. Astrophys. 653, A134 (2021).
60. De, K. et al. A population of heavily reddened, optically missed novae from Palomar
Gattini-IR: constraints on the Galactic nova rate. Astrophys. J. 912, 19 (2021).
61. Han, Z. et al. Spectroscopic properties of the dwarf nova-type cataclysmic variables
observed by LAMOST. Publ. Astron. Soc. Jpn 72, 76 (2020).
62. Hillenbrand, L. A. et al. Gaia 17bpi: an FU Ori-type outburst. Astrophys. J. 869, 146 (2018).
63. Hodapp, K. W. et al. The New EXor outburst of ESO-Hα 99 observed by Gaia ATLAS and
TESS. Astron. J. 158, 241 (2019).
64. Herczeg, G. J. et al. The eruption of the candidate young star ASASSN-15QI. Astrophys. J.
831, 133 (2016).
65. Drimmel, R., Cabrera-Lavers, A. & López-Corredoira, M. A three-dimensional Galactic
extinction model. Astron. Astrophys. 409, 205–215 (2003).
66. Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S. Modelling the Galactic
interstellar extinction distribution in three dimensions. Astron. Astrophys. 453, 635–651
(2006).
67. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based
on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).
Acknowledgements K.D.’s work was supported by NASA through NASA Hubble Fellowship
grant no. HST-HF2-51477.001 awarded by the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy, Inc., for NASA under
contract no. NAS5-26555. M.M.’s contributions were supported by the National Science
Foundation under grant no. 1909203. A.-C.E. acknowledges support by NASA through NASA
Hubble Fellowship grant no. HF2-51434 awarded by the Space Telescope Science Institute,
which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA
under contract no. NAS5-26555. S.R.K. thanks the Heising-Simons Foundation for supporting
his research. We thank B. Metzger, T. Matsumoto, M. Soares-Furtado and J. van Roestel for
discussions. The discovery of the optical transient was based on observations obtained with
the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory
as part of the Zwicky Transient Facility (ZTF) project. ZTF is supported by the National Science
Foundation under grant nos. AST-1440341 and AST-2034437, and by a collaboration including
Caltech, IPAC, the Weizmann Institute of Science, the Oskar Klein Center at Stockholm
University, the University of Maryland, the University of Washington, Deutsches Elektronen-
Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO
Consortium of Taiwan, Trinity College Dublin, the University of Wisconsin at Milwaukee, IN2P3
France, Lawrence Livermore National Laboratories and Lawrence Berkeley National Laboratories.
Operations are conducted by COO, IPAC and UW. The ZTF forced-photometry service was
funded under Heising-Simons Foundation grant no. 12540303 (PI: Graham). Some of the data
presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific
partnership including the California Institute of Technology, the University of California and the
National Aeronautics and Space Administration. The Observatory was made possible by the
generous financial support of the W.M. Keck Foundation. The Submillimeter Array is a joint
project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute
of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and Academia
Sinica. The authors wish to recognize and acknowledge the very significant cultural role and
reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian
community; we are most fortunate to have had the opportunity to conduct observations from
this mountain. The National Radio Astronomy Observatory is a facility of the National Science
Foundation operated under cooperative agreement by Associated Universities, Inc.
Author contributions K.D. identified the object, initiated follow-up observations, carried out
the analysis and wrote the manuscript. M.M. and A.L. led the theoretical interpretation of the
transient, created the models presented in this work and wrote the manuscript. V.K., J.E.J.,
A.-C.E., L.A.H., M.M.K. and R.M.L. assisted with optical/IR follow-up observations, data
interpretation and analysis. D.C., C.C., E.K., S.R.K., R.S. and A.V. assisted with interpretation of
the data. R.D., M.J.G., F.M., M.S.M., R.L.R. and B.R. are builders of the ZTF observing system and
contributed to survey operations during the observations presented here. A.M.M. assisted with
analysis of NEOWISE data. N.P. and R.T. assisted with acquisition of SMA data and carried out
SMA data analysis. L.H.Q.-N. and L.O.S. assisted with acquistion of VLA data and carried out
VLA data analysis. All authors contributed to scientific interpretation.
Competing interests The authors declare no competing interests.
Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-05842-x.
Correspondence and requests for materials should be addressed to Kishalay De.
Peer review information Nature thanks Smadar Naoz and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
Article
ExtendedDataFig.1|ComparisonoftherandibandlightcurveofZTF
SLRN-2020(shownasredandyellowcirclesrespectively,asindicated)to
visual light curves of Galactic and extragalactic red novae from the
literature.Thelightcurveshavebeennormalizedtopeakmagnitude.Foreach
comparisonobject,weindicatethephotometricbandofthearchivallight
curveinthelegend.ThecomparisonobjectsincludeV1309Sco8
, OGLE-
BLG-36017
,V838Mon51
,M31-LRN-201552,53
,AT2019zhd54
,NGC3437-OT55
,
AT2017jfs56
andAT2018hso57
.Errorbarsareshownat1σconfidenceand5σupper
limitsareshownassymbolswithdownwardarrows.
ExtendedDataFig.2|Comparisonoftheg−r(panel(a))andr−i(panel(b))
observedcolorevolutionofZTFSLRN-2020(shownassquaresandcircles
respectively) to a sample of red novae from the literature that have
contemporaneousmulti-bandcoverageduringtheoutburst.Theliterature
objectsincludesomeoftheobjectsshowninExtendedDataFig.1inadditionto
AT2020hat,AT 2020kog58
andAT2018bwo59
.Ineachpanel,weshowablack
arrowindicatingtheestimatedshiftinthecolorevolutionofZTFSLRN-2020
accountingforthebestestimatedline-of-sightextinction.Errorbarsareshown
at1σconfidence.
Article
ExtendedDataFig.3|ComparisonoftheopticalspectrumofZTFSLRN-
2020todifferenttypesofGalactictransients.Thecomparisonobjects
includeaclassicalnova(PGIR19brv60
,inmagenta),adwarfnova(UGem61
inred),
aFU-Oritypeyoungstaroutburst(Gaia17bi62
inyellow)andtwoEXortype
youngstaroutbursts(ESO-Hα9963
ingreenandASASSN15qi64
inblue).The
continuaofsomesourceshavebeenreddenedtomatchthatofZTFSLRN-2020
for easier visualization.
ExtendedDataFig.4|IdentificationofspectroscopicfeaturesintheNIR
spectraofZTFSLRN-2020duringandaftertheoutburst.Ineachpanel,
thegray/blacklinesrepresenttheraw/binnedspectrumduringtheoutburst
( ≈ 160 dafterpeak),whilethelightbrown/brownlinesshowtheraw/binned
spectrumobtainedafterthefadingoftheinfraredtransient( ≈ 690dafterpeak).
WealsoshowacomparisonwiththeM7-IIItypestarHD108849(inred).
Prominentatomicandmolecularabsorptionfeaturesaremarked.
Article
ExtendedDataFig.5|Cornerplotsshowingthemodel-fitparametersof
theMCMCDUSTYmodelingoftheSEDofZTFSLRN-2020≈120daysafter
outburstpeak.Themedianoftheposteriordistributionsandthecorresponding
68%confidenceintervalsareindicatedinthelabels,whilethesamequantities
arehighlightedwithverticalbarsintheonedimensionalhistograms.
ExtendedDataFig.6|CornerplotsshowingthefitparametersoftheMCMCDUSTYmodelingoftheSEDofZTFSLRN-2020≈320daysafteroutburstpeak.
ThelabellingfollowsthesameconventionasExtendedDataFig.5.AV isnotusedasafreeparameterinthisfit.
Article
ExtendedDataFig.7|ConstraintsonthedistancetoZTFSLRN-2020using
Galacticthreedimensionaldustextinctionmaps.Weshowtheestimated
dustextinctionasafunctionofdistanceforthreedifferentextinctionmaps
publishedintheliterature65–67
.Wealsoshowthe90%confidenceintervalfor
theestimatedforegroundextinctiontoZTFSLRN-2020basedonourSED
modelingasthemagentashadedregion.Foreachdustextinctionmap,we
showthealloweddistanceintervalwithintheestimatedextinctionrangewith
shadedverticalbarsinthesamecolor.
ExtendedDataFig.8|TheprogenitorofZTFSLRN-2020inthecolor
magnitudediagram.FordifferentdistancesalongtheGalacticdisk,weuse
availablethreedimensionalextinctionmapstode-reddentheprogenitor
photometryfluxes.TheresultsareshownascirclesfortheD0365
map,squares
fortheM0666
mapandastrianglesfortheG1967
map.Wealsoshowtherangeof
absolutemagnitudesallowedbythe90%AV confidenceregion(fromtheSED
modeling)asblue,redandgrayshadedregionsrespectively(seelegend).We
alsoplotstellarevolutionarytracksfromtheMISTdatabaseforstarsofinitial
massesrangingfrom0.8−3.0M⊙.Thehorizontalbaratthebottomshowsthe
estimated1σuncertaintyintheH − Kcolor.
Article
ExtendedDataFig.9|EvolutionoftheSEDofZTFSLRN-2020progenitor
priortotheonsetoftheopticaltransient.Theorangepointsshowthe
optical/IRphotometryfrom ≈ 6−12yearsbeforetheoutburst.Theblackpoints
showtheevolutionoftheprogenitorinthemid-IRstarting ≈ 1.7yearsbefore
thetransient.Solidpointsindicatedetectionswhilehollowpointsdenote3σ
upperlimits.Forthe−30dand−244depochs,weshowthebestfitSilicatedust
emissionmodelfitusingthemid-IRphotometry(seetext),whileweshow
estimatedupperlimitstothedustemissionusingtheW2photometry.
Forthelastepoch,wealsoshowthepre-outburstopticalbrighteningofthe
progenitor,coincidentwiththemid-IRsourcedetectedinNEOWISE.Errorbars
areshownat1σconfidenceand5σupperlimitsareshownassymbolswith
downwardarrows.
Extended Data Table 1 | Archival photometry of the
progenitor of ZTF SLRN-2020 along with the time of
observation
Upper limits are reported at 5σ confidence.
Article
Extended Data Table 2 | Spectroscopic follow-up of ZTF SLRN-2020
The spectra denoted by †
were stacked together to obtain the final binned late-time NIR spectrum.
Extended Data Table 3 | Derived dust parameters from the multi-epoch DUSTY modeling of ZTF SLRN-2020
The inner shell radius and ejecta mass are for an estimated distance of 4 kpc.

Contenu connexe

Similaire à An infrared transient from a star engulfing a planet

Discovery and properties of the earliest galaxies with confirmed distances
Discovery and properties of the earliest galaxies with confirmed distancesDiscovery and properties of the earliest galaxies with confirmed distances
Discovery and properties of the earliest galaxies with confirmed distancesSérgio Sacani
 
The Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemThe Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemSérgio Sacani
 
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Sérgio Sacani
 
Siena Galaxy Atlas 2020
Siena Galaxy Atlas 2020Siena Galaxy Atlas 2020
Siena Galaxy Atlas 2020Sérgio Sacani
 
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...Sérgio Sacani
 
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240Sérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWSTThe Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWSTSérgio Sacani
 
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...Sérgio Sacani
 
A surge of light at the birth of a supernova
A surge of light at the birth of a supernovaA surge of light at the birth of a supernova
A surge of light at the birth of a supernovaSérgio Sacani
 
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...Sérgio Sacani
 
Tracing evolution of_dust_in_eagle_nebula
Tracing evolution of_dust_in_eagle_nebulaTracing evolution of_dust_in_eagle_nebula
Tracing evolution of_dust_in_eagle_nebulaSérgio Sacani
 
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634Sérgio Sacani
 
Galaxy growth in a massive halo in the first billion years of cosmic history
Galaxy growth in a massive halo in the first billion years of cosmic historyGalaxy growth in a massive halo in the first billion years of cosmic history
Galaxy growth in a massive halo in the first billion years of cosmic historySérgio Sacani
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densitySérgio Sacani
 
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...Sérgio Sacani
 
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaDust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaSérgio Sacani
 
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K Dwarf
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K DwarfTOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K Dwarf
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K DwarfSérgio Sacani
 
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Sérgio Sacani
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesSérgio Sacani
 

Similaire à An infrared transient from a star engulfing a planet (20)

Discovery and properties of the earliest galaxies with confirmed distances
Discovery and properties of the earliest galaxies with confirmed distancesDiscovery and properties of the earliest galaxies with confirmed distances
Discovery and properties of the earliest galaxies with confirmed distances
 
The Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemThe Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary System
 
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
 
Siena Galaxy Atlas 2020
Siena Galaxy Atlas 2020Siena Galaxy Atlas 2020
Siena Galaxy Atlas 2020
 
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
 
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240
The exceptional soft_x_ray_halo_of_the_galaxy_merger_ngc6240
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWSTThe Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST
The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST
 
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...
Dusty starburst galaxies_in_the_early_universe_as_revealed_by_gravitational_l...
 
A surge of light at the birth of a supernova
A surge of light at the birth of a supernovaA surge of light at the birth of a supernova
A surge of light at the birth of a supernova
 
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...
ULTRAVIOLET SIGNPOSTS OF RESONANT DYNAMICS IN THE STARBURST-RINGED Sab GALAXY...
 
Tracing evolution of_dust_in_eagle_nebula
Tracing evolution of_dust_in_eagle_nebulaTracing evolution of_dust_in_eagle_nebula
Tracing evolution of_dust_in_eagle_nebula
 
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
 
Galaxy growth in a massive halo in the first billion years of cosmic history
Galaxy growth in a massive halo in the first billion years of cosmic historyGalaxy growth in a massive halo in the first billion years of cosmic history
Galaxy growth in a massive halo in the first billion years of cosmic history
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_density
 
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
 
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaDust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
 
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K Dwarf
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K DwarfTOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K Dwarf
TOI-4600 b and c: Two Long-period Giant Planets Orbiting an Early K Dwarf
 
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
 

Plus de Sérgio Sacani

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 

Plus de Sérgio Sacani (20)

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 

Dernier

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oManavSingh202607
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONrouseeyyy
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 

Dernier (20)

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 

An infrared transient from a star engulfing a planet

  • 1. Nature | Vol 617 | 4 May 2023 | 55 Article Aninfraredtransientfromastarengulfinga planet Kishalay De1✉, Morgan MacLeod2 , Viraj Karambelkar3 , Jacob E. Jencson4 , Deepto Chakrabarty1 , Charlie Conroy2 , Richard Dekany5 , Anna-Christina Eilers1 , Matthew J. Graham3 , Lynne A. Hillenbrand3 , Erin Kara1 , Mansi M. Kasliwal3 , S. R. Kulkarni3 , Ryan M. Lau6 , Abraham Loeb2,7 , Frank Masci8 , Michael S. Medford9,10 , Aaron M. Meisner6 , Nimesh Patel2 , Luis Henry Quiroga-Nuñez11 , Reed L. Riddle5 , Ben Rusholme8 , Robert Simcoe1 , Loránt O. Sjouwerman12 , Richard Teague2,13 & Andrew Vanderburg1 Planetswithshortorbitalperiods(roughlyunder10 days)arecommonaroundstars liketheSun1,2 .Starsexpandastheyevolveandthusweexpecttheircloseplanetary companionstobeengulfed,possiblypoweringluminousmassejectionsfromthe hoststar3–5 .However,thisphasehasneverbeendirectlyobserved.Herewereport observationsofZTFSLRN-2020,ashort-livedopticaloutburstintheGalacticdisk accompaniedbybrightandlong-livedinfraredemission.Theresultinglightcurve andspectrasharestrikingsimilaritieswiththoseofrednovae6,7 —aclassoferuptions nowconfirmed8 toarisefrommergersofbinarystars.Itsexceptionallylowoptical luminosity (approximately 1035 erg s−1 ) and radiated energy (approximately 6.5 × 1041 erg)pointtotheengulfmentofaplanetoffewerthanroughlytenJupiter massesbyitsSun-likehoststar.WeestimatetheGalacticrateofsuchsubluminousred novaetoberoughlybetween 0.1andseveralperyear.FutureGalacticplanesurveys shouldroutinelyidentifythese,showingthedemographicsofplanetaryengulfment andtheultimatefateofplanetsintheinnerSolarSystem. Using data from the Zwicky Transient Facility (ZTF) time domain survey9 , we searched for slowly evolving outbursts near the Galactic plane (Supplementary Information 1). We identified a transient opti- cal source, named ZTF 20aazusyv, at celestial J2000 coordinates α = 19:09:39.783, δ = +05:35:04.269 (Supplementary Information 5; hereafter,ZTFSLRN-2020),thatexhibitedarapidrisefromquiescence to peak outburst flux in approximately 10 days, subsequently fading byabouttenfoldover6 months(Fig.1andExtendedDataFigs.1and2). The long optical outburst duration, together with its faint peak flux, distinguishesitfromcommonGalacticplanetransientsresultingfrom whitedwarfswithclosebinarycompanions(the‘dwarf’and‘classical’ novae10 ). The transient also exhibits a mid-infrared (IR) brightening starting at around 7 months before the optical outburst, together with bright mid-IR emission (over 50-fold brighter than the optical r-bandat around 4 monthsafteropticalpeak),thatlastedforroughly atleast 15 months.NoX-rayemissionwasdetectedinfollow-upobser- vations during the outburst using the Swift telescope11 , ruling out an unstable disk accretion episode around a neutron star or black hole12 (Supplementary Information 4). The bright mid-IR emission during the outburst is suggestive of emission from a warm dust shell surrounding the stellar photo- sphere. We model the optical to mid-IR spectral energy distribution (SED; Supplementary Information 12) at around 120 days after the optical peak. The analysis shows a relatively hot inner photosphere (approximately 9,000 K)surroundedbyawarmdustshellofapproxi- mately 1,000 K, located behind a dust visual extinction column of AV (approximately 3.6 mag; Fig. 2, Extended Data Figs. 5 and 6 and Extended Data Table 3). Using the 90% confidence interval on the foregroundextinction,togetherwiththree-dimensionalGalacticdust distributionmaps(SupplementaryInformation13andExtendedData Fig.7),weinferthesourcetobelocatedatadistanceof2–7 kpc.Ajoint analysis of the overlap between the different dust maps suggests a probable distance of roughly 4 kpc. Performing the same analysis at around 320 days after peak, we find the SED to have predominantly shifted into the IR bands caused by an increase in dust optical depth that can be attributed to the formation of about 10−6 M⊙ of dust (for a distance of 4 kpc). Using the best estimate for foreground extinction, we construct a bolometric luminosity light curve for the outburst (Fig. 2 and Sup- plementary Information 13). The light curve is characterized by an initialplateauataluminosityofaround 1035 × (d/4 kpc)2 erg s−1 lasting approximately 25days(SupplementaryInformation13)beforefading by a factor of 5 over the next (roughly) 100 days. The effective tem- peratureofthephotosphereremainsconstantataround (6−7) × 103 K duringtheplateauphase,presumablyregulatedbytherecombination temperatureofhydrogen13 ,beforefadingandcoolingtoabout 5 × 103 K. https://doi.org/10.1038/s41586-023-05842-x Received: 29 September 2022 Accepted: 14 February 2023 Published online: 3 May 2023 Check for updates 1 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 2 Center for Astrophysics/Harvard & Smithsonian, Cambridge, MA, USA. 3 Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, USA. 4 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA. 5 Caltech Optical Observatories, California Institute of Technology, Pasadena, CA, USA. 6 NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA. 7 Black Hole Initiative, Harvard University, Cambridge, MA, USA. 8 IPAC, California Institute of Technology, Pasadena, CA, USA. 9 Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA. 10 Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 11 Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL, USA. 12 National Radio Astronomy Observatory, Array Operations Center, Socorro, NM, USA. 13 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. ✉e-mail: kde1@mit.edu
  • 2. 56 | Nature | Vol 617 | 4 May 2023 Article Thetotalradiatedenergyisapproximately 6.5 × 1041 (d/4 kpc)2 ergover the first (roughly) 150 days. On UT 2020 November 20, we obtained an optical spectrum of the transientusingtheKeck-Itelescope(ExtendedDataTable2).Thespec- trum(Fig.3)exhibitsanalmostfeaturelessredcontinuumcontaining onlyatomic(Na,Ba,HandMg)andmolecularabsorptionfeatures(VO andTiO).Theabsenceofatomicemissionlinesduringtheoutburstis inconsistentwithcommonGalacticplanetransientssuchasaccretion/ thermonuclearoutburstsindwarfandclassicalnovae10 ,wherehotgas produces emission lines due to atomic recombination and ions (Sup- plementaryInformation11andExtendedDataFigs.3and4).Whereas ZTF SLRN-2020 shows some similarities to outbursting young stars, itexhibitsstrikingdifferencesinitsrapidcoolingtoaSEDdominated by IR emission (suggestive of a cooling photosphere), complete lack ofemissionlines(thatis,ubiquitousinhotgasaccretion)aswellasits sky location away from known star-forming regions (Supplementary Information 11). Instead, the molecular features are suggestive of a cool outer photosphere consistent with an M4-III-type giant star and effective temperature of around 3,600 K (Supplementary Informa- tion11).Contemporaneousnear-IR(NIR)spectra(Fig.3)obtainedwith the Palomar 200 inch telescope show only broad molecular absorp- tion bands from H2O, and probably from TiO, VO and CO, consist- ent with an M7-III-type giant possessing an extended, cool envelope (SupplementaryInformation11).Late-timeNIRspectra(Fig.3)obtained around 700 days after the optical peak with the Magellan Baade and Keck-II telescopes show only a relatively featureless continuum with broad H2O absorption. The distinctively cool molecular spectroscopic features, together withsubstantialreddeningoftheSEDduringtheoutburst,arereminis- centoftheclassofrednovae8,14–17 .Directphotometricobservationsof thebinaryorbitaldecaybeforetherednovaV1309Sco8 providestrong evidence for the association of these events with catastrophic merg- ers of binary stars. Because the primary star engulfs its companion, a powerful outflow is launched from the binary system that gradually cools and powers a ‘plateau’ in the light curve of the optical transient via recombination of hydrogen6 . Subsequently, the expanding enve- lopecoolsandformsdustleadingtotheemergenceofaphotosphere dominated by molecular absorption and a luminous, long-lived IR transient18,19 . The photometric and spectroscopic properties of ZTF SLRN-2020 share striking similarities with both Galactic and extragalactic red novae(SupplementaryInformation10andExtendedDataFigs.1and2). Nevertheless, its remarkably low luminosity, even if placed on the far side of the Galactic disk (no nore than around a few × 1036 erg s−1 ), makesitexceptionalamongthepopulationofrednovaethatreachthe Eddingtonluminosityoftheprimarystars(around 1038 erg s−1 fora1 M⊙ 20′′ N E 2.0′′ –400 0 200 400 Time from i-band peak (MJD 58993; days) 10–3 10–2 10–1 100 101 Difference in flux (mJy) I O W W SED outburst SED late ZTF-r ZTF-g ZTF-i ATLAS-o ATLAS-c WISE-W1 WISE-W2 –40 0 10–2 10–1 UKIRT JHK composite 2007–2009 a unWISE W1+ W2 2020 October b c WIRC JHK composite 2021 March d Gemini-S/GSAOI J 2022 April e –20 –200 Fig.1|DiscoverylocationandmulticolourlightcurvesofZTFSLRN-2020. a,AfaintprogenitoridentifiedinarchivalNIRimagesfromtheUKIRTGalactic PlaneSurvey.b,Mid-IRtransientsourcedetectedinNEOWISEimagesfrom 2020.c,NIRcompositefollow-upimage(whitesquaremasksoutanearby regionwithadetectorartefact)ofthetransientduring2021.Thespatialscales inpanelsa–careidentical.d,Zoomed-in,high-spatial-resolutionimageofthe IRremnantin2022.e,MulticolourlightcurvesoftheoutburstfromtheZTF9 , ATLAS48 andNEOWISE49 surveys(asindicatedinthelegend).Errorbarsareshown at1σconfidence,and5σupperlimitsareshownassymbolswithdownward arrows.IandOindicatethetimesofNIRandopticalspectroscopyofthe transient,respectively,withWshowingtheepochofP200NIRimaging. VerticaldashedlinesrepresentthetimerangesusedtoperformSEDmodelling duringtheoutburstin2020(SEDoutburst)andaftertheopticaltransienthad fadedawayin2021(SEDlate).Insetshowsaclose-upoftheearly-timelight curve(shadedingreyinthemainpanel),showingfainti-bandprecursor emissionanddetectionofmid-IRemissionbeforetheonsetoftheoptical outburst.
  • 3. Nature | Vol 617 | 4 May 2023 | 57 star). We show ZTF SLRN-2020 in the phase space of luminosity and timescales (Fig. 4 and Supplementary Information 13) for red novae, togetherwithanalyticalcontoursforthemassandvelocityofejecta,in modelsofstellarmergers7 .Theextremelylowluminosityisreasonably explained by around only 10−5 −10−4 M⊙ of hydrogen launched in the outflow7 . The small ejected mass is consistent with the nondetection of radio molecular line emission in follow-up observations with the SubmillimeterArray(SMA)andVeryLargeArray(VLA;Supplementary Information 8 and 9). Usingahigh-spatial-resolutionimageobtainedwiththeGemini-South telescope about 2 years after the outburst peak, we identified a faint progenitor source (Supplementary Information 14) in archival NIR imagesfromtheUnitedKingdomInfraredTelescope(UKIRT)Galactic planesurvey20 .Althoughlimitedbyphotometricerrors,itsbrightness andcoloursareconsistentwithastarofaround 0.8−1.5 M⊙ onthemain sequenceorearlyinthesub-giantbranch(radius,1−4 R⊙;ExtendedData Fig. 8 and Extended Data Table 1). The IR progenitor is thus similar to theSun,andtotheprimarystarofV1309Sco,whichwasamergerevent involving a low-mass q = 0.1 companion, where q is the companion to primary mass ratio8,21–24 . We draw constraints on the mass of the merging object from both the light curve and pre-outburst detections. ZTF SLRN-2020’s ejecta massandradiatedenergyarebothapproximately 103 -foldlowerthan thoseofV1309Sco(Fig.4).Linearlyscalingthecompanionmasswith thesepropertiesimpliesagiantplanetcompanionofaround 0.1 MJ.The presenceofpre-outburstdustandgassuggestsanongoinginteraction (Extended Data Fig. 9) that escalates to produce the outburst22,24,25 , rather than a direct collision. The pre-outburst dust model that best matchesthedatahasq = 10−2 oracompanionmassofabout 10 MJ (Fig.4 and Supplementary Information 18). Therefore, all our estimates 100 Wavelength (μm) 10–13 10–12 Flux OF λ (erg cm –2 s –1 ) Phase +125 days AV = 3.6 mag L = 5.0 L W = 1.8 Td = 1,014 K T* = 8,970 K rin = 1.0 AU a 100 10–13 10–12 Phase +320 days L = 5.5 L W = 13.0 Td = 415 K T* = 4,300 K rin = 3.7 AU 1034 1035 1036 L (erg s −1 ) L ∝ t−4/5 V838 Mon ×10–4 V1309 Sco ×10–3 V4332 Sgr ×10–2 M31-OT 2015 ×10–4 AT2019zhd ×10–4 AT2018bwo ×10–5 2 4 6 8 T (10 3 K) ZTFSLRN-2020 101 102 Time since peak (days) 1011 1012 R (cm) V838Mon ×10–3 V1309Sco ×10–2 V4332Sgr ×10–2 M31-OT2015 ×10–2 AT2019zhd ×10–2 AT2018bwo ×10–3 c b Flux OF λ (erg cm –2 s –1 ) Wavelength (μm) Fig.2|Temporalevolutionofthespectralenergydistributionand integratedluminosityofZTFSLRN-2020.a,Best-fitmodel(parametersare shown)fortheSEDofZTFSLRN-2020(shownasblackcircles)ataround 125 days afteroutburstpeak.Blacksolidlinesdenotetotalflux,browndot-dashedlines denotedustemissionandgreendashedandbluedottedlinesdenotescattered andattenuatedstellaremission,respectively.b,Asinabutroughly 320 days afteroutburstpeak.c,Bolometricluminosity(top),temperature(middle)and radius(bottom)evolutionofZTFSLRN-2020foranestimateddistanceof4 kpc andaforegroundinterstellarextinctionofAV = 3.6 mag.Redsquaresinthe toppanelrepresentluminosityestimatedfromthetwoepochsofDUSTY modelling.Forcomparison,wealsoshowtheevolutionoftheseparametersfor previousrednovae,thebest-fitlightcurveplateaumodel(blackdottedline)and theL ∝ t−4/5 luminositydecayexpectedforamergerremnant(blackdashedline; SupplementaryInformation13).Theradiusandluminosityofarchivalevents havebeenscaledasindicated.Errorbarsareshownat1σconfidence.
  • 4. 58 | Nature | Vol 617 | 4 May 2023 Article squarely point to a close planetary companion to the primary star, plausibly a Neptune- or Jupiter-like planet strikingly similar to known systems26 . Theoveralldurationofthelightcurvesuggestsamassejectionveloc- ity of roughly 30 km s−1 (Fig. 4), which is substantially lower than the stellarescapevelocity.Wecanunifytheseestimateswithourtheoretical understandingofhowplanetaryengulfmentmightaffectahoststar.In particular, the smaller the engulfed companion the less dramatic the disturbance to the primary star and the smaller fraction of material thatisexpectedtobeejectedatsufficientlyhighvelocitiestobecome unbound27–29 . The short-lived (around 25 days) plateau phase in ZTF SLRN-2020 may be powered by the ejection and unbinding of a small amount(lessthanabout10−4 M⊙)ofmassatvelocitiesapproachingthe stellarescapevelocity(about100 km s−1 ;Fig.4).TheradiusofZTFSLRN- 2020(Fig.2)remainsroughlyconstantatabout 3 × 1011 × (d/4 kpc) cm duringtheplateauandrecedesduringthefadingphase,similartothat expectedforthegravitationalcontractionofamergerremnant19 .These features suggest that the late-time decay over the next 100 days or so is powered by hydrodynamic and thermal readjustment of the star following the ingestion of its planetary companion. Our interpretation of ZTF SLRN-2020 as the engulfment event of a planetarymassobjectbyaSun-likestarprovidesevidenceforamissing link in our understanding of the evolution and final fates of planetary systems.Ithaslongbeenknownthatthepopulationofplanetsinshort orbital periods1,2,30,31 has sufficiently low orbital angular momentum suchthattheyareunstabletotidaldissipationandareboundtomerge withtheirhoststars32–35 .Thisisconsistentwiththelackofoldplanetary systems with short orbital periods36,37 , as well as the dearth of close planets around sub-giant stars38–40 . Therefore, to our knowledge, the observationsreportedhereofferthefirstdirectinsightintotheeffectof planetaryengulfmentontheirhoststarstointerpretcommonindirect techniques used to infer past planetary engulfment via its effects on long-term stellar luminosity5,41 , chemical enrichment42–44 and stellar rotation45–47 . With empirical and theoretical rate predictions ranging from0.1toseveralperyear(SupplementaryInformation16and20)for similar ‘subluminous red novae’, upcoming combined optical and IR surveys of the Galactic plane may show many similar events via their distinctive, short-lived optical outbursts accompanied by long-lived IR emission. Onlinecontent Anymethods,additionalreferences,NaturePortfolioreportingsum- maries, source data, extended data, supplementary information, 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Wavelength (μm) Scaled F λ + constant TiO 8859 TiO 9209 Hα TiO 9728 Na ID Ba II Mg II TiO 7589 VO 7912 VO 8624 ZTFSLRN-2020 Keck/LRIS +180 days HV2255 M4-III V838Mon +61 days AT2018bwo +51 days a 0.58 0.60 0.62 0.64 0.66 Ba II Hα Na D 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 P200/TSpec P200/TSpec +160 days +160 days AT2018bwo +103 days HD108849 M7-III Magellan/Keck Magellan/Keck +690 days +690 days H2O TiO VO TiO VO 12CO b Scaled F λ + constant Wavelength (μm) H2O Fig.3|OpticalandIRspectraofZTFSLRN-2020.a,Opticalspectrumofthe outburst(black)obtainedabout 180 daysafterpeak.Thespectrumshows clearatomicandmolecularabsorptionfeatures,similartotheM4-III-type giantHV 2255.Forcomparison,late-timeopticalspectraofapreviousGalactic rednova(V838 Mon,inorange)andanextragalacticluminousrednova (AT 2018bwo,inmagenta)areshownafterapplyingtheinferredforeground extinction50 .Theinsetshowsaclose-upofthespectraaroundtheregionof atomiclinesNa D,HαandBa II.b,NIRspectrumofZTFSLRN-2020(black)at around +160 daysandaround +690 daysafteropticalpeak,showingclear broadmolecularabsorptionfeaturesofH2O,TiO,VOandprobablyCO,similar totheM7-IIIgiantHD 108849(showninred).Similarfeaturesarealsoseenin NIRspectraofthepreviouslyknownextragalacticrednovaAT 2018bwo(shown inmagenta).
  • 5. Nature | Vol 617 | 4 May 2023 | 59 acknowledgements,peerreviewinformation;detailsofauthorcontri- butionsandcompetinginterests;andstatementsofdataandcodeavail- ability are available at https://doi.org/10.1038/s41586-023-05842-x. 1. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Ann. Rev. Astron. Astrophys. 53, 409–447 (2015). 2. Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Ann. Rev. Astron. Astrophys. 56, 175–221 (2018). 3. Metzger, B. D., Giannios, D. & Spiegel, D. S. Optical and X-ray transients from planet-star mergers. Mon. Not. R. Astron. Soc. 425, 2778–2798 (2012). 4. MacLeod, M., Cantiello, M. & Soares-Furtado, M. Planetary engulfment in the Hertzsprung- Russell Diagram. Astrophys. J. 853, L1 (2018). 5. Stephan, A. P., Naoz, S., Gaudi, B. S. & Salas, J. M. Eating planets for lunch and dinner: signatures of planet consumption by evolving stars. Astrophys. J. 889, 45 (2020). 6. Ivanova, N., Justham, S., Avendano Nandez, J. L. & Lombardi, J. C. Identification of the long-sought common-envelope events. Science 339, 433 (2013). 7. Matsumoto, T. & Metzger, B. D. Light curve model for luminous red novae and inferences about the ejecta of stellar mergers. Astrophys. J. 938, 5 (2022). 8. Tylenda, R. et al. V1309 Scorpii: merger of a contact binary. Astron. Astrophys. 528, A114 (2011). 9. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019). 10. Warner, B. Cataclysmic Variable Stars (Cambridge Univ. Press, 1995). 11. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004). 12. Corral-Santana, J. M. et al. BlackCAT: a catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 587, A61 (2016). 13. Popov, D. V. An analytical model for the plateau stage of type II supernovae. Astrophys. J. 414, 712 (1993). 14. Rich, R. M., Mould, J., Picard, A., Frogel, J. A. & Davies, R. Luminous M giants in the bulge of M31. Astrophys. J. 341, L51 (1989). 15. Martini, P. et al. Nova Sagittarii 1994 1 (V4332 Sagittarii): the discovery and evolution of an unusual luminous red variable star. Astron. J. 118, 1034–1042 (1999). 16. Munari, U. et al. The mysterious eruption of V838 Mon. Astron. Astrophys. 389, L51–L56 (2002). 17. Tylenda, R. et al. OGLE-2002-BLG-360: from a gravitational microlensing candidate to an overlooked red transient. Astron. Astrophys. 555, A16 (2013). 18. Loebman, S. R. et al. The continued optical to mid-infrared evolution of V838 Monocerotis. Astron. J. 149, 17 (2015). 19. Tylenda, R. & Kamiński, T. Evolution of the stellar-merger red nova V1309 Scorpii: spectral energy distribution analysis. Astron. Astrophys. 592, A134 (2016). 20. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007). 21. Nandez, J. L. A., Ivanova, N. & Lombardi Jr, J. C. V1309 Sco–understanding a merger. Astrophys. J. 786, 39 (2014). 22. Pejcha, O. Burying a binary: dynamical mass loss and a continuous optically thick outflow explain the candidate stellar merger V1309 Scorpii. Astrophys. J. 788, 22 (2014). 23. Zhu, L.-Y., Zhao, E.-G. & Zhou, X. A low-mass-ratio and deep contact binary as the progenitor of the merger V1309 Sco. Res. Astron. Astrophys. 16, 68 (2016). 24. Pejcha, O., Metzger, B. D., Tyles, J. G. & Tomida, K. Pre-explosion spiral mass loss of a binary star merger. Astrophys. J. 850, 59 (2017). 25. MacLeod, M. & Loeb, A. Runaway coalescence of pre-common-envelope stellar binaries. Astrophys. J. 893, 106 (2020). 26. Hellier, C. et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009). 27. Staff, J. E., De Marco, O., Wood, P., Galaviz, P. & Passy, J.-C. Hydrodynamic simulations of the interaction between giant stars and planets. Mon. Not. R. Astron. Soc. 458, 832–844 (2016). 28. MacLeod, M., Ostriker, E. C. & Stone, J. M. Bound outflows, unbound ejecta, and the shaping of bipolar remnants during stellar coalescence. Astrophys. J. 868, 136 (2018). 101 102 Outburst duration (days) 1035 1036 1037 1038 1039 1040 1041 Luminosity L 90 (erg s −1 ) V4332 Sgr V838 Mon V1309 Sco NGC 4490-OT2011 M31-OT2015 M101-OT2015 SNHunt 248 AT 2014ej AT 2017jfs AT 2018bwo AT2018hso AT 2019zhd AT 2020kog AT2020hat ZTFSLRN-2020 ZTFSLRN-2020 10−5 M( 10−4 M( 10−1 MJ 10–3 M( 100 MJ 10−2 M( 101 MJ 10−1 M( 102 MJ 100 M( 103 MJ 101 M( 104 MJ 102 M( 1,000 km s−1 a −2.0 −1.5 −1.0 −0.5 0 Time from merger (years) 10−8 10−7 10−6 Dust mass (M ( ) q = 10−1 q = 10−2 q = 10−3 100 km s−1 10 km s−1 b 10–2 MJ Fig.4|ComparisonofZTFSLRN-2020outburstwiththephasespaceof luminosity(L90)andtimescales(t90)forpreviouslyknownrednovae. a, Contoursshowinferredejectaphysicalparameters7 —ejectamassinunitsof solarandJupitermassontheleft-handside,andoutflowvelocityinunitsof km s−1 (inmagenta)ontheright-handside.SolidandhollowstarsdenoteZTF SLRN-2020viaitslightcurveplateaudurationandtimetakentorelease90%of thetotalradiatedenergy,respectively(SupplementaryInformation13).The inferredejectamassofZTFSLRN-2020is100-foldlowerthananyotherknown rednova,andthecharacteristicvelocitiesarealsonearlyanorderofmagnitude lower.b,Comparisonofpre-outburstdustmassestimatedfromprecursor mid-IR emission of ZTF SLRN-2020 (denoted by stars) with models of precoalescencemasslossfora1 M⊙ starevolvingoffthemainsequencewith binarymassratioq = 10−3 −10−1 .Solidlinescorrespondtoaninitialradiusof2 R⊙, andtheshadedregionshowsvariationsforradiiof1−4 R⊙.Errorbarsinpanelsa andbareshownat1σconfidence.
  • 6. 60 | Nature | Vol 617 | 4 May 2023 Article 29. MacLeod, M. & Loeb, A. Pre-common-envelope mass loss from coalescing binary systems. Astrophys. J. 895, 29 (2020). 30. Udry, S. & Santos, N. C. Statistical properties of exoplanets. Ann. Rev. Astron. Astrophys. 45, 397–439 (2007). 31. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J. 753, 160 (2012). 32. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981). 33. Mardling, R. A. & Lin, D. N. C. Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. Astrophys. J. 573, 829–844 (2002). 34. Patra, K. C. et al. The continuing search for evidence of tidal orbital decay of hot Jupiters. Astron. J. 159, 150 (2020). 35. Yee, S. W. et al. The orbit of WASP-12b is decaying. Astrophys. J. 888, L5 (2020). 36. Hamer, J. H. & Schlaufman, K. C. Hot Jupiters are destroyed by tides while their host stars are on the main sequence. Astron. J. 158, 190 (2019). 37. Hamer, J. H. & Schlaufman, K. C. Ultra-short-period planets are stable against tidal inspiral. Astron. J. 160, 138 (2020). 38. Johnson, J. A. et al. Retired A stars and their companions: exoplanets orbiting three intermediate-mass subgiants. Astrophys. J. 665, 785–793 (2007). 39. Schlaufman, K. C. & Winn, J. N. Evidence for the tidal destruction of hot Jupiters by subgiant stars. Astrophys. J. 772, 143 (2013). 40. Grunblatt, S. K. et al. Giant planet occurrence within 0.2 au of low-luminosity red giant branch stars with K2. Astron. J. 158, 227 (2019). 41. Metzger, B. D., Shen, K. J. & Stone, N. Secular dimming of KIC 8462852 following its consumption of a planet. Mon. Not. R. Astron. Soc. 468, 4399–4407 (2017). 42. Sandquist, E., Taam, R. E., Lin, D. N. C. & Burkert, A. Planet consumption and stellar metallicity enhancements. Astrophys. J. 506, L65–L68 (1998). 43. Soares-Furtado, M., Cantiello, M., MacLeod, M. & Ness, M. K. Lithium enrichment signatures of planetary engulfment events in evolved stars. Astron. J. 162, 273 (2021). 44. Spina, L. et al. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 5, 1163–1169 (2021). 45. Soker, N. Can planets influence the horizontal branch morphology? Astron. J. 116, 1308–1313 (1998). 46. Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H. & Carlberg, J. K. On lithium-rich red giants. I. Engulfment of substellar companions. Astrophys. J. 829, 127 (2016). 47. Qureshi, A., Naoz, S. & Shkolnik, E. L. Signature of planetary mergers on stellar spins. Astrophys. J. 864, 65 (2018). 48. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018). 49. Mainzer, A. et al. Initial performance of the NEOWISE Reactivation Mission. Astrophys. J. 792, 30 (2014). 50. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999). Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. © The Author(s), under exclusive licence to Springer Nature Limited 2023
  • 7. Dataavailability All the data used in this work are provided in Extended data. Codeavailability K.D. will provide python code used to analyse the observations, and any data used to generate figures, on request. The RLOF code used to model the pre-outburst light curve is publicly available. 51. Crause, L. A. et al. The post-outburst photometric behaviour of V838 Mon. Mon. Not. R. Astron. Soc. 341, 785–791 (2003). 52. MacLeod, M. et al. Lessons from the onset of a common envelope episode: the remarkable M31 2015 luminous red nova outburst. Astrophys. J. 835, 282 (2017). 53. Blagorodnova, N. et al. Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015. Mon. Not. R. Astron. Soc. 496, 5503–5517 (2020). 54. Pastorello, A. et al. Forbidden hugs in pandemic times. I. Luminous red nova AT 2019zhd, a new merger in M 31. Astron. Astrophys. 646, A119 (2021). 55. Pastorello, A. et al. Luminous red novae: stellar mergers or giant eruptions? Astron. Astrophys. 630, A75 (2019). 56. Pastorello, A. et al. The evolution of luminous red nova AT 2017jfs in NGC 4470. Astron. Astrophys. 625, L8 (2019). 57. Cai, Y. Z. et al. The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon. Astron. Astrophys. 632, L6 (2019). 58. Pastorello, A. et al. Forbidden hugs in pandemic times. II. The luminous red nova variety: AT 2020hat and AT 2020kog. Astron. Astrophys. 647, A93 (2021). 59. Blagorodnova, N. et al. The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. Astron. Astrophys. 653, A134 (2021). 60. De, K. et al. A population of heavily reddened, optically missed novae from Palomar Gattini-IR: constraints on the Galactic nova rate. Astrophys. J. 912, 19 (2021). 61. Han, Z. et al. Spectroscopic properties of the dwarf nova-type cataclysmic variables observed by LAMOST. Publ. Astron. Soc. Jpn 72, 76 (2020). 62. Hillenbrand, L. A. et al. Gaia 17bpi: an FU Ori-type outburst. Astrophys. J. 869, 146 (2018). 63. Hodapp, K. W. et al. The New EXor outburst of ESO-Hα 99 observed by Gaia ATLAS and TESS. Astron. J. 158, 241 (2019). 64. Herczeg, G. J. et al. The eruption of the candidate young star ASASSN-15QI. Astrophys. J. 831, 133 (2016). 65. Drimmel, R., Cabrera-Lavers, A. & López-Corredoira, M. A three-dimensional Galactic extinction model. Astron. Astrophys. 409, 205–215 (2003). 66. Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S. Modelling the Galactic interstellar extinction distribution in three dimensions. Astron. Astrophys. 453, 635–651 (2006). 67. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019). Acknowledgements K.D.’s work was supported by NASA through NASA Hubble Fellowship grant no. HST-HF2-51477.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract no. NAS5-26555. M.M.’s contributions were supported by the National Science Foundation under grant no. 1909203. A.-C.E. acknowledges support by NASA through NASA Hubble Fellowship grant no. HF2-51434 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract no. NAS5-26555. S.R.K. thanks the Heising-Simons Foundation for supporting his research. We thank B. Metzger, T. Matsumoto, M. Soares-Furtado and J. van Roestel for discussions. The discovery of the optical transient was based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility (ZTF) project. ZTF is supported by the National Science Foundation under grant nos. AST-1440341 and AST-2034437, and by a collaboration including Caltech, IPAC, the Weizmann Institute of Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen- Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, Trinity College Dublin, the University of Wisconsin at Milwaukee, IN2P3 France, Lawrence Livermore National Laboratories and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC and UW. The ZTF forced-photometry service was funded under Heising-Simons Foundation grant no. 12540303 (PI: Graham). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership including the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and Academia Sinica. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have had the opportunity to conduct observations from this mountain. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Author contributions K.D. identified the object, initiated follow-up observations, carried out the analysis and wrote the manuscript. M.M. and A.L. led the theoretical interpretation of the transient, created the models presented in this work and wrote the manuscript. V.K., J.E.J., A.-C.E., L.A.H., M.M.K. and R.M.L. assisted with optical/IR follow-up observations, data interpretation and analysis. D.C., C.C., E.K., S.R.K., R.S. and A.V. assisted with interpretation of the data. R.D., M.J.G., F.M., M.S.M., R.L.R. and B.R. are builders of the ZTF observing system and contributed to survey operations during the observations presented here. A.M.M. assisted with analysis of NEOWISE data. N.P. and R.T. assisted with acquisition of SMA data and carried out SMA data analysis. L.H.Q.-N. and L.O.S. assisted with acquistion of VLA data and carried out VLA data analysis. All authors contributed to scientific interpretation. Competing interests The authors declare no competing interests. Additional information Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-023-05842-x. Correspondence and requests for materials should be addressed to Kishalay De. Peer review information Nature thanks Smadar Naoz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions information is available at http://www.nature.com/reprints.
  • 8. Article ExtendedDataFig.1|ComparisonoftherandibandlightcurveofZTF SLRN-2020(shownasredandyellowcirclesrespectively,asindicated)to visual light curves of Galactic and extragalactic red novae from the literature.Thelightcurveshavebeennormalizedtopeakmagnitude.Foreach comparisonobject,weindicatethephotometricbandofthearchivallight curveinthelegend.ThecomparisonobjectsincludeV1309Sco8 , OGLE- BLG-36017 ,V838Mon51 ,M31-LRN-201552,53 ,AT2019zhd54 ,NGC3437-OT55 , AT2017jfs56 andAT2018hso57 .Errorbarsareshownat1σconfidenceand5σupper limitsareshownassymbolswithdownwardarrows.
  • 9. ExtendedDataFig.2|Comparisonoftheg−r(panel(a))andr−i(panel(b)) observedcolorevolutionofZTFSLRN-2020(shownassquaresandcircles respectively) to a sample of red novae from the literature that have contemporaneousmulti-bandcoverageduringtheoutburst.Theliterature objectsincludesomeoftheobjectsshowninExtendedDataFig.1inadditionto AT2020hat,AT 2020kog58 andAT2018bwo59 .Ineachpanel,weshowablack arrowindicatingtheestimatedshiftinthecolorevolutionofZTFSLRN-2020 accountingforthebestestimatedline-of-sightextinction.Errorbarsareshown at1σconfidence.
  • 11. ExtendedDataFig.4|IdentificationofspectroscopicfeaturesintheNIR spectraofZTFSLRN-2020duringandaftertheoutburst.Ineachpanel, thegray/blacklinesrepresenttheraw/binnedspectrumduringtheoutburst ( ≈ 160 dafterpeak),whilethelightbrown/brownlinesshowtheraw/binned spectrumobtainedafterthefadingoftheinfraredtransient( ≈ 690dafterpeak). WealsoshowacomparisonwiththeM7-IIItypestarHD108849(inred). Prominentatomicandmolecularabsorptionfeaturesaremarked.
  • 16. Article ExtendedDataFig.9|EvolutionoftheSEDofZTFSLRN-2020progenitor priortotheonsetoftheopticaltransient.Theorangepointsshowthe optical/IRphotometryfrom ≈ 6−12yearsbeforetheoutburst.Theblackpoints showtheevolutionoftheprogenitorinthemid-IRstarting ≈ 1.7yearsbefore thetransient.Solidpointsindicatedetectionswhilehollowpointsdenote3σ upperlimits.Forthe−30dand−244depochs,weshowthebestfitSilicatedust emissionmodelfitusingthemid-IRphotometry(seetext),whileweshow estimatedupperlimitstothedustemissionusingtheW2photometry. Forthelastepoch,wealsoshowthepre-outburstopticalbrighteningofthe progenitor,coincidentwiththemid-IRsourcedetectedinNEOWISE.Errorbars areshownat1σconfidenceand5σupperlimitsareshownassymbolswith downwardarrows.
  • 17. Extended Data Table 1 | Archival photometry of the progenitor of ZTF SLRN-2020 along with the time of observation Upper limits are reported at 5σ confidence.
  • 18. Article Extended Data Table 2 | Spectroscopic follow-up of ZTF SLRN-2020 The spectra denoted by † were stacked together to obtain the final binned late-time NIR spectrum.
  • 19. Extended Data Table 3 | Derived dust parameters from the multi-epoch DUSTY modeling of ZTF SLRN-2020 The inner shell radius and ejecta mass are for an estimated distance of 4 kpc.