SlideShare une entreprise Scribd logo
1  sur  2
Télécharger pour lire hors ligne
news & views
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
JUPITER
Jovian lightning whistles a new tune
The Juno spacecraft has detected unprecedented numbers of ‘whistlers’ and ‘sferics’ in its orbits around Jupiter,
both indications of high lightning flash rates in the atmosphere of the gas giant planet.
Jacob Bortnik
A
lmost forty years ago the Voyager 1
spacecraft performed its first
flyby of Jupiter, and detected very
low frequency radio emissions called
whistlers that were attributed to lightning
on the gas giant1
. Combined with optical
images from the dark side of the planet2
these observations directly confirmed
the existence of lightning in the Jovian
atmosphere, which had been hypothesized
a few years earlier in order to explain the
observed abundance of acetylene3
. Now,
the Juno spacecraft is visiting the giant
planet and revealing new, and sometimes
surprising features of Jovian lightning.
Writing in Nature, Shannon Brown et al.4
have measured the high-frequency
components of the lightning emissions for
the first time, placing new constraints on the
speed and nature of the lightning process.
In complementary observations reported in
Nature Astronomy, Ivana Kolmašová et al.5
have used data from Juno’s Waves
instrument to compile the largest database
of Jovian lightning-generated whistlers
to date (larger than all previous whistler
compilations combined), consisting of more
than 1,600 individual whistler events.
Voyager 1’s whistler observations
consisted of 167 individual events, with
frequencies in the range of ~2–7 kHz and
durations of one to a few seconds. Based
on these and subsequent (mainly optical)
observations made by the two Voyager
spacecraft, the Galileo probe, Cassini and
New Horizons, a number of characteristics
were deduced, among which was that
lightning flash rates spanned a range of
possible values from 0.0001 to 0.07 flashes
per square kilometre per year. A revised
and anomalously large value of 40 flashes
km–2
yr–1
was put forward by Scarf et al.6
soon afterwards, but this was generally
considered unrealistic at the time7,8
. Juno’s
whistlers were recorded at distances of less
than five Jovian radii and are significantly
shorter in duration than the whistlers
observed by Voyager 1, in the range of
several milliseconds to several tens of
milliseconds (Fig. 1). This observation could
have been expected on theoretical grounds,
due to the shorter propagation paths
between Juno and the lightning locations
as well as the more tenuous plasma in the
intervening region, but the observations
are an elegant confirmation of the theory,
and are the first observations of this kind
of ‘short-duration’ whistler. The expanded
whistler database also permits a more
accurate estimation of the lightning flash
rate, which is calculated at ~1–30 flashes
km–2
yr–1
by Kolmašová et al.5
, depending
on the chosen parameters in their model.
This result is significantly larger than most
previous estimates, is fairly close to the
estimates made by Scarf et al.6
previously
considered too large, and is comparable
to terrestrial lightning flash rates of
~6 flashes km–2
yr–1
(ref. 9
).
Terrestrial lightning involves the flow
of large electrical currents (a few to tens
of kiloamperes) over very short timescales
(microseconds), which releases a pulse
of radio waves spanning the frequency
spectrum from a few hertz to several
gigahertz, but typically peaking in the
range of a few kilohertz. The radio waves
can leak out through the ionosphere into
the near-Earth space environment where
they propagate in one of two basic ways:
low-frequency waves (a few to tens of kHz)
roughly follow geomagnetic field lines and
propagate in the so-called whistler mode,
below the electron gyrofrequency. High-
frequency waves (>​10 MHz) propagate
above the plasma frequency in roughly
straight paths, unaffected by the plasma
in the ionosphere and magnetosphere. A
similar physical process is believed to be
at work in the Jovian space environment,
although the high-frequency component
of the lightning spectrum had not been
previously observed at Jupiter.
Looking specifically at these higher-
frequency components of Jupiter’s
Jupiter
Low-frequency waves
(whistlers)
High-frequency
waves
Juno
Time
Frequency
Fig. 1 | The Juno spacecraft detected both high-frequency and low-frequency Jovian whistlers while
passing close to the planet. Credit: Background image, Jupiter and Juno image, NASA/JPL; inset
reproduced from ref. 5
, Macmillan Publishers Ltd
Nature Astronomy | www.nature.com/natureastronomy
news & views
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
lightning-generated radio wave spectrum
(which the authors call sferics), Brown et al.4
used Juno’s Microwave Radiometer to
identify 337 events of the lightning spectra
extending to 600 MHz, and a further 12
events extending as high as 1.2 GHz, with
the lower number of detections expected
due to the rapid roll-off of power as a
function of frequency. This is a significant
result and comes as a surprise, since Jovian
lightning was previously thought to be
dominated by low-frequency components10
and to be much slower than terrestrial
lightning. No wave power was observed
at frequencies larger than typical whistler
frequencies, and hence the duration of
the lightning pulse was hypothesized
to be a few hundred microseconds
long, and much more energetic than
terrestrial lightning. In light of these
new observations, that hypothesis will
need to be reconsidered. Using their
database of high-frequency observations,
a distribution of estimated lightning
locations was plotted by the researchers,
showing lightning in both hemispheres
(see figure 1 in ref. 4
and figure 2 in ref. 5
),
ranging essentially from pole to pole,
with a minimum near the equator, hence
confirming and extending previous
lightning distribution maps.
Lightning at Jupiter is an important
topic. Atmospheric convection powered by
energy loss from the planet’s interior results
in storms that contain electrical discharges,
and these radiate electromagnetic power
into space that can interact with Jupiter’s
intense radiation belts, contribute to
non-thermal dynamic equilibrium
chemistry, and have even been implicated
in the creation of prebiotic and biotic
molecules11
. Clearly more mysteries
remain and the latest studies by
Kolmašová et al.5
and Brown et al.4
bring
us a step closer to understanding these
important phenomena.
	 	       
❐
Jacob Bortnik
Department of Atmospheric and Oceanic Sciences,
University of California Los Angeles, Los Angeles,
CA, USA.
e-mail: jbortnik@ucla.edu
Published: xx xx xxxx
https://doi.org/10.1038/s41550-018-0483-3
References
	1.	 Scarf, F. L., Gurnett, D. A. & Kurth, W. S. Science 204,
991–995 (1979).
	2.	 Cook, A. F. II, Duxbury, T. C. & Hunt, G. E. Nature 280,
794 (1979).
	3.	 Bar-Nun, A. Icarus 24, 86–94 (1975).
	4.	 Brown, S. et al. Nature https://doi.org/10.1038/s41586-
018-0156-5 (2018).
	5.	 Kolmašová, I. et al. Nat. Astron. https://doi.org/10.1038/s41550-
018-0442-z (2018).
	6.	 Scarf, F. L. et al. Science 213, 684–685 (1981).
	7.	 Kurth, W. S. et al. Icarus 61, 497–507 (1985).
	8.	 Russell, C. T. et al. Ann. Rev. Earth Planet. Sci. 21, 43–87 (1993).
	9.	 Uman, M. A. The Lightning Discharge (McGraw-Hill,
New York, 1987).
	10.	Rinnert, K. & Lanzerotti, L. J. J. Geophys. Res. 103,
22993–23000 (1998).
	11.	Sagan, C. E. et al. Nature 213, 273–274 (1967).
Nature Astronomy | www.nature.com/natureastronomy

Contenu connexe

Tendances

Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Sérgio Sacani
 
Observation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole mergerObservation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole mergerSérgio Sacani
 
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesEvidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesSérgio Sacani
 
DAQScienceTeamMeetingPosterV1
DAQScienceTeamMeetingPosterV1DAQScienceTeamMeetingPosterV1
DAQScienceTeamMeetingPosterV1Alex Kotsakis
 
A radiation belt of energetic protonslocated between Saturn and its rings
A radiation belt of energetic protonslocated between Saturn and its ringsA radiation belt of energetic protonslocated between Saturn and its rings
A radiation belt of energetic protonslocated between Saturn and its ringsSérgio Sacani
 
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019Sérgio Sacani
 
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23ijsrd.com
 
Search for Radio Phenomenon
Search for Radio PhenomenonSearch for Radio Phenomenon
Search for Radio PhenomenonSuey Chen
 
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesStorm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesSérgio Sacani
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...SOCIEDAD JULIO GARAVITO
 
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...Sérgio Sacani
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Sciencetheijes
 
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287Sérgio Sacani
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binaryPulsar emission amplified and resolved by plasma lensing in an eclipsing binary
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binarySérgio Sacani
 
On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...Sérgio Sacani
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...Sérgio Sacani
 

Tendances (20)

Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...
 
Observation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole mergerObservation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole merger
 
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesEvidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
 
DAQScienceTeamMeetingPosterV1
DAQScienceTeamMeetingPosterV1DAQScienceTeamMeetingPosterV1
DAQScienceTeamMeetingPosterV1
 
A radiation belt of energetic protonslocated between Saturn and its rings
A radiation belt of energetic protonslocated between Saturn and its ringsA radiation belt of energetic protonslocated between Saturn and its rings
A radiation belt of energetic protonslocated between Saturn and its rings
 
poster
posterposter
poster
 
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
 
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23
Study of Solar Interplanetary and Geomagnetic Disturbances in Solar Cycle 23
 
Search for Radio Phenomenon
Search for Radio PhenomenonSearch for Radio Phenomenon
Search for Radio Phenomenon
 
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesStorm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
 
Q value
Q value Q value
Q value
 
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
 
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
 
AGUposterV3.Final
AGUposterV3.FinalAGUposterV3.Final
AGUposterV3.Final
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binaryPulsar emission amplified and resolved by plasma lensing in an eclipsing binary
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary
 
On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
 

Similaire à Jovian lightning whistles a new tune

Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...Sérgio Sacani
 
RET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CSRET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CSCarl Sandness
 
X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray-luminous Supernovae: Threats to Terrestrial BiospheresX-Ray-luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray-luminous Supernovae: Threats to Terrestrial BiospheresSérgio Sacani
 
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraDiscrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraSérgio Sacani
 
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial BiospheresX-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial BiospheresSérgio Sacani
 
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...Sérgio Sacani
 
The future of the universe and humanity
The future of the universe and humanityThe future of the universe and humanity
The future of the universe and humanityFernando Alcoforado
 
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Sérgio Sacani
 
The future of universe, sun, earth and humanity
The future of universe, sun, earth and humanityThe future of universe, sun, earth and humanity
The future of universe, sun, earth and humanityFernando Alcoforado
 
Using Decametric and X ray radiation
Using Decametric and X ray radiationUsing Decametric and X ray radiation
Using Decametric and X ray radiationBen Mortleman
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...SOCIEDAD JULIO GARAVITO
 
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics DissertationAlexander Booth
 
The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928Sérgio Sacani
 
Observation of large scale precursor correlations between cosmic rays and ear...
Observation of large scale precursor correlations between cosmic rays and ear...Observation of large scale precursor correlations between cosmic rays and ear...
Observation of large scale precursor correlations between cosmic rays and ear...Sérgio Sacani
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption eventsBaurzhan Alzhanov
 
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Sérgio Sacani
 

Similaire à Jovian lightning whistles a new tune (20)

Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during it...
 
RET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CSRET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CS
 
X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray-luminous Supernovae: Threats to Terrestrial BiospheresX-Ray-luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres
 
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraDiscrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
 
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial BiospheresX-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
 
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with ...
 
The future of the universe and humanity
The future of the universe and humanityThe future of the universe and humanity
The future of the universe and humanity
 
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
 
The future of universe, sun, earth and humanity
The future of universe, sun, earth and humanityThe future of universe, sun, earth and humanity
The future of universe, sun, earth and humanity
 
Using Decametric and X ray radiation
Using Decametric and X ray radiationUsing Decametric and X ray radiation
Using Decametric and X ray radiation
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
 
ANTIRADIATION
ANTIRADIATIONANTIRADIATION
ANTIRADIATION
 
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics Dissertation
 
D3
D3D3
D3
 
D3
D3D3
D3
 
AAS National Conference 2008: Michael Werner
AAS National Conference 2008: Michael WernerAAS National Conference 2008: Michael Werner
AAS National Conference 2008: Michael Werner
 
The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928
 
Observation of large scale precursor correlations between cosmic rays and ear...
Observation of large scale precursor correlations between cosmic rays and ear...Observation of large scale precursor correlations between cosmic rays and ear...
Observation of large scale precursor correlations between cosmic rays and ear...
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption events
 
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
 

Plus de Sérgio Sacani

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 

Plus de Sérgio Sacani (20)

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 

Dernier

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 

Dernier (20)

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 

Jovian lightning whistles a new tune

  • 1. news & views © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. JUPITER Jovian lightning whistles a new tune The Juno spacecraft has detected unprecedented numbers of ‘whistlers’ and ‘sferics’ in its orbits around Jupiter, both indications of high lightning flash rates in the atmosphere of the gas giant planet. Jacob Bortnik A lmost forty years ago the Voyager 1 spacecraft performed its first flyby of Jupiter, and detected very low frequency radio emissions called whistlers that were attributed to lightning on the gas giant1 . Combined with optical images from the dark side of the planet2 these observations directly confirmed the existence of lightning in the Jovian atmosphere, which had been hypothesized a few years earlier in order to explain the observed abundance of acetylene3 . Now, the Juno spacecraft is visiting the giant planet and revealing new, and sometimes surprising features of Jovian lightning. Writing in Nature, Shannon Brown et al.4 have measured the high-frequency components of the lightning emissions for the first time, placing new constraints on the speed and nature of the lightning process. In complementary observations reported in Nature Astronomy, Ivana Kolmašová et al.5 have used data from Juno’s Waves instrument to compile the largest database of Jovian lightning-generated whistlers to date (larger than all previous whistler compilations combined), consisting of more than 1,600 individual whistler events. Voyager 1’s whistler observations consisted of 167 individual events, with frequencies in the range of ~2–7 kHz and durations of one to a few seconds. Based on these and subsequent (mainly optical) observations made by the two Voyager spacecraft, the Galileo probe, Cassini and New Horizons, a number of characteristics were deduced, among which was that lightning flash rates spanned a range of possible values from 0.0001 to 0.07 flashes per square kilometre per year. A revised and anomalously large value of 40 flashes km–2 yr–1 was put forward by Scarf et al.6 soon afterwards, but this was generally considered unrealistic at the time7,8 . Juno’s whistlers were recorded at distances of less than five Jovian radii and are significantly shorter in duration than the whistlers observed by Voyager 1, in the range of several milliseconds to several tens of milliseconds (Fig. 1). This observation could have been expected on theoretical grounds, due to the shorter propagation paths between Juno and the lightning locations as well as the more tenuous plasma in the intervening region, but the observations are an elegant confirmation of the theory, and are the first observations of this kind of ‘short-duration’ whistler. The expanded whistler database also permits a more accurate estimation of the lightning flash rate, which is calculated at ~1–30 flashes km–2 yr–1 by Kolmašová et al.5 , depending on the chosen parameters in their model. This result is significantly larger than most previous estimates, is fairly close to the estimates made by Scarf et al.6 previously considered too large, and is comparable to terrestrial lightning flash rates of ~6 flashes km–2 yr–1 (ref. 9 ). Terrestrial lightning involves the flow of large electrical currents (a few to tens of kiloamperes) over very short timescales (microseconds), which releases a pulse of radio waves spanning the frequency spectrum from a few hertz to several gigahertz, but typically peaking in the range of a few kilohertz. The radio waves can leak out through the ionosphere into the near-Earth space environment where they propagate in one of two basic ways: low-frequency waves (a few to tens of kHz) roughly follow geomagnetic field lines and propagate in the so-called whistler mode, below the electron gyrofrequency. High- frequency waves (>​10 MHz) propagate above the plasma frequency in roughly straight paths, unaffected by the plasma in the ionosphere and magnetosphere. A similar physical process is believed to be at work in the Jovian space environment, although the high-frequency component of the lightning spectrum had not been previously observed at Jupiter. Looking specifically at these higher- frequency components of Jupiter’s Jupiter Low-frequency waves (whistlers) High-frequency waves Juno Time Frequency Fig. 1 | The Juno spacecraft detected both high-frequency and low-frequency Jovian whistlers while passing close to the planet. Credit: Background image, Jupiter and Juno image, NASA/JPL; inset reproduced from ref. 5 , Macmillan Publishers Ltd Nature Astronomy | www.nature.com/natureastronomy
  • 2. news & views © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. lightning-generated radio wave spectrum (which the authors call sferics), Brown et al.4 used Juno’s Microwave Radiometer to identify 337 events of the lightning spectra extending to 600 MHz, and a further 12 events extending as high as 1.2 GHz, with the lower number of detections expected due to the rapid roll-off of power as a function of frequency. This is a significant result and comes as a surprise, since Jovian lightning was previously thought to be dominated by low-frequency components10 and to be much slower than terrestrial lightning. No wave power was observed at frequencies larger than typical whistler frequencies, and hence the duration of the lightning pulse was hypothesized to be a few hundred microseconds long, and much more energetic than terrestrial lightning. In light of these new observations, that hypothesis will need to be reconsidered. Using their database of high-frequency observations, a distribution of estimated lightning locations was plotted by the researchers, showing lightning in both hemispheres (see figure 1 in ref. 4 and figure 2 in ref. 5 ), ranging essentially from pole to pole, with a minimum near the equator, hence confirming and extending previous lightning distribution maps. Lightning at Jupiter is an important topic. Atmospheric convection powered by energy loss from the planet’s interior results in storms that contain electrical discharges, and these radiate electromagnetic power into space that can interact with Jupiter’s intense radiation belts, contribute to non-thermal dynamic equilibrium chemistry, and have even been implicated in the creation of prebiotic and biotic molecules11 . Clearly more mysteries remain and the latest studies by Kolmašová et al.5 and Brown et al.4 bring us a step closer to understanding these important phenomena. ❐ Jacob Bortnik Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA. e-mail: jbortnik@ucla.edu Published: xx xx xxxx https://doi.org/10.1038/s41550-018-0483-3 References 1. Scarf, F. L., Gurnett, D. A. & Kurth, W. S. Science 204, 991–995 (1979). 2. Cook, A. F. II, Duxbury, T. C. & Hunt, G. E. Nature 280, 794 (1979). 3. Bar-Nun, A. Icarus 24, 86–94 (1975). 4. Brown, S. et al. Nature https://doi.org/10.1038/s41586- 018-0156-5 (2018). 5. Kolmašová, I. et al. Nat. Astron. https://doi.org/10.1038/s41550- 018-0442-z (2018). 6. Scarf, F. L. et al. Science 213, 684–685 (1981). 7. Kurth, W. S. et al. Icarus 61, 497–507 (1985). 8. Russell, C. T. et al. Ann. Rev. Earth Planet. Sci. 21, 43–87 (1993). 9. Uman, M. A. The Lightning Discharge (McGraw-Hill, New York, 1987). 10. Rinnert, K. & Lanzerotti, L. J. J. Geophys. Res. 103, 22993–23000 (1998). 11. Sagan, C. E. et al. Nature 213, 273–274 (1967). Nature Astronomy | www.nature.com/natureastronomy