SlideShare une entreprise Scribd logo
1  sur  61
MAGNETIC RESONANCE
IMAGING
Sailakshmi P
MSc Radiation Physics
Department of Physics
CONTENTS
 Introduction
 History
 Theory and Physics
 Instrumentation
 Artifacts
 Risks & Benefits
INTRODUCTION
 MRI is a rapidly changing and growing powerful imaging modality.
 It is very close relative of NMR, which allows clinicians to obtain chemical and
physical information about certain molecules in multiple planes.
 In the 1970’s the name was changed from NMRI to MRI due to the negative
connotations associated with the word “nuclear”. Many patients thought that the
exam would expose them to radiation. But MRI not involving the use of ionizing
radiation.
HISTORY
 In 1952 Felix Bloch and Edward Purcell
were discovered the concepts
surrounding NMR/MRI.
 During the time between 1950-1970,
the idea was used for chemical and
physical analysis of molecules.
History . . . . . . . .
 In 1971 Raymond Damadian discovered
that NMR could be used in the detection
of diseases.
 In 1977, Damadian did his first scan on a
human, his assistant, Larry Minkoff.
History . . . . . .
 Damadian’s first prototype was called
“Indomitable”, due to criticism and
the seven years that it took to
complete.
 In 1978, Damadian established a new
corporation called FONAR, which
introduced the first commercial MRI
scanner in 1980.
History . . . . . . . .
 MRI machines have come a long way
since Indomitable. It took up to five
hours to get an image.
 In 1992, functional magnetic
resonance imaging (fMRI) was
discovered, Which allowed clinicians
to see various regions of the brain,
their functions, and their specific
locations.
THEORY
• Magnetic resonance (MR) is based upon the interaction between an external
magnetic field and a nucleus that possesses spin.
• Nuclei containing an odd number of protons and or neutrons have a characteristic
motion or precession.
• Every element in the periodic table except argon and cerium has at least one
naturally occurring isotope that possesses spin.
Theory…………….
Magnetization properties
• Magnetism is a fundamental property of matter, it is generated by moving
charges, usually electrons.
• Magnetic susceptibility describes the extent to which a material becomes
magnetized when placed in a magnetic field.
• The induced internal magnetization can oppose the external magnetic field and
lower the local magnetic field surrounding the material. On the other hand, the
internal magnetization can form in the same direction as the applied magnetic
field and increase the local magnetic field.
Fig 1 : Precession of a nuclei
Theory…………….
• The magnetic field strength, B, (also called the magnetic flux density) can be
conceptualized as the number of magnetic lines of force per unit area.
• The magnetic field drops off with the square of the distance.
• The SI unit for B is the tesla (T)
• The earth's magnetic field is about 1/20,000 T (0.5 gauss (G))
• 1 T = 10,000 G.
• The magnets in use today in MRI are in the 0.5-Tesla to 3.0-Tesla range, or 5,000
to 30,000 gauss.
Theory…………….
• The H nucleus, consisting of a single proton, is a natural choice for probing the body
using MR techniques.
• It has a spin of ½ and the most abundant isotope of hydrogen is protium. It is very
sensitive to the magnetic field due to its large value for g (42.58).
• Finally, the body is composed of tissues that contain primarily water and fat, both of
which contain hydrogen.
Theory…………….
• If the tissue is placed inside a magnetic field Bo, the individual protons begin to rotate,
or precess, about the magnetic field.
• The protons are tilted slightly away from the axis of the magnetic field, but the axis of
rotation is parallel to Bo.
• This precession occurs because of the interaction of the magnetic field with the moving
positive charge of the nucleus.
• The rate or frequency of precession is proportional to the strength of the magnetic field
and is expressed by Larmor equation.
The precessional frequency and the external magnetic
field are related by the Larmor Equation.
ωo = γ/ 2π B0
ωo Larmor precessional frequency
γ Gyromagnetic ratio for that nucleus
B0 Applied magnetic field
Fig 2: B0 is defined to be oriented
in the z direction of a Cartesian
coordinate system; the axis of
precession is also the z axis. The
motion of each proton can be
described by a unique set of x, y
(perpendicular to B0), and z
(parallel to B0) coordinates. The
perpendicular, or transverse,
coordinates are nonzero and vary
with time as the proton precesses,
but the z coordinate is constant
with time .
Gyromagnetic ratio for useful elements in magnetic resonance
Nucleus γ/2π
1H 42.58
13C 10.7
17O 5.8
19F 40.0
23Na 11.3
31P 17.2
Fig 3 : (a) I n the absence of a strong magnetic field, hydrogen nuclei are
randomly aligned .(b) When the strong magnetic field, Bo ,is applied, the
hydrogen nuclei precess about the direction of the field .
Fig 3 : (a) The RF pulse, Brf, causes the net magnetic moment of the nuclei , M , to tilt away
from Bo . (b) When the RF pulse stops, the nuclei return to equilibrium such that M is again
parallel to Bo . During realignment, the nuclei lose energy and a measurable RF signal .
RELAXATION
• Relaxation is the process by which the protons release the energy that they
absorbed from the rf pulse.
• Relaxation is a fundamental process in MR, as essential as energy absorption, and
provides the primary mechanism for image contrast.
• During relaxation, the protons release this energy and return to their original
configuration.
There are two types of relaxation process
• T1 Relaxation
• T2 Relaxation
FID : The response of the net magnetization M to an rf pulse as a function of time is
known as the free induction decay or FID.
• The Fourier transformation is used to convert the digital version of the MR signal
(FID) from a function of time to a function of frequency.
T1 RELAXATION
• The relaxation time T1 is the time required for the z component of M to return to
63% of its original value following an excitation pulse.
• It is also known as the spin-lattice relaxation time or longitudinal relaxation .
• Here, Mo is parallel to Bo at equilibrium and that energy absorption will rotate Mo
into the transverse plane. T1 relaxation provides the mechanism by which the
protons give up their energy to return to their original orientation.
Fig 5 : T1 relaxation curve. The change of Mz/ M0 with time t follows an exponential growth
process
T2 RELAXATION
• The relaxation time T2 is the time required for the transverse component of M to decay to
37% of its initial value via irreversible processes.
• It is also known as the spin-spin relaxation time or transverse relaxation time. Spin-spin
relaxation refers to the energy transfer from an excited proton to another nearby proton.
• The absorbed energy remains as spin excitation rather than being transferred to the
surroundings as in T1 relaxation.
• This proton-proton energy transfer can occur many times as long as the protons are in
close proximity and remain at the same Wo.
Fig 6 : Net magnetization M is oriented parallel to B0 prior to pulse (1). Following a 90º rf pulse, the protons
initially precess in phase in the transverse plane (2). Due to inter- and intramolecular interactions, the protons
begin to precess at different frequencies (dashed arrow = faster; dotted arrow = slower) and become
asynchronous with each other (3). As more time elapses (4,5), the transverse coherence becomes smaller until
there is complete randomness of the transverse components and no coherence (6).
Fig 6: Plot of relative Mxy component. The change in Mxy/Mxy max with time follows an
exponential decay process. The time constant for this process is the spin-spin
relaxation time T2 and is the time when MXY has decayed to 37% of its original value. This
dephasing time T2 is always less than or equal to T1.
Spin echo…………
• The initial 90º rf pulse rotates Mo into the transverse plane. During the time t,
proton dephasing will occur through T2* relaxation processes.
• Application of the 180º rf pulse causes the protons to reverse their phases relative
to the resonant frequency.
• If time t elapses again, then the protons will regain their transverse coherence.
This reformation of phase coherence induces another signal in the receiver coil,
known as a spin echo.
CONTRAST WEIGHTING
• Contrast in an image is proportional to the difference in signal intensity between
adjacent pixels in the image, corresponding to two different voxels in the patient.
• It depends on spin(proton) density, T1 and T2 relaxations.
• TR (Time of Repetition) & TE (Time of Echo) are pulse sequence controls on the
MRI machine.
T1 WEIGHTING & T2 WEIGHTING
• TR: short
• TE: short
• fluid: dark
• fat: bright
TR: long
TE: long
fluid: bright
fat: intermediate-bright
• TR: long
• TE: short
• fluid: bright
• fat: bright
• Overall signal: high
SPIN(PROTON) DENSITY WEGHTING
INSTRUMENTATION
The major components in MRI are :
 Computer system
 Magnet system
 Gradient system
 Radio-frequency system
Fig 8: Block diagram of an MRI system.
MAGNET SYSTEM
In MRI different types of magnets are used, they are :
 Permanent magnet
 Resistive magnet and
 Superconducting magnet
GRADIENT SYSTEM
Gradient system consist of three types of gradient coils :
• Gradient coils are used to systematically vary the magnetic field by producing
additional linear electro magnetic fields, thus making slice selection and spatial
information possible.
• As we have three dimension in space ,there are three sets of gradient coils (x ,
y & z). That are the cause of noise during a MR examination.
• Typical MRI scanner generates 110 decibels of noise, certain MRI scanners
could get up to 118 decibels at their loudest point.
Fig 9 : Three types of gradient coils
RADIO-FREQUENCY SYSTEM
(RF COILS)
• RF coils are used for transmitting RF energy to the tissue of interest and to receive the
induced RF signal from the tissue of interest.
• They are placed concentric to each other and act as an antenna of the MR system. There are
coils specifically designed for brain , breast and other body organs.
• RF signal is generated by a transmit RF coils and applied to an area of interest and output
signal is picked up by the RF receive coil and transmitted to an RF amplifier for
reconstruction of images.
• Faraday’s cage
ARTIFACTS
• MRI artifacts are varied and numerous and some effect the quality of the MRI exam
while others do not affect the diagnostic quality but may be confused with pathology.
• When encountering an unfamiliar artifact , it is useful to systematically examine general
features of the artifact to try and understand the type of artifact and how to negate it if
needed. These features include:
 type of sequence (e.g. fast spin echo, or gradient or volumetric)
 direction of phase and frequency
 fat or fluid attenuation
 presence of anatomy outside the image field
 presence of metallic foreign bodies
Artifacts ……………………………
Many artifacts have a characteristic appearance and with experience they can be readily identified.
 MRI artifacts are classified into three broad areas-those :
Based on the machine
 MR hardware and room shielding.
 MR software.
Based on the patient
 Patient and physiologic motion.
 Tissue heterogeneity and foreign bodies.
Based on signal processing
 Fourier transform and Nyquist sampling theorem.
Artifacts ……………………………
Based on the machine :
MR hardware and room shielding
• Herringbone artifact
• Moire fringes
• Zebra stripes
• Central point artifact
• RF overflow artifacts
• Inhomogeneity artifacts
• Inhomogeneity artifacts
MR software
• Slice-overlap artifact (cross-talk artifact)
• Cross excitation
Based on the machine:
MR hardware and room shielding
Herringbone Artifact
• Also called as crisscross
artifact or corduroy artifact. It appears as
a fabric of herring bone . Artifact is
scattered all over the image in a single
slice or multiple slices .
Causes:
• electromagnetic spikes by gradient coils
• fluctuating power supply
• RF pulse discrepancies
Based on the machine :
MR hardware and room shielding
Moire fringes
• It is an interference pattern most commonly
seen when doing gradient echo images with the
body coil.
• Because of lack of perfect homogeneity of the
main magnetic field from one side of the body
to the other, aliasing of one side of the body to
the other results in superimposition of signals
of different phases that alternatively add and
cancel. This causes the banding appearance and
is similar to the effect of looking though two
screen windows.
Based on the machine:
MR hardware and room shielding
Central point artifact
• It is a focal dot of increased signal in the
center of an image. It is caused by a
constant offset of the DC voltage in the
receiver. After Fourier transformation,
this constant offset gives the bright dot in
the center of the image as shown in the
diagram.
• The axial MRI image of the head shows a
central point artifact projecting in the
pons in the center of the image.
Correction and prevention
• Repeating the sequence may get rid of the
artifact.
• Maintain constant temperature in scanner
and equipment room for receiver
amplifiers.
• Software to estimate DC offset and adjust
the data in k-space.
• Call service engineer for recalibration.
Based on the machine:
MR hardware and room shielding
RF overflow artifacts
• cause a nonuniform, washed-out
appearance to an image.
• occurs when the signal received by the
scanner from the patient is too intense to
be accurately digitized by the analog-to-
digital converter.
• Autoprescanning usually adjusts the
receiver gain to prevent this from
occurring but if the artifact still occurs, the
receiver gain can be decreased manually .
Post-processing methods also exist but
may be time consuming .
Based on the machine:
MR hardware and room shielding
Zipper artifacts
• where one or more spurious bands of electronic noise
extend perpendicular to the frequency encode direction
and is present in all images of a series.
• There are various causes for zipper artifacts in images.
Most of them are beyond the radiologist immediate
control.
• It can be controlled easily are those that occur when the
door is open during acquisition of images due to RF
entering the scanning room from electronic equipment
and are being picked by the receiver chain of imaging
sub-systems. RF from some radio transmitters will cause
this artifact.
Based on the machine :
MR Software
Slice-overlap artifact
• Cross talk overlap is a name given to the loss of signal
seen in an image from a multi-angle, multi-slice
acquisition, as is obtained commonly in the lumbar
spine.
• If the slices obtained at different disk spaces are not
parallel, then the slices may overlap. If two levels are
done at the same time, e.g., L4-5 and L5-S1, then the
level acquired second will include spins that have
already been saturated. This causes a band of signal
loss crossing horizontally in your image, usually worst
posteriorly.The dark horizontal bands in the bottom
of the following axial image through the lumbar spine
demonstrates this artifact
Artifacts ……………………………
Based on the Patient :
Patient and physiologic motion
• phase-encoded motion artifact
• entry slice phenomenon
Tissue heterogeneity and foreign bodies
• black boundary artifact
• magic angle effect
• susceptibility artifact / magnetic
susceptibility artifact
• chemical shift artifact
Based on the Patient :
Patient and physiologic motion
Phase-encoded motion artifact
• It occurs as a result of tissue / fluid moving during the scan and
manifests as ghosting in the direction of phase encoding, usually in
the direction of short axis of the image (i.e left to right on axial or
coronal brains, and anterior to posterior on axial abdomen).
• It may be seen from arterial pulsations, swallowing, breathing,
peristalsis, and physical movement of a patient. When projected
over anatomy it can mimic pathology, and needs to be recognized.
Motion that is random such as the patient moving produces a
smear in the phase direction. Periodic motion such as respiratory
or cardiac/vascular pulsation produces discrete, well defined
ghosts. The spacing between these ghosts is related to the TR and
frequency of the motion.
Based on the Patient :
Tissue heterogeneity and foreign bodies
Black boundary artifact
• Black boundary artifact or India ink artifact is 
an artificially created black line located at fat-
water interfaces such as those between muscle 
and fat. This results in a sharp delineation of 
the muscle-fat boundary that is sometimes 
visually appealing but not an anatomical 
structure. 
• Case here is a coronal image through the upper 
body with an echo time of 7 ms. A black line is 
seen surrounding the muscles of the shoulder 
girdle as well as around the liver.
Based on the Patient :
Tissue heterogeneity and foreign bodies
Magnetic susceptibility artifact
• It refers to a distortion in the MR image 
especially seen while imaging metallic 
orthopedic hardware or dental work. This 
results from local magnetic field 
inhomogeneities introduced by  the 
metallic object into the otherwise 
homogeneous external magnetic field B0. 
These local magnetic field 
inhomogeneities are known as magnetic
susceptibility and are a property of the 
object being imaged.
Based on the Patient :
Tissue heterogeneity and foreign bodies
Magic angle effect
• It occurs on sequences with a short TE (less than 32ms). 
• It is confined to regions of tightly bound collagen at 54.74° 
from the main magnetic field (Bo), and appears hyper 
intense, thus potentially being mistaken 
for tendonopathy.
• In tightly bound collagens, water molecules are restricted 
usually causing very short T2 times, accounting for the 
lack of signal. When molecules lie at 54.74° there is 
lengthening of T2 times (don't understand why.) with 
corresponding increase in signal.
Typical sites include :
• proximal part of the posterior 
cruciate ligament (PCL)
• peroneal tendons as they hook 
around the lateral malleolus.
• cartilage can also be affected e.g. 
femoral condyles
• supraspinatus tendon
• triangular fibrocartilage complex (if 
the patient is imaged with the arm 
elevated)
• It appears that at 3.0T the effects 
are reduced.
Based on the Patient :
Tissue heterogeneity and foreign bodies
chemical shift artifact
• Misregistration is common finding on 
some MRI sequences, and used in MRS.
• Chemical shift is due to the differences between 
resonance frequencies between fat and water. It 
occurs in the frequency encode direction where a 
shift in the detected anatomy occurs because fat 
resonates at a slightly lower frequency than water. 
Essentially it is due to the effect of the electron 
cloud to a greater or lesser degree shielding the 
nucleus from the external static magnetic field 
(Bo). 
Artifacts ……………………………
Based on signal processing:
Fourier transform and Nyquist sampling theorem
• Gibbs artifact / truncation artifact
• zero-fill artifact 
• aliasing / wrap around artifact
Based on signal processing:
Fourier transform and Nyquist sampling theorem
Gibbs artifact / truncation artifact
•  It refers to a series of lines in the MR image parallel to abrupt 
and intense changes in the object at this location, such as the 
CSF-spinal cord and the skull-brain interface 
• The MR image is reconstructed from k-space which is a finite 
sampling of the signal subjected to inverse Fourier transform in 
order to obtain the final image. At high-contrast boundaries the 
Fourier transform corresponds to an infinite number of 
frequencies, and since sampling is finite the discrepancy appears 
in the image in the form of a series of lines. These can appear in 
both phase-encode and frequency-encode direction.
• The more encoding steps, the less intense and narrower the 
artifacts.
Based on signal processing:
Fourier transform and Nyquist sampling theorem
Zero-fill artifact
• Zero fill artifact is one of many MRI 
artifacts and is due to data in the K-space 
array missing or set to zero during 
scanning. The abrupt change from signal 
to no signal results in artifacts in the 
images showing alternating bands of 
shading and darkness, often in an oblique 
direction.
• A spike in k-space as from an electrostatic 
spark is another artifact that causes 
oblique stripes.
Based on signal processing:
Fourier transform and Nyquist sampling theorem
Aliasing / wrap around artifact
• It occurs when the field of view (FOV) is 
smaller than the body-part being imaged. The 
part of the body that lies beyond the edge of 
the FOV is projected on to the other side of 
the image.
• This can be corrected, if necessary, by 
oversampling the data. In the frequency 
direction, this is accomplished by sampling 
the signal twice as fast. In the phase direction, 
the number of phase-encoding steps must be 
increased with a longer study as a result.
Uses
• Using MRI scans, physicians can diagnose or monitor treatments for a variety of 
medical conditions, including:
• Abnormalities of the brain and spinal cord
• Tumors, cysts, and other abnormalities in various parts of the body
• Injuries or abnormalities of the joints
• Certain types of heart problems
• Diseases of the liver and other abdominal organs
• Causes of pelvic pain in women (e.g. fibroids, endometriosis)
• Suspected uterine abnormalities in women undergoing evaluation for infertility
Risks/Benefits
• MRI does not use ionizing radiation (high-energy radiation that can potentially 
cause damage to DNA, like the x-rays used CT scans).
• Using MRI we get better image contrast of the soft tissue
• There are no known harmful side-effects associated with temporary exposure to 
the strong magnetic field used by MRI scanners. However, there are important 
safety concerns to consider before performing or undergoing an MRI scan:
• The magnet may cause pacemakers, artificial limbs, and other implanted medical 
devices that contain metal to malfunction or heat up during the exam.
• Any loose metal object may cause damage or injury if it gets pulled toward the magnet.
• If a contrast agent is used, there is a slight risk of an allergic reaction. MRI contrast agents 
can cause problems in patients with significant kidney disease.
• Dyes from tattoos or tattooed eyeliner can cause skin or eye irritation.
• Medication patches can cause a skin burn.
• The wire leads used to monitor an electrocardiogram (ECG) trace or respiration during a 
scan must be placed carefully to avoid causing a skin burn.
• Prolonged exposure to radio waves during the scan could lead to slight warming of the 
body.
REFERENCES
• MRI Book by H. H. Schild
• The Essential Physics of Medical Imaging By Jerrold T Bushberg 
• MRI Basic Principles And Application 2nd
 Edition By Mark A Brown & Richard C. Semelka
• Magnetic Resonance Imaging: Bioeffects and Safety Concerns By N R Jaganathan - 
Department of N.M.R., All India Institute of Medical Sciences  
• http://www.mr-tip.com/serv1.php?type=mri_safety&p=intro
• Real Whole Body MRI By Mathias Goyen
• http://www.simplyphysics.com/MAIN.HTM
• MRI Safety, Policies and Procedures., PPT By Suny Stony Brook Social Cognitive, and Affective 
Neuroscience (SCAN) Center
• http://radiopaedia.org/articles/mri-artifacts
• Wikipedia
Magnetic Resonance Imaging

Contenu connexe

Tendances (20)

Mri gradient coils
Mri gradient coilsMri gradient coils
Mri gradient coils
 
Mri equipments
Mri equipmentsMri equipments
Mri equipments
 
MRI
MRIMRI
MRI
 
Magnetic resonance imaging (mri) asit meher ppt
Magnetic resonance imaging (mri) asit meher pptMagnetic resonance imaging (mri) asit meher ppt
Magnetic resonance imaging (mri) asit meher ppt
 
Spect technology
Spect technologySpect technology
Spect technology
 
MRI INSTRUMENTATION/ HARDWARE
MRI INSTRUMENTATION/ HARDWAREMRI INSTRUMENTATION/ HARDWARE
MRI INSTRUMENTATION/ HARDWARE
 
MRI
MRIMRI
MRI
 
Basic of mri
Basic of mriBasic of mri
Basic of mri
 
MRI
MRIMRI
MRI
 
Gamma Camera
Gamma CameraGamma Camera
Gamma Camera
 
Mri contrasts ppt
Mri contrasts pptMri contrasts ppt
Mri contrasts ppt
 
Gradient echo pulse sequence and its application
Gradient echo pulse sequence and its applicationGradient echo pulse sequence and its application
Gradient echo pulse sequence and its application
 
Basic principle of ct and ct generations
Basic principle of ct and ct generationsBasic principle of ct and ct generations
Basic principle of ct and ct generations
 
Mri physics
Mri physicsMri physics
Mri physics
 
BASIC MRI SEQUENCES
BASIC MRI SEQUENCESBASIC MRI SEQUENCES
BASIC MRI SEQUENCES
 
MRI spin echo pulse sequences
MRI spin echo pulse sequencesMRI spin echo pulse sequences
MRI spin echo pulse sequences
 
MRI physics
MRI physicsMRI physics
MRI physics
 
Basics of mri
Basics of mriBasics of mri
Basics of mri
 
Computer Tomography (CT Scan)
Computer Tomography (CT Scan)Computer Tomography (CT Scan)
Computer Tomography (CT Scan)
 
MRI Parameters for Imaging
MRI Parameters for ImagingMRI Parameters for Imaging
MRI Parameters for Imaging
 

En vedette (20)

Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Basics Of MRI
Basics Of MRIBasics Of MRI
Basics Of MRI
 
Mri ppt
Mri pptMri ppt
Mri ppt
 
Mri basics
Mri basicsMri basics
Mri basics
 
MAGNETIC RESONANCE IMAGING; physics
MAGNETIC RESONANCE IMAGING;   physicsMAGNETIC RESONANCE IMAGING;   physics
MAGNETIC RESONANCE IMAGING; physics
 
BASICS OF MRI
BASICS OF MRIBASICS OF MRI
BASICS OF MRI
 
MRI sequences
MRI sequencesMRI sequences
MRI sequences
 
Components of MRI
Components of MRIComponents of MRI
Components of MRI
 
Rmn orlando bernal
Rmn orlando bernalRmn orlando bernal
Rmn orlando bernal
 
Nmr theory
Nmr theoryNmr theory
Nmr theory
 
Suprapubic cystostomy
Suprapubic cystostomySuprapubic cystostomy
Suprapubic cystostomy
 
BT631-16-NMR_1
BT631-16-NMR_1BT631-16-NMR_1
BT631-16-NMR_1
 
Mri system block diagram
Mri system block diagramMri system block diagram
Mri system block diagram
 
Nmr theory
Nmr theoryNmr theory
Nmr theory
 
Nuclear magnetic resonance partial lecture notes
Nuclear magnetic resonance   partial lecture notesNuclear magnetic resonance   partial lecture notes
Nuclear magnetic resonance partial lecture notes
 
Tractions
TractionsTractions
Tractions
 
Presentation for skin traction
Presentation for skin tractionPresentation for skin traction
Presentation for skin traction
 
Mri basic sequences
Mri basic sequencesMri basic sequences
Mri basic sequences
 
NUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCENUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCE
 

Similaire à Magnetic Resonance Imaging

Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance ImagingNeha Mannewar
 
Mripresenation
MripresenationMripresenation
MripresenationFLI
 
Basics of MRI Physics
Basics of MRI PhysicsBasics of MRI Physics
Basics of MRI Physicsyasna kibria
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxAayushiPaul1
 
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIA
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIAMRI PHYSICS FOR RADIOLOGY RESIDENTS INDIA
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIAshubhammarorawork
 
MRI obstetric practice part 1 Basic Physics
MRI obstetric practice part 1 Basic PhysicsMRI obstetric practice part 1 Basic Physics
MRI obstetric practice part 1 Basic PhysicsShivamurthy Hm
 
A presentation on Principles of NMR imaging system
A presentation on Principles of NMR imaging systemA presentation on Principles of NMR imaging system
A presentation on Principles of NMR imaging systemshrutivarode
 
Proton nmr by Bhushan Chavan
Proton nmr by Bhushan ChavanProton nmr by Bhushan Chavan
Proton nmr by Bhushan ChavanBhushan Chavan
 
mribasicprinciples-19091912334002451.pdf
mribasicprinciples-19091912334002451.pdfmribasicprinciples-19091912334002451.pdf
mribasicprinciples-19091912334002451.pdfsudheendrapv
 
BASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptxBASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptxmohamedabushanab1
 
MRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKMMRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKMGulshan Verma
 
NMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheNMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheRoshan Bodhe
 
Magnetic Resonance Imaging-An Overview
Magnetic Resonance Imaging-An OverviewMagnetic Resonance Imaging-An Overview
Magnetic Resonance Imaging-An OverviewSenthil Kumar
 
pre defense presentation on Magnetic.pptx
pre defense presentation on Magnetic.pptxpre defense presentation on Magnetic.pptx
pre defense presentation on Magnetic.pptxHamzaKhalid267437
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1Deepak Garg
 

Similaire à Magnetic Resonance Imaging (20)

Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Mripresenation
MripresenationMripresenation
Mripresenation
 
Basics of MRI Physics
Basics of MRI PhysicsBasics of MRI Physics
Basics of MRI Physics
 
Ppt mri brain
Ppt mri brainPpt mri brain
Ppt mri brain
 
mri physics.pptx
mri physics.pptxmri physics.pptx
mri physics.pptx
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptx
 
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIA
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIAMRI PHYSICS FOR RADIOLOGY RESIDENTS INDIA
MRI PHYSICS FOR RADIOLOGY RESIDENTS INDIA
 
MRI obstetric practice part 1 Basic Physics
MRI obstetric practice part 1 Basic PhysicsMRI obstetric practice part 1 Basic Physics
MRI obstetric practice part 1 Basic Physics
 
A presentation on Principles of NMR imaging system
A presentation on Principles of NMR imaging systemA presentation on Principles of NMR imaging system
A presentation on Principles of NMR imaging system
 
Proton nmr by Bhushan Chavan
Proton nmr by Bhushan ChavanProton nmr by Bhushan Chavan
Proton nmr by Bhushan Chavan
 
Mri basic principles
Mri basic principlesMri basic principles
Mri basic principles
 
mribasicprinciples-19091912334002451.pdf
mribasicprinciples-19091912334002451.pdfmribasicprinciples-19091912334002451.pdf
mribasicprinciples-19091912334002451.pdf
 
BASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptxBASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptx
 
MRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKMMRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKM
 
NMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheNMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodhe
 
MRI
MRIMRI
MRI
 
MRI PHYSICS.pptx
MRI PHYSICS.pptxMRI PHYSICS.pptx
MRI PHYSICS.pptx
 
Magnetic Resonance Imaging-An Overview
Magnetic Resonance Imaging-An OverviewMagnetic Resonance Imaging-An Overview
Magnetic Resonance Imaging-An Overview
 
pre defense presentation on Magnetic.pptx
pre defense presentation on Magnetic.pptxpre defense presentation on Magnetic.pptx
pre defense presentation on Magnetic.pptx
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1
 

Dernier

Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Ishani Gupta
 
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service AvailableGENUINE ESCORT AGENCY
 
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...khalifaescort01
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Most Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on WhatsappMost Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on WhatsappInaaya Sharma
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...chandars293
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...tanya dube
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...chandars293
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Vadodara Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
 
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...parulsinha
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In AhmedabadGENUINE ESCORT AGENCY
 
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...Anamika Rawat
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...mahaiklolahd
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 

Dernier (20)

Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
 
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
 
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
 
Most Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on WhatsappMost Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on Whatsapp
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Vadodara Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Vadodara Just Call 8617370543 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 

Magnetic Resonance Imaging

  • 1. MAGNETIC RESONANCE IMAGING Sailakshmi P MSc Radiation Physics Department of Physics
  • 2. CONTENTS  Introduction  History  Theory and Physics  Instrumentation  Artifacts  Risks & Benefits
  • 3. INTRODUCTION  MRI is a rapidly changing and growing powerful imaging modality.  It is very close relative of NMR, which allows clinicians to obtain chemical and physical information about certain molecules in multiple planes.  In the 1970’s the name was changed from NMRI to MRI due to the negative connotations associated with the word “nuclear”. Many patients thought that the exam would expose them to radiation. But MRI not involving the use of ionizing radiation.
  • 4. HISTORY  In 1952 Felix Bloch and Edward Purcell were discovered the concepts surrounding NMR/MRI.  During the time between 1950-1970, the idea was used for chemical and physical analysis of molecules.
  • 5. History . . . . . . . .  In 1971 Raymond Damadian discovered that NMR could be used in the detection of diseases.  In 1977, Damadian did his first scan on a human, his assistant, Larry Minkoff.
  • 6. History . . . . . .  Damadian’s first prototype was called “Indomitable”, due to criticism and the seven years that it took to complete.  In 1978, Damadian established a new corporation called FONAR, which introduced the first commercial MRI scanner in 1980.
  • 7. History . . . . . . . .  MRI machines have come a long way since Indomitable. It took up to five hours to get an image.  In 1992, functional magnetic resonance imaging (fMRI) was discovered, Which allowed clinicians to see various regions of the brain, their functions, and their specific locations.
  • 8. THEORY • Magnetic resonance (MR) is based upon the interaction between an external magnetic field and a nucleus that possesses spin. • Nuclei containing an odd number of protons and or neutrons have a characteristic motion or precession. • Every element in the periodic table except argon and cerium has at least one naturally occurring isotope that possesses spin.
  • 9. Theory……………. Magnetization properties • Magnetism is a fundamental property of matter, it is generated by moving charges, usually electrons. • Magnetic susceptibility describes the extent to which a material becomes magnetized when placed in a magnetic field. • The induced internal magnetization can oppose the external magnetic field and lower the local magnetic field surrounding the material. On the other hand, the internal magnetization can form in the same direction as the applied magnetic field and increase the local magnetic field.
  • 10. Fig 1 : Precession of a nuclei
  • 11. Theory……………. • The magnetic field strength, B, (also called the magnetic flux density) can be conceptualized as the number of magnetic lines of force per unit area. • The magnetic field drops off with the square of the distance. • The SI unit for B is the tesla (T) • The earth's magnetic field is about 1/20,000 T (0.5 gauss (G)) • 1 T = 10,000 G. • The magnets in use today in MRI are in the 0.5-Tesla to 3.0-Tesla range, or 5,000 to 30,000 gauss.
  • 12. Theory……………. • The H nucleus, consisting of a single proton, is a natural choice for probing the body using MR techniques. • It has a spin of ½ and the most abundant isotope of hydrogen is protium. It is very sensitive to the magnetic field due to its large value for g (42.58). • Finally, the body is composed of tissues that contain primarily water and fat, both of which contain hydrogen.
  • 13. Theory……………. • If the tissue is placed inside a magnetic field Bo, the individual protons begin to rotate, or precess, about the magnetic field. • The protons are tilted slightly away from the axis of the magnetic field, but the axis of rotation is parallel to Bo. • This precession occurs because of the interaction of the magnetic field with the moving positive charge of the nucleus. • The rate or frequency of precession is proportional to the strength of the magnetic field and is expressed by Larmor equation.
  • 14. The precessional frequency and the external magnetic field are related by the Larmor Equation. ωo = γ/ 2π B0 ωo Larmor precessional frequency γ Gyromagnetic ratio for that nucleus B0 Applied magnetic field
  • 15. Fig 2: B0 is defined to be oriented in the z direction of a Cartesian coordinate system; the axis of precession is also the z axis. The motion of each proton can be described by a unique set of x, y (perpendicular to B0), and z (parallel to B0) coordinates. The perpendicular, or transverse, coordinates are nonzero and vary with time as the proton precesses, but the z coordinate is constant with time .
  • 16. Gyromagnetic ratio for useful elements in magnetic resonance Nucleus γ/2π 1H 42.58 13C 10.7 17O 5.8 19F 40.0 23Na 11.3 31P 17.2
  • 17. Fig 3 : (a) I n the absence of a strong magnetic field, hydrogen nuclei are randomly aligned .(b) When the strong magnetic field, Bo ,is applied, the hydrogen nuclei precess about the direction of the field .
  • 18. Fig 3 : (a) The RF pulse, Brf, causes the net magnetic moment of the nuclei , M , to tilt away from Bo . (b) When the RF pulse stops, the nuclei return to equilibrium such that M is again parallel to Bo . During realignment, the nuclei lose energy and a measurable RF signal .
  • 19. RELAXATION • Relaxation is the process by which the protons release the energy that they absorbed from the rf pulse. • Relaxation is a fundamental process in MR, as essential as energy absorption, and provides the primary mechanism for image contrast. • During relaxation, the protons release this energy and return to their original configuration.
  • 20. There are two types of relaxation process • T1 Relaxation • T2 Relaxation FID : The response of the net magnetization M to an rf pulse as a function of time is known as the free induction decay or FID. • The Fourier transformation is used to convert the digital version of the MR signal (FID) from a function of time to a function of frequency.
  • 21. T1 RELAXATION • The relaxation time T1 is the time required for the z component of M to return to 63% of its original value following an excitation pulse. • It is also known as the spin-lattice relaxation time or longitudinal relaxation . • Here, Mo is parallel to Bo at equilibrium and that energy absorption will rotate Mo into the transverse plane. T1 relaxation provides the mechanism by which the protons give up their energy to return to their original orientation.
  • 22.
  • 23. Fig 5 : T1 relaxation curve. The change of Mz/ M0 with time t follows an exponential growth process
  • 24. T2 RELAXATION • The relaxation time T2 is the time required for the transverse component of M to decay to 37% of its initial value via irreversible processes. • It is also known as the spin-spin relaxation time or transverse relaxation time. Spin-spin relaxation refers to the energy transfer from an excited proton to another nearby proton. • The absorbed energy remains as spin excitation rather than being transferred to the surroundings as in T1 relaxation. • This proton-proton energy transfer can occur many times as long as the protons are in close proximity and remain at the same Wo.
  • 25. Fig 6 : Net magnetization M is oriented parallel to B0 prior to pulse (1). Following a 90º rf pulse, the protons initially precess in phase in the transverse plane (2). Due to inter- and intramolecular interactions, the protons begin to precess at different frequencies (dashed arrow = faster; dotted arrow = slower) and become asynchronous with each other (3). As more time elapses (4,5), the transverse coherence becomes smaller until there is complete randomness of the transverse components and no coherence (6).
  • 26. Fig 6: Plot of relative Mxy component. The change in Mxy/Mxy max with time follows an exponential decay process. The time constant for this process is the spin-spin relaxation time T2 and is the time when MXY has decayed to 37% of its original value. This dephasing time T2 is always less than or equal to T1.
  • 27. Spin echo………… • The initial 90º rf pulse rotates Mo into the transverse plane. During the time t, proton dephasing will occur through T2* relaxation processes. • Application of the 180º rf pulse causes the protons to reverse their phases relative to the resonant frequency. • If time t elapses again, then the protons will regain their transverse coherence. This reformation of phase coherence induces another signal in the receiver coil, known as a spin echo.
  • 28. CONTRAST WEIGHTING • Contrast in an image is proportional to the difference in signal intensity between adjacent pixels in the image, corresponding to two different voxels in the patient. • It depends on spin(proton) density, T1 and T2 relaxations. • TR (Time of Repetition) & TE (Time of Echo) are pulse sequence controls on the MRI machine.
  • 29. T1 WEIGHTING & T2 WEIGHTING • TR: short • TE: short • fluid: dark • fat: bright TR: long TE: long fluid: bright fat: intermediate-bright
  • 30. • TR: long • TE: short • fluid: bright • fat: bright • Overall signal: high SPIN(PROTON) DENSITY WEGHTING
  • 31. INSTRUMENTATION The major components in MRI are :  Computer system  Magnet system  Gradient system  Radio-frequency system
  • 32. Fig 8: Block diagram of an MRI system.
  • 33.
  • 34. MAGNET SYSTEM In MRI different types of magnets are used, they are :  Permanent magnet  Resistive magnet and  Superconducting magnet
  • 35. GRADIENT SYSTEM Gradient system consist of three types of gradient coils : • Gradient coils are used to systematically vary the magnetic field by producing additional linear electro magnetic fields, thus making slice selection and spatial information possible. • As we have three dimension in space ,there are three sets of gradient coils (x , y & z). That are the cause of noise during a MR examination. • Typical MRI scanner generates 110 decibels of noise, certain MRI scanners could get up to 118 decibels at their loudest point.
  • 36. Fig 9 : Three types of gradient coils
  • 37. RADIO-FREQUENCY SYSTEM (RF COILS) • RF coils are used for transmitting RF energy to the tissue of interest and to receive the induced RF signal from the tissue of interest. • They are placed concentric to each other and act as an antenna of the MR system. There are coils specifically designed for brain , breast and other body organs. • RF signal is generated by a transmit RF coils and applied to an area of interest and output signal is picked up by the RF receive coil and transmitted to an RF amplifier for reconstruction of images. • Faraday’s cage
  • 38. ARTIFACTS • MRI artifacts are varied and numerous and some effect the quality of the MRI exam while others do not affect the diagnostic quality but may be confused with pathology. • When encountering an unfamiliar artifact , it is useful to systematically examine general features of the artifact to try and understand the type of artifact and how to negate it if needed. These features include:  type of sequence (e.g. fast spin echo, or gradient or volumetric)  direction of phase and frequency  fat or fluid attenuation  presence of anatomy outside the image field  presence of metallic foreign bodies
  • 39. Artifacts …………………………… Many artifacts have a characteristic appearance and with experience they can be readily identified.  MRI artifacts are classified into three broad areas-those : Based on the machine  MR hardware and room shielding.  MR software. Based on the patient  Patient and physiologic motion.  Tissue heterogeneity and foreign bodies. Based on signal processing  Fourier transform and Nyquist sampling theorem.
  • 40. Artifacts …………………………… Based on the machine : MR hardware and room shielding • Herringbone artifact • Moire fringes • Zebra stripes • Central point artifact • RF overflow artifacts • Inhomogeneity artifacts • Inhomogeneity artifacts MR software • Slice-overlap artifact (cross-talk artifact) • Cross excitation
  • 41. Based on the machine: MR hardware and room shielding Herringbone Artifact • Also called as crisscross artifact or corduroy artifact. It appears as a fabric of herring bone . Artifact is scattered all over the image in a single slice or multiple slices . Causes: • electromagnetic spikes by gradient coils • fluctuating power supply • RF pulse discrepancies
  • 42. Based on the machine : MR hardware and room shielding Moire fringes • It is an interference pattern most commonly seen when doing gradient echo images with the body coil. • Because of lack of perfect homogeneity of the main magnetic field from one side of the body to the other, aliasing of one side of the body to the other results in superimposition of signals of different phases that alternatively add and cancel. This causes the banding appearance and is similar to the effect of looking though two screen windows.
  • 43. Based on the machine: MR hardware and room shielding Central point artifact • It is a focal dot of increased signal in the center of an image. It is caused by a constant offset of the DC voltage in the receiver. After Fourier transformation, this constant offset gives the bright dot in the center of the image as shown in the diagram. • The axial MRI image of the head shows a central point artifact projecting in the pons in the center of the image. Correction and prevention • Repeating the sequence may get rid of the artifact. • Maintain constant temperature in scanner and equipment room for receiver amplifiers. • Software to estimate DC offset and adjust the data in k-space. • Call service engineer for recalibration.
  • 44. Based on the machine: MR hardware and room shielding RF overflow artifacts • cause a nonuniform, washed-out appearance to an image. • occurs when the signal received by the scanner from the patient is too intense to be accurately digitized by the analog-to- digital converter. • Autoprescanning usually adjusts the receiver gain to prevent this from occurring but if the artifact still occurs, the receiver gain can be decreased manually . Post-processing methods also exist but may be time consuming .
  • 45. Based on the machine: MR hardware and room shielding Zipper artifacts • where one or more spurious bands of electronic noise extend perpendicular to the frequency encode direction and is present in all images of a series. • There are various causes for zipper artifacts in images. Most of them are beyond the radiologist immediate control. • It can be controlled easily are those that occur when the door is open during acquisition of images due to RF entering the scanning room from electronic equipment and are being picked by the receiver chain of imaging sub-systems. RF from some radio transmitters will cause this artifact.
  • 46. Based on the machine : MR Software Slice-overlap artifact • Cross talk overlap is a name given to the loss of signal seen in an image from a multi-angle, multi-slice acquisition, as is obtained commonly in the lumbar spine. • If the slices obtained at different disk spaces are not parallel, then the slices may overlap. If two levels are done at the same time, e.g., L4-5 and L5-S1, then the level acquired second will include spins that have already been saturated. This causes a band of signal loss crossing horizontally in your image, usually worst posteriorly.The dark horizontal bands in the bottom of the following axial image through the lumbar spine demonstrates this artifact
  • 47. Artifacts …………………………… Based on the Patient : Patient and physiologic motion • phase-encoded motion artifact • entry slice phenomenon Tissue heterogeneity and foreign bodies • black boundary artifact • magic angle effect • susceptibility artifact / magnetic susceptibility artifact • chemical shift artifact
  • 48. Based on the Patient : Patient and physiologic motion Phase-encoded motion artifact • It occurs as a result of tissue / fluid moving during the scan and manifests as ghosting in the direction of phase encoding, usually in the direction of short axis of the image (i.e left to right on axial or coronal brains, and anterior to posterior on axial abdomen). • It may be seen from arterial pulsations, swallowing, breathing, peristalsis, and physical movement of a patient. When projected over anatomy it can mimic pathology, and needs to be recognized. Motion that is random such as the patient moving produces a smear in the phase direction. Periodic motion such as respiratory or cardiac/vascular pulsation produces discrete, well defined ghosts. The spacing between these ghosts is related to the TR and frequency of the motion.
  • 49. Based on the Patient : Tissue heterogeneity and foreign bodies Black boundary artifact • Black boundary artifact or India ink artifact is  an artificially created black line located at fat- water interfaces such as those between muscle  and fat. This results in a sharp delineation of  the muscle-fat boundary that is sometimes  visually appealing but not an anatomical  structure.  • Case here is a coronal image through the upper  body with an echo time of 7 ms. A black line is  seen surrounding the muscles of the shoulder  girdle as well as around the liver.
  • 50. Based on the Patient : Tissue heterogeneity and foreign bodies Magnetic susceptibility artifact • It refers to a distortion in the MR image  especially seen while imaging metallic  orthopedic hardware or dental work. This  results from local magnetic field  inhomogeneities introduced by  the  metallic object into the otherwise  homogeneous external magnetic field B0.  These local magnetic field  inhomogeneities are known as magnetic susceptibility and are a property of the  object being imaged.
  • 51. Based on the Patient : Tissue heterogeneity and foreign bodies Magic angle effect • It occurs on sequences with a short TE (less than 32ms).  • It is confined to regions of tightly bound collagen at 54.74°  from the main magnetic field (Bo), and appears hyper  intense, thus potentially being mistaken  for tendonopathy. • In tightly bound collagens, water molecules are restricted  usually causing very short T2 times, accounting for the  lack of signal. When molecules lie at 54.74° there is  lengthening of T2 times (don't understand why.) with  corresponding increase in signal. Typical sites include : • proximal part of the posterior  cruciate ligament (PCL) • peroneal tendons as they hook  around the lateral malleolus. • cartilage can also be affected e.g.  femoral condyles • supraspinatus tendon • triangular fibrocartilage complex (if  the patient is imaged with the arm  elevated) • It appears that at 3.0T the effects  are reduced.
  • 52. Based on the Patient : Tissue heterogeneity and foreign bodies chemical shift artifact • Misregistration is common finding on  some MRI sequences, and used in MRS. • Chemical shift is due to the differences between  resonance frequencies between fat and water. It  occurs in the frequency encode direction where a  shift in the detected anatomy occurs because fat  resonates at a slightly lower frequency than water.  Essentially it is due to the effect of the electron  cloud to a greater or lesser degree shielding the  nucleus from the external static magnetic field  (Bo). 
  • 53. Artifacts …………………………… Based on signal processing: Fourier transform and Nyquist sampling theorem • Gibbs artifact / truncation artifact • zero-fill artifact  • aliasing / wrap around artifact
  • 54. Based on signal processing: Fourier transform and Nyquist sampling theorem Gibbs artifact / truncation artifact •  It refers to a series of lines in the MR image parallel to abrupt  and intense changes in the object at this location, such as the  CSF-spinal cord and the skull-brain interface  • The MR image is reconstructed from k-space which is a finite  sampling of the signal subjected to inverse Fourier transform in  order to obtain the final image. At high-contrast boundaries the  Fourier transform corresponds to an infinite number of  frequencies, and since sampling is finite the discrepancy appears  in the image in the form of a series of lines. These can appear in  both phase-encode and frequency-encode direction. • The more encoding steps, the less intense and narrower the  artifacts.
  • 55. Based on signal processing: Fourier transform and Nyquist sampling theorem Zero-fill artifact • Zero fill artifact is one of many MRI  artifacts and is due to data in the K-space  array missing or set to zero during  scanning. The abrupt change from signal  to no signal results in artifacts in the  images showing alternating bands of  shading and darkness, often in an oblique  direction. • A spike in k-space as from an electrostatic  spark is another artifact that causes  oblique stripes.
  • 56. Based on signal processing: Fourier transform and Nyquist sampling theorem Aliasing / wrap around artifact • It occurs when the field of view (FOV) is  smaller than the body-part being imaged. The  part of the body that lies beyond the edge of  the FOV is projected on to the other side of  the image. • This can be corrected, if necessary, by  oversampling the data. In the frequency  direction, this is accomplished by sampling  the signal twice as fast. In the phase direction,  the number of phase-encoding steps must be  increased with a longer study as a result.
  • 57. Uses • Using MRI scans, physicians can diagnose or monitor treatments for a variety of  medical conditions, including: • Abnormalities of the brain and spinal cord • Tumors, cysts, and other abnormalities in various parts of the body • Injuries or abnormalities of the joints • Certain types of heart problems • Diseases of the liver and other abdominal organs • Causes of pelvic pain in women (e.g. fibroids, endometriosis) • Suspected uterine abnormalities in women undergoing evaluation for infertility
  • 58. Risks/Benefits • MRI does not use ionizing radiation (high-energy radiation that can potentially  cause damage to DNA, like the x-rays used CT scans). • Using MRI we get better image contrast of the soft tissue • There are no known harmful side-effects associated with temporary exposure to  the strong magnetic field used by MRI scanners. However, there are important  safety concerns to consider before performing or undergoing an MRI scan: • The magnet may cause pacemakers, artificial limbs, and other implanted medical  devices that contain metal to malfunction or heat up during the exam.
  • 59. • Any loose metal object may cause damage or injury if it gets pulled toward the magnet. • If a contrast agent is used, there is a slight risk of an allergic reaction. MRI contrast agents  can cause problems in patients with significant kidney disease. • Dyes from tattoos or tattooed eyeliner can cause skin or eye irritation. • Medication patches can cause a skin burn. • The wire leads used to monitor an electrocardiogram (ECG) trace or respiration during a  scan must be placed carefully to avoid causing a skin burn. • Prolonged exposure to radio waves during the scan could lead to slight warming of the  body.
  • 60. REFERENCES • MRI Book by H. H. Schild • The Essential Physics of Medical Imaging By Jerrold T Bushberg  • MRI Basic Principles And Application 2nd  Edition By Mark A Brown & Richard C. Semelka • Magnetic Resonance Imaging: Bioeffects and Safety Concerns By N R Jaganathan -  Department of N.M.R., All India Institute of Medical Sciences   • http://www.mr-tip.com/serv1.php?type=mri_safety&p=intro • Real Whole Body MRI By Mathias Goyen • http://www.simplyphysics.com/MAIN.HTM • MRI Safety, Policies and Procedures., PPT By Suny Stony Brook Social Cognitive, and Affective  Neuroscience (SCAN) Center • http://radiopaedia.org/articles/mri-artifacts • Wikipedia