SlideShare une entreprise Scribd logo
1  sur  10
NATIONAL COLLEGE OF SCIENCE AND TECHNOLOGY
                    Amafel Bldg. Aguinaldo Highway Dasmariñas City, Cavite




                                      EXPERIMENT # 1

                            Passive Low-Pass and High-Pass Filter




Pagara, Sheila Marie P.                                             June 28, 2011
Signal Spectra and Signal Processing/ BSECE 41A1                           Score:




                                   Eng’r. Grace Ramones
                                     Instructor
OBJECTIVES
1.   Plot the gain frequency response of a first-order (one-pole) R-C low-pass filter.
2.   Determine the cutoff frequency and roll-off of an R-C first-order (one-pole) low-pass filter.
3.   Plot the phase-frequency of a first-order (one-pole) low-pass filter.
4.   Determine how the value of R and C affects the cutoff frequency of an R-C low-pass filter.
5.   Plot the gain-frequency response of a first-order (one-pole) R-C high pass filter.
6.   Determine the cutoff frequency and roll-off of a first-order (one-pole) R-C high pass filter.
7.   Plot the phase-frequency response of a first-order (one-pole) high-pass filter.
8.   Determine how the value of R and C affects the cutoff frequency of an R-C high pass filter.


COMPUTATION

Step 4




Step 6




Question – Step 6




Question – Step 7
           –


Step 15
Step 17




Question – Step 17




Question – Step 18




DATA SHEET


MATERIALS
One function generator
One dual-trace oscilloscope
Capacitors: 0.02 µF, 0.04µF
Resistors: 1 kΩ, 2 kΩ


THEORY
In electronic communication systems, it is often necessary to separate a specific range of frequencies from
the total frequency spectrum. This is normally accomplished with filters. A filter is a circuit that passes a
specific range of frequencies while rejecting other frequencies. A passive filter consists of passive circuit
elements, such as capacitors, inductors, and resistors. There are four basic types of filters, low-pass, high-
pass, band-pass, and band-stop. A low-pass filter is designed to pass all frequencies below the cutoff
frequency and reject all frequencies above the cutoff frequency. A high-pass is designed to pass all
frequencies above the cutoff frequency and reject all frequencies below the cutoff frequency. A band-pass
filter passes all frequencies within a band of frequencies and rejects all other frequencies outside the band. A
band-stop filter rejects all frequencies within a band of frequencies and passes all other frequencies outside
the band. A band-stop filter rejects all frequencies within a band of frequencies and passes all other
frequencies outside the band. A band-stop filter is often is often referred to as a notch filter. In this
experiment, you will study low-pass and high-pass filters.

The most common way to describe the frequency response characteristics of a filter is to plot the filter voltage
gain (Vo/Vi) in dB as a function of frequency (f). The frequency at which the output power gain drops to 50% of
the maximum value is called the cutoff frequency (f C). When the output power gain drops to 50%, the voltage
gain drops 3 dB (0.707 of the maximum value). When the filter dB voltage gain is plotted as a function of
frequency on a semi log graph using straight lines to approximate the actual frequency response, it is called a
Bode plot. A bode plot is an ideal plot of filter frequency response because it assumes that the voltage gain
remains constant in the passband until the cutoff frequency is reached, and then drops in a straight line. The
filter network voltage in dB is calculated from the actual voltage gain (A) using the equation
AdB = 20 log A
where A = Vo/Vi
A low-pass R-C filter is shown in Figure 1-1. At frequencies well below the cut-off frequency, the capacitive
reactance of capacitor C is much higher than the resistance of resistor R, causing the output voltage to be
practically equal to the input voltage (A=1) and constant with the variations in frequency. At frequencies well
above the cut-off frequency, the capacitive reactance of capacitor C is much lower than the resistance of
resistor R and decreases with an increase in frequency, causing the output voltage to decrease 20 dB per
decade increase in frequency. At the cutoff frequency, the capacitive reactance of capacitor C is equal to the
resistance of resistor R, causing the output voltage to be 0.707 times the input voltage (-3dB). The expected
cutoff frequency (fC) of the low-pass filter in Figure 1-1, based on the circuit component value, can be
calculated from
XC = R


Solving for fC produces the equation


A high-pass R-C filter is shown in figure 1-2. At frequencies well above the cut-off frequency, the capacitive
reactance of capacitor C is much lower than the resistance of resistor R causing the output voltage to be
practically equal to the input voltage (A=1) and constant with the variations in frequency. At frequencies well
below the cut-off frequency, the capacitive reactance of capacitor C is much higher than the resistance of
resistor R and increases with a decrease in frequency, causing the output voltage to decrease 20 dB per
decade decrease in frequency. At the cutoff frequency, the capacitive reactance of capacitor C is equal to the
resistance of resistor R, causing the output voltage to be 0.707 times the input voltage (-3dB). The expected
cutoff frequency (fC) of the high-pass filter in Figure 1-2, based on the circuit component value, can be
calculated from


Fig 1-1 Low-Pass R-C Filter




When the frequency at the input of a low-pass filter increases above the cutoff frequency, the filter output
drops at a constant rate. When the frequency at the input of a high-pass filter decreases below the cutoff
frequency, the filter output voltage also drops at a constant rate. The constant drop in filter output voltage per
decade increase (x10), or decrease ( 10), in frequency is called roll-off. An ideal low-pass or high-pass filter
would have an instantaneous drop at the cut-off frequency (fC), with full signal level on one side of the cutoff
frequency and no signal level on the other side of the cutoff frequency. Although the ideal is not achievable,
actual filters roll-off at -20dB/decade per pole (R-C circuit). A one-pole filter has one R-C circuit tuned to the
cutoff frequency and rolls off at -20dB/decade. At two-pole filter has two R-C circuits tuned to the same cutoff
frequency and rolls off at -40dB/decade. Each additional pole (R-C circuit) will cause the filter to roll-off an
additional -20dB/decade. Therefore, an R-C filter with more poles (R-C circuits) more closely approaches an
ideal filter.


In a pole filter, as shown the Figure 1-1 and 1-2 the phase (θ) between the input and the output will change by
90 degrees and over the frequency range and be 45 degrees at the cutoff frequency. In a two-pole filter, the
phase (θ) will change by 180 degrees over the frequency range and be 90 degrees at the cutoff frequency.

Fig 1-2 High-Pass R-C Filter




PROCEDURE

Low-Pass Filter

Step 1 Open circuit file FIG 1-1. Make sure that the following Bode plotter settings are selected: Magnitude,
Vertical (Log, F=0 dB, I=–40dB), Horizontal (Log, F=1 MHz, I=100 Hz)
Step 2 Run the simulation. Notice that the voltage gain in dB has been plotted between the frequencies 200
Hz and 1 MHz by the Bode plotter. Sketch the curve plot in the space provided.


              AdB




                                                                                            f
Question: Is the frequency response curve that of a low-pass filter? Explain why.
= Yes. It is expected. This filter allows the low frequency to pass and blocks the high frequency based on it
cutoff frequency.

Step 3 Move the cursor to a flat part of the curve at a frequency of approximately 100 Hz. Record the voltage
gain in dB on the curve plot.
AdB = -0.001 dB

Step 4            Calculate the actual voltage gain (A) from the dB voltage gain (AdB)
A = 0.99988   1

Question: Was the voltage gain on the flat part of the frequency response curve what you expected for the
circuit in Fig 1-1? Explain why.
= Yes, because VI approximately equal to Vo making the voltage gain approximately equal to 1.


Step 5 Move the cursor as close as possible to a point on the curve that is 3dB down from the dB at 100 Hz.
Record the frequency (cut-off frequency, fC) on the curve plot.
fC = 7.935 kHz

Step 6 Calculate the expected cutoff frequency (f C) based on the circuit component values in Figure 1-1.
fC = 7.958 kHz


Question: How did the calculated value for the cutoff frequency compare with the measured value recorded
on the curve plot?
= There is only a little difference which is 0.29%.

Step 7 Move the cursor to a point on the curve that is as close as possible to ten times f C. Record the dB
gain and frequency (f2) on the curve plot.
        AdB = -20.108 dB

Question: How much did the dB gain decrease for a one decade increase (x10) in frequency? Was it what
you expected for a single-pole (single R-C) low-pass filter?
= dB gain decreases 17.11 dB per decade increase in frequency. It is what I expected, above frequency the
output voltage decreases 20dB/decade increase in frequency; 17.11 dB is approximately equal to 20 dB per
decade.

Step 8 Click “Phase” on the Bode plotter to plot the phase curve. Make sure that the vertical axis initial value
(1) is -90 and the final value (F) is 0. Run the simulation again. You are looking at the phase difference (θ)
between the filter input and output as a function of frequency (f). Sketch the curve plot in the space provided.
θ




                                                                                            f
Step 9 Move the cursor to approximately 100 Hz and 1 MHz and record the phase (θ) in degrees on the
curve plot for each frequency (f). Next, move the cursor as close as possible on the curve to the cutoff
frequency (fC) and phase (θ) on the curve plot.
                  o
100 Hz: θ = –0.72
                    o
1MHz: θ = –89.544
               o
fC: θ = –44.917

Question: Was the phase at the cutoff frequency what you expected for a singles-pole (single R-C) low-pass
filter? Did the phase change with frequency? Is this expected for an R-C low-pass filter?
= It is what I expected. Yes, the phase between the input and output changes. The input and the output
change 88.824 degrees or 90 degrees on the frequency range and 44.917 degrees or 45 degrees.


Step 10          Change the value of resistor R to 2 kΩ in Fig 1-1. Click “Magnitude” on the Bode plotter. Run
the simulation. Measure the cutoff frequency (fC) and record your answer.
fC = 4.049 kHz

Question: Did the cutoff frequency changes? Did the dB per decade roll-off changes? Explain.
= Yes it changes (decreases). No, the dB per decade roll-off did not change. The single pole’s roll-off will
always approach 20 dB per decade in the limit of high frequency even if the resistance changes.


Step 11         Change the value of capacitor C is 0.04 µF in Figure 1-1. Run the simulation. Measure the
new cutoff frequency (fC) and record your answer.
fC = 4.049 kHz

Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain.
= Yes it changes (decreases). No, the dB per decade roll-off did not change. The single pole’s roll-off will
always approach 20 dB per decade in the limit of high frequency even if the capacitance changes.
High-Pass Filter

Step 12         Open circuit file FIG 1-2. Make sure that the following Bode plotter settings are selected:
Magnitude, Vertical (Log, F=0 dB, I=–40dB), Horizontal (Log, F=1 MHz, I=100 Hz)

Step 13       Run the simulation. Notice that the gain in dB has been plotted between the frequencies of
100Hz and 1 MHz by the Bode plotter. Sketch the curve plot in the space provided.


             AdB




                                                                                            f
Question: Is the frequency response curve that of a high-pass filter? Explain why.
= It is what I expected, it passes all the frequencies above the cutoff frequency and rejects all the frequencies
below the cutoff frequency.

Step 14 Move the cursor to a flat part of the curve at a frequency of approximately 1 MHz Record the voltage
gain in dB on the curve plot.
AdB = 0 dB

Step 15 Calculate the actual voltage gain (A) from the dB voltage gain (AdB).
A=1

Question: Was the voltage gain on the flat part of the frequency response curve what you expected for the
circuit in Figure 1-2? Explain why.
= Yes, At frequencies well above the cut-off frequency VO = Vi therefore the voltage gain A equals 1

Step 16 Move the cursor as close as possible to the point on the curve that is 3dB down from the dB gain at
1MHz. Record the frequency (cutoff frequency, fC) on the curve plot.
fC = 7.935 kHz

Step 17 Calculate the expected cut of frequency (f C) based on the circuit component value in Figure 1-2
fC = 7.958 kHz

Question: How did the calculated value of the cutoff frequency compare with the measured value recorded on
the curve plot?
= There is a little difference of 0.29%.
Step 18 Move the cursor to a point on the curve that is as close as possible to one-tenth fC. Record the dB
gain and frequency (f2) on the curve plot.
AdB = -20.159 dB

Question: How much did the dB gain decrease for a one-decade decrease ( ) in frequency? Was it what you
expected for a single-pole (single R-C) high-pass filter?
= The dB gain decreases 18.161 dB per decrease in frequency. It is what I expected, the frequencies below
the cutoff frequency have output voltage almost decrease 20dB/decade decrease in frequency.

Step 19 Click “Phase” on the Bode plotter to plot the phase curve. Make sure that the vertical axis initial value
        o                             o
(I) is 0 and the final value (f) is 90 . Run the simulation again. You are looking at the phase difference (θ)
between the filter input and output as a function of frequency (f). Sketch the curve plot in the space provided

                       θ




                                                                                                 f


Step 20 Move the cursor to approximately 100 Hz and 1 MHz and record the phase (θ) in degrees on the
curve plot for each frequency (f). Next, move the cursor as close as possible on the curve to the cutoff
frequency (fC). Record the frequency (fC) and phase (θ).

at 100 Hz: θ = 89.28
                        o
at 1MHz: θ = 0.456
                             o
at fC(7.935 kHz): θ = 44.738

Question: Was the phase at the cutoff frequency (f C) what you expected for a single-pole (single R-C) high
pass filter?
It is what I expected, the input and the output change 89.824 degrees almost 90 degrees on the frequency
range and 44.738 degrees almost degrees.

Did the phase change with frequency? Is this expected for an R-C high pass filter?
= Yes the phase between the input and output changes. It is expected in R--C high pass filter

Step 21 Change the value of resistor R to 2 kΩ in Figure 1-2. Click “Magnitude” on the Bode plotter. Run the
simulation. Measure the cutoff frequency (f C) and record your answer.
fC = 4.049 kHz
Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain.
= Yes cutoff changes (decreases). The roll-off did not change. Roll-off is still the same even if resistance
changes.

Step 22 Change the value of the capacitor C to 0.04µF in Figure 1-2. Run the simulation/ measure the cutoff
frequency (fC) and record you answer.
fC = 4.049 kHz

Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain.
= Yes cutoff changes (decreases). The roll-off did not change. Roll-off is still the same even if capacitance
changes.


CONCLUSION

With the completion of this experiment, I conclude that the cut-off fC is the basis of a filter is the frequency will
allow or reject the frequencies. In low-pass filter it only allows the frequencies below the cutoff frequency. On
the other hand, the high-pass filter only allows the frequencies above the cutoff frequency.

The voltage gain of low-pass filter at well below the cutoff frequency is almost equal to 1 because V o = Vi.
The voltage gain in high-pass filter becomes 1 if it is well above the fC because Vo = Vi.

Frequencies at well above cutoff (for the low-pass filter) the dB per decade roll-off decreases by 20 dB per
decade increase in frequency. Frequencies below fC (for high-pass filter) ) the dB per decade roll-off
decreases by 20 dB per decade decrease in frequency.



The Phase response for a first-order low-pass filter and high-pass filter, vOUT always lags vIN by some phase
angle betweeen 0 and 90°.


If the resistance or capacitance changes, the cutoff frequency also changes. Cutoff is inversely proportional to
the resistance and capacitance. However, the roll-off is not affected by the resistance and the capacitance.

Contenu connexe

Tendances (18)

3 (3)
3 (3)3 (3)
3 (3)
 
Maala
MaalaMaala
Maala
 
Exp passive filter (4)
Exp passive filter (4)Exp passive filter (4)
Exp passive filter (4)
 
Comm8(exp.3)
Comm8(exp.3)Comm8(exp.3)
Comm8(exp.3)
 
Comm008 e4 maala
Comm008 e4 maalaComm008 e4 maala
Comm008 e4 maala
 
3 (2)
3 (2)3 (2)
3 (2)
 
Bani (2)
Bani (2)Bani (2)
Bani (2)
 
Exp passive filter (2)
Exp passive filter (2)Exp passive filter (2)
Exp passive filter (2)
 
National college of science and technology
National college of science and technologyNational college of science and technology
National college of science and technology
 
Comm008 e4 balane
Comm008 e4 balaneComm008 e4 balane
Comm008 e4 balane
 
Pagara
PagaraPagara
Pagara
 
Am2
Am2Am2
Am2
 
Cauan (2)
Cauan (2)Cauan (2)
Cauan (2)
 
Pagara
PagaraPagara
Pagara
 
Comm008 e4 pula
Comm008 e4 pulaComm008 e4 pula
Comm008 e4 pula
 
Exp passive filter (1)
Exp passive filter (1)Exp passive filter (1)
Exp passive filter (1)
 
Agdon
AgdonAgdon
Agdon
 
Comm008 e4 agdon
Comm008 e4 agdonComm008 e4 agdon
Comm008 e4 agdon
 

Similaire à Exp passive filter (5)

Exp1 (passive filter) agdon
Exp1 (passive filter)   agdonExp1 (passive filter)   agdon
Exp1 (passive filter) agdon
Sarah Krystelle
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
Sarah Krystelle
 
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
info324235
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
jkanth26
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
jkanth26
 
Active filters & Low Pass Filters (LMS).ppt
Active filters & Low Pass Filters (LMS).pptActive filters & Low Pass Filters (LMS).ppt
Active filters & Low Pass Filters (LMS).ppt
AdnanZafar83
 
Sinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docxSinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docx
jennifer822
 

Similaire à Exp passive filter (5) (20)

Exp1 (passive filter) agdon
Exp1 (passive filter)   agdonExp1 (passive filter)   agdon
Exp1 (passive filter) agdon
 
Pula
PulaPula
Pula
 
Bani
BaniBani
Bani
 
3 (1)
3 (1)3 (1)
3 (1)
 
Balane
BalaneBalane
Balane
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
 
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
5. An analog filer has system fnction Ha(s)--a (a) (10 pts,) Comvert .pdf
 
Active Filter (Low Pass)
Active Filter (Low Pass)Active Filter (Low Pass)
Active Filter (Low Pass)
 
unit-5 2nd part active filters by ACEIT.ppt
unit-5 2nd part active filters by ACEIT.pptunit-5 2nd part active filters by ACEIT.ppt
unit-5 2nd part active filters by ACEIT.ppt
 
Active filters
Active filtersActive filters
Active filters
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
 
Communicationlabmanual
CommunicationlabmanualCommunicationlabmanual
Communicationlabmanual
 
Filters DAC and ADC
Filters DAC and ADCFilters DAC and ADC
Filters DAC and ADC
 
LICA-
LICA- LICA-
LICA-
 
16971168.ppt
16971168.ppt16971168.ppt
16971168.ppt
 
Active filters & Low Pass Filters (LMS).ppt
Active filters & Low Pass Filters (LMS).pptActive filters & Low Pass Filters (LMS).ppt
Active filters & Low Pass Filters (LMS).ppt
 
Active filters
Active filtersActive filters
Active filters
 
Active filter
Active filterActive filter
Active filter
 
09 rc filters
09 rc filters09 rc filters
09 rc filters
 
Sinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docxSinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docx
 

Plus de Sarah Krystelle

SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATIONSIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
Sarah Krystelle
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)
Sarah Krystelle
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)
Sarah Krystelle
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)
Sarah Krystelle
 
Exp amplitude modulation (5)
Exp amplitude modulation (5)Exp amplitude modulation (5)
Exp amplitude modulation (5)
Sarah Krystelle
 
Exp amplitude modulation (4)
Exp amplitude modulation (4)Exp amplitude modulation (4)
Exp amplitude modulation (4)
Sarah Krystelle
 
Exp amplitude modulation (3)
Exp amplitude modulation (3)Exp amplitude modulation (3)
Exp amplitude modulation (3)
Sarah Krystelle
 
Exp amplitude modulation (2)
Exp amplitude modulation (2)Exp amplitude modulation (2)
Exp amplitude modulation (2)
Sarah Krystelle
 
Exp amplitude modulation (1)
Exp amplitude modulation (1)Exp amplitude modulation (1)
Exp amplitude modulation (1)
Sarah Krystelle
 

Plus de Sarah Krystelle (20)

SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATIONSIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)
 
Exp amplitude modulation (5)
Exp amplitude modulation (5)Exp amplitude modulation (5)
Exp amplitude modulation (5)
 
Exp amplitude modulation (4)
Exp amplitude modulation (4)Exp amplitude modulation (4)
Exp amplitude modulation (4)
 
Exp amplitude modulation (3)
Exp amplitude modulation (3)Exp amplitude modulation (3)
Exp amplitude modulation (3)
 
Exp amplitude modulation (2)
Exp amplitude modulation (2)Exp amplitude modulation (2)
Exp amplitude modulation (2)
 
Exp amplitude modulation (1)
Exp amplitude modulation (1)Exp amplitude modulation (1)
Exp amplitude modulation (1)
 
Am
AmAm
Am
 
Sarah
SarahSarah
Sarah
 
Pula
PulaPula
Pula
 
Objectives
ObjectivesObjectives
Objectives
 

Dernier

unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
Abortion pills in Kuwait Cytotec pills in Kuwait
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
amitlee9823
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
Matteo Carbone
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
lizamodels9
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
dlhescort
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
dlhescort
 

Dernier (20)

Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
John Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfJohn Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdf
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 

Exp passive filter (5)

  • 1. NATIONAL COLLEGE OF SCIENCE AND TECHNOLOGY Amafel Bldg. Aguinaldo Highway Dasmariñas City, Cavite EXPERIMENT # 1 Passive Low-Pass and High-Pass Filter Pagara, Sheila Marie P. June 28, 2011 Signal Spectra and Signal Processing/ BSECE 41A1 Score: Eng’r. Grace Ramones Instructor
  • 2. OBJECTIVES 1. Plot the gain frequency response of a first-order (one-pole) R-C low-pass filter. 2. Determine the cutoff frequency and roll-off of an R-C first-order (one-pole) low-pass filter. 3. Plot the phase-frequency of a first-order (one-pole) low-pass filter. 4. Determine how the value of R and C affects the cutoff frequency of an R-C low-pass filter. 5. Plot the gain-frequency response of a first-order (one-pole) R-C high pass filter. 6. Determine the cutoff frequency and roll-off of a first-order (one-pole) R-C high pass filter. 7. Plot the phase-frequency response of a first-order (one-pole) high-pass filter. 8. Determine how the value of R and C affects the cutoff frequency of an R-C high pass filter. COMPUTATION Step 4 Step 6 Question – Step 6 Question – Step 7 – Step 15
  • 3. Step 17 Question – Step 17 Question – Step 18 DATA SHEET MATERIALS One function generator One dual-trace oscilloscope Capacitors: 0.02 µF, 0.04µF Resistors: 1 kΩ, 2 kΩ THEORY In electronic communication systems, it is often necessary to separate a specific range of frequencies from the total frequency spectrum. This is normally accomplished with filters. A filter is a circuit that passes a specific range of frequencies while rejecting other frequencies. A passive filter consists of passive circuit elements, such as capacitors, inductors, and resistors. There are four basic types of filters, low-pass, high- pass, band-pass, and band-stop. A low-pass filter is designed to pass all frequencies below the cutoff frequency and reject all frequencies above the cutoff frequency. A high-pass is designed to pass all frequencies above the cutoff frequency and reject all frequencies below the cutoff frequency. A band-pass filter passes all frequencies within a band of frequencies and rejects all other frequencies outside the band. A band-stop filter rejects all frequencies within a band of frequencies and passes all other frequencies outside the band. A band-stop filter rejects all frequencies within a band of frequencies and passes all other frequencies outside the band. A band-stop filter is often is often referred to as a notch filter. In this experiment, you will study low-pass and high-pass filters. The most common way to describe the frequency response characteristics of a filter is to plot the filter voltage gain (Vo/Vi) in dB as a function of frequency (f). The frequency at which the output power gain drops to 50% of the maximum value is called the cutoff frequency (f C). When the output power gain drops to 50%, the voltage gain drops 3 dB (0.707 of the maximum value). When the filter dB voltage gain is plotted as a function of frequency on a semi log graph using straight lines to approximate the actual frequency response, it is called a Bode plot. A bode plot is an ideal plot of filter frequency response because it assumes that the voltage gain remains constant in the passband until the cutoff frequency is reached, and then drops in a straight line. The filter network voltage in dB is calculated from the actual voltage gain (A) using the equation
  • 4. AdB = 20 log A where A = Vo/Vi A low-pass R-C filter is shown in Figure 1-1. At frequencies well below the cut-off frequency, the capacitive reactance of capacitor C is much higher than the resistance of resistor R, causing the output voltage to be practically equal to the input voltage (A=1) and constant with the variations in frequency. At frequencies well above the cut-off frequency, the capacitive reactance of capacitor C is much lower than the resistance of resistor R and decreases with an increase in frequency, causing the output voltage to decrease 20 dB per decade increase in frequency. At the cutoff frequency, the capacitive reactance of capacitor C is equal to the resistance of resistor R, causing the output voltage to be 0.707 times the input voltage (-3dB). The expected cutoff frequency (fC) of the low-pass filter in Figure 1-1, based on the circuit component value, can be calculated from XC = R Solving for fC produces the equation A high-pass R-C filter is shown in figure 1-2. At frequencies well above the cut-off frequency, the capacitive reactance of capacitor C is much lower than the resistance of resistor R causing the output voltage to be practically equal to the input voltage (A=1) and constant with the variations in frequency. At frequencies well below the cut-off frequency, the capacitive reactance of capacitor C is much higher than the resistance of resistor R and increases with a decrease in frequency, causing the output voltage to decrease 20 dB per decade decrease in frequency. At the cutoff frequency, the capacitive reactance of capacitor C is equal to the resistance of resistor R, causing the output voltage to be 0.707 times the input voltage (-3dB). The expected cutoff frequency (fC) of the high-pass filter in Figure 1-2, based on the circuit component value, can be calculated from Fig 1-1 Low-Pass R-C Filter When the frequency at the input of a low-pass filter increases above the cutoff frequency, the filter output drops at a constant rate. When the frequency at the input of a high-pass filter decreases below the cutoff frequency, the filter output voltage also drops at a constant rate. The constant drop in filter output voltage per decade increase (x10), or decrease ( 10), in frequency is called roll-off. An ideal low-pass or high-pass filter would have an instantaneous drop at the cut-off frequency (fC), with full signal level on one side of the cutoff frequency and no signal level on the other side of the cutoff frequency. Although the ideal is not achievable, actual filters roll-off at -20dB/decade per pole (R-C circuit). A one-pole filter has one R-C circuit tuned to the cutoff frequency and rolls off at -20dB/decade. At two-pole filter has two R-C circuits tuned to the same cutoff frequency and rolls off at -40dB/decade. Each additional pole (R-C circuit) will cause the filter to roll-off an
  • 5. additional -20dB/decade. Therefore, an R-C filter with more poles (R-C circuits) more closely approaches an ideal filter. In a pole filter, as shown the Figure 1-1 and 1-2 the phase (θ) between the input and the output will change by 90 degrees and over the frequency range and be 45 degrees at the cutoff frequency. In a two-pole filter, the phase (θ) will change by 180 degrees over the frequency range and be 90 degrees at the cutoff frequency. Fig 1-2 High-Pass R-C Filter PROCEDURE Low-Pass Filter Step 1 Open circuit file FIG 1-1. Make sure that the following Bode plotter settings are selected: Magnitude, Vertical (Log, F=0 dB, I=–40dB), Horizontal (Log, F=1 MHz, I=100 Hz) Step 2 Run the simulation. Notice that the voltage gain in dB has been plotted between the frequencies 200 Hz and 1 MHz by the Bode plotter. Sketch the curve plot in the space provided. AdB f
  • 6. Question: Is the frequency response curve that of a low-pass filter? Explain why. = Yes. It is expected. This filter allows the low frequency to pass and blocks the high frequency based on it cutoff frequency. Step 3 Move the cursor to a flat part of the curve at a frequency of approximately 100 Hz. Record the voltage gain in dB on the curve plot. AdB = -0.001 dB Step 4 Calculate the actual voltage gain (A) from the dB voltage gain (AdB) A = 0.99988 1 Question: Was the voltage gain on the flat part of the frequency response curve what you expected for the circuit in Fig 1-1? Explain why. = Yes, because VI approximately equal to Vo making the voltage gain approximately equal to 1. Step 5 Move the cursor as close as possible to a point on the curve that is 3dB down from the dB at 100 Hz. Record the frequency (cut-off frequency, fC) on the curve plot. fC = 7.935 kHz Step 6 Calculate the expected cutoff frequency (f C) based on the circuit component values in Figure 1-1. fC = 7.958 kHz Question: How did the calculated value for the cutoff frequency compare with the measured value recorded on the curve plot? = There is only a little difference which is 0.29%. Step 7 Move the cursor to a point on the curve that is as close as possible to ten times f C. Record the dB gain and frequency (f2) on the curve plot. AdB = -20.108 dB Question: How much did the dB gain decrease for a one decade increase (x10) in frequency? Was it what you expected for a single-pole (single R-C) low-pass filter? = dB gain decreases 17.11 dB per decade increase in frequency. It is what I expected, above frequency the output voltage decreases 20dB/decade increase in frequency; 17.11 dB is approximately equal to 20 dB per decade. Step 8 Click “Phase” on the Bode plotter to plot the phase curve. Make sure that the vertical axis initial value (1) is -90 and the final value (F) is 0. Run the simulation again. You are looking at the phase difference (θ) between the filter input and output as a function of frequency (f). Sketch the curve plot in the space provided.
  • 7. θ f Step 9 Move the cursor to approximately 100 Hz and 1 MHz and record the phase (θ) in degrees on the curve plot for each frequency (f). Next, move the cursor as close as possible on the curve to the cutoff frequency (fC) and phase (θ) on the curve plot. o 100 Hz: θ = –0.72 o 1MHz: θ = –89.544 o fC: θ = –44.917 Question: Was the phase at the cutoff frequency what you expected for a singles-pole (single R-C) low-pass filter? Did the phase change with frequency? Is this expected for an R-C low-pass filter? = It is what I expected. Yes, the phase between the input and output changes. The input and the output change 88.824 degrees or 90 degrees on the frequency range and 44.917 degrees or 45 degrees. Step 10 Change the value of resistor R to 2 kΩ in Fig 1-1. Click “Magnitude” on the Bode plotter. Run the simulation. Measure the cutoff frequency (fC) and record your answer. fC = 4.049 kHz Question: Did the cutoff frequency changes? Did the dB per decade roll-off changes? Explain. = Yes it changes (decreases). No, the dB per decade roll-off did not change. The single pole’s roll-off will always approach 20 dB per decade in the limit of high frequency even if the resistance changes. Step 11 Change the value of capacitor C is 0.04 µF in Figure 1-1. Run the simulation. Measure the new cutoff frequency (fC) and record your answer. fC = 4.049 kHz Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain. = Yes it changes (decreases). No, the dB per decade roll-off did not change. The single pole’s roll-off will always approach 20 dB per decade in the limit of high frequency even if the capacitance changes.
  • 8. High-Pass Filter Step 12 Open circuit file FIG 1-2. Make sure that the following Bode plotter settings are selected: Magnitude, Vertical (Log, F=0 dB, I=–40dB), Horizontal (Log, F=1 MHz, I=100 Hz) Step 13 Run the simulation. Notice that the gain in dB has been plotted between the frequencies of 100Hz and 1 MHz by the Bode plotter. Sketch the curve plot in the space provided. AdB f Question: Is the frequency response curve that of a high-pass filter? Explain why. = It is what I expected, it passes all the frequencies above the cutoff frequency and rejects all the frequencies below the cutoff frequency. Step 14 Move the cursor to a flat part of the curve at a frequency of approximately 1 MHz Record the voltage gain in dB on the curve plot. AdB = 0 dB Step 15 Calculate the actual voltage gain (A) from the dB voltage gain (AdB). A=1 Question: Was the voltage gain on the flat part of the frequency response curve what you expected for the circuit in Figure 1-2? Explain why. = Yes, At frequencies well above the cut-off frequency VO = Vi therefore the voltage gain A equals 1 Step 16 Move the cursor as close as possible to the point on the curve that is 3dB down from the dB gain at 1MHz. Record the frequency (cutoff frequency, fC) on the curve plot. fC = 7.935 kHz Step 17 Calculate the expected cut of frequency (f C) based on the circuit component value in Figure 1-2 fC = 7.958 kHz Question: How did the calculated value of the cutoff frequency compare with the measured value recorded on the curve plot? = There is a little difference of 0.29%.
  • 9. Step 18 Move the cursor to a point on the curve that is as close as possible to one-tenth fC. Record the dB gain and frequency (f2) on the curve plot. AdB = -20.159 dB Question: How much did the dB gain decrease for a one-decade decrease ( ) in frequency? Was it what you expected for a single-pole (single R-C) high-pass filter? = The dB gain decreases 18.161 dB per decrease in frequency. It is what I expected, the frequencies below the cutoff frequency have output voltage almost decrease 20dB/decade decrease in frequency. Step 19 Click “Phase” on the Bode plotter to plot the phase curve. Make sure that the vertical axis initial value o o (I) is 0 and the final value (f) is 90 . Run the simulation again. You are looking at the phase difference (θ) between the filter input and output as a function of frequency (f). Sketch the curve plot in the space provided θ f Step 20 Move the cursor to approximately 100 Hz and 1 MHz and record the phase (θ) in degrees on the curve plot for each frequency (f). Next, move the cursor as close as possible on the curve to the cutoff frequency (fC). Record the frequency (fC) and phase (θ). at 100 Hz: θ = 89.28 o at 1MHz: θ = 0.456 o at fC(7.935 kHz): θ = 44.738 Question: Was the phase at the cutoff frequency (f C) what you expected for a single-pole (single R-C) high pass filter? It is what I expected, the input and the output change 89.824 degrees almost 90 degrees on the frequency range and 44.738 degrees almost degrees. Did the phase change with frequency? Is this expected for an R-C high pass filter? = Yes the phase between the input and output changes. It is expected in R--C high pass filter Step 21 Change the value of resistor R to 2 kΩ in Figure 1-2. Click “Magnitude” on the Bode plotter. Run the simulation. Measure the cutoff frequency (f C) and record your answer. fC = 4.049 kHz
  • 10. Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain. = Yes cutoff changes (decreases). The roll-off did not change. Roll-off is still the same even if resistance changes. Step 22 Change the value of the capacitor C to 0.04µF in Figure 1-2. Run the simulation/ measure the cutoff frequency (fC) and record you answer. fC = 4.049 kHz Question: Did the cutoff frequency change? Did the dB per decade roll-off change? Explain. = Yes cutoff changes (decreases). The roll-off did not change. Roll-off is still the same even if capacitance changes. CONCLUSION With the completion of this experiment, I conclude that the cut-off fC is the basis of a filter is the frequency will allow or reject the frequencies. In low-pass filter it only allows the frequencies below the cutoff frequency. On the other hand, the high-pass filter only allows the frequencies above the cutoff frequency. The voltage gain of low-pass filter at well below the cutoff frequency is almost equal to 1 because V o = Vi. The voltage gain in high-pass filter becomes 1 if it is well above the fC because Vo = Vi. Frequencies at well above cutoff (for the low-pass filter) the dB per decade roll-off decreases by 20 dB per decade increase in frequency. Frequencies below fC (for high-pass filter) ) the dB per decade roll-off decreases by 20 dB per decade decrease in frequency. The Phase response for a first-order low-pass filter and high-pass filter, vOUT always lags vIN by some phase angle betweeen 0 and 90°. If the resistance or capacitance changes, the cutoff frequency also changes. Cutoff is inversely proportional to the resistance and capacitance. However, the roll-off is not affected by the resistance and the capacitance.