SlideShare une entreprise Scribd logo
1  sur  43
Télécharger pour lire hors ligne
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 1
Hydraulic Formulary
Author: Houman Hatami
Tel.: +49-9352-18-1225
Fax: +49-9352-18-1293
houman.hatami@boschrexroth.de
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 2
CONTENTS
RELATIONS BETWEEN UNITS............................................................................................................. 4
IMPORTANT CHARACTERISTIC VALUES OF HYDRAULIC FLUIDS................................................ 6
GENERAL HYDRAULIC RELATIONS................................................................................................... 7
PISTON PRESSURE FORCE ...................................................................................................................... 7
PISTON FORCES ..................................................................................................................................... 7
HYDRAULIC PRESS................................................................................................................................. 7
CONTINUITY EQUATION ........................................................................................................................... 8
PISTION SPEED....................................................................................................................................... 8
PRESSURE INTENSIFIER.......................................................................................................................... 8
HYDRAULIC SYSTEM COMPONENT................................................................................................... 9
HYDRO PUMP ......................................................................................................................................... 9
HYDRO MOTOR....................................................................................................................................... 9
Hydro motor variable...................................................................................................................... 10
Hydro motor fixed........................................................................................................................... 11
Hydro motor intrinsic frequency ..................................................................................................... 12
HYDRO PISTON..................................................................................................................................... 13
Differential piston............................................................................................................................ 14
Double acting cylinder.................................................................................................................... 15
Cylinder in differential control......................................................................................................... 16
Cylinder intrinsic frequency at differential cylinder......................................................................... 17
Cylinder intrinsic frequency at double acting cylinder .................................................................... 18
Cylinder intrinsic frequency at plunger cylinder.............................................................................. 19
PIPING................................................................................................................................................... 20
APPLICATION EXAMPLES FOR SPECIFICATION OF THE CYLINDER PRESSURES AND
VOLUME FLOWS UNDER POSITIVE AND NEGATIVE LOADS........................................................ 21
DIFFERENTIAL CYLINDER EXTENDING WITH POSITIVE LOAD..................................................................... 22
DIFFERENTIAL CYLINDER RETRACTING WITH POSITIVE LOAD ................................................................... 23
DIFFERENTIAL CYLINDER EXTENDING WITH NETAGIVE LOAD.................................................................... 24
DIFFERENTIAL CYLINDER RETRACTING WITH NEGATIVE LOAD.................................................................. 25
DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH POSITIVE LOAD .................................. 26
DIFFERENTIAL CYLINDER RETRACTING AT AN INCLINED PLANE WITH POSITIVE LOAD................................. 27
DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH NEGATIVE LOAD ................................ 28
DIFFERENTIAL CYLINDER RETRACTING AT AN LINCLINED PBLANE WITH NEGATIVE LOAD............................ 29
HYDRAULIC MOTOR WITH POSITIVE LOAD............................................................................................... 30
HYDRAULIC MOTOR WITH NEGATIVE LOAD.............................................................................................. 31
IDENTIFICATION OF THE REDUCED MASSES OF DIFFERENT SYSTEMS................................... 32
LINEARE DRIVES .................................................................................................................................. 33
Primary applications (Energy method) ........................................................................................... 33
Concentrated mass at linear movements....................................................................................... 35
Distributed mass at linear movements ........................................................................................... 36
ROTATION............................................................................................................................................ 37
COMBINATION OF LINEAR AND ROTATIONAL MOVEMENT.......................................................................... 38
HYDRAULIC RESISTANCES………………………………………………………………………………...39
ORIFICE EQUATION............................................................................................................................... 39
TROTTLE EQUATION.............................................................................................................................. 39
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 3
HYDRO ACCUMULATOR .................................................................................................................... 40
HEAT EXCHANGER (OIL- WATER).................................................................................................... 41
LAYOUT OF A VALVE ......................................................................................................................... 43
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 4
Relation between Units
Size Unit Symbol Relation
Lengths Micrometer
Millimeter
Centimeter
Decimeter
Meter
Kilometer
µm
mm
cm
dm
m
km
1µm = 0,001mm
1mm = 0,1cm = 0,01dm = 0,001m
1cm = 10mm = 10.000µm
1dm = 10cm = 100mm = 100.000µm
1m = 10dm = 100cm = 1.000mm = 1.000.000µm
1km = 1.000m = 100.000cm = 1.000.000mm
Surfaces Square centimeter
Square decimeter
Square meter
Are
Hectare
Square kilometer
cm2
dm2
m2
a
ha
km2
1cm2
= 100mm2
1dm2
= 100cm2
= 10.000mm2
1m2
= 100dm2
= 10.000cm2
= 1.000.000mm2
1a = 100m2
1ha = 100a = 10.000m2
1km2
= 100ha = 10.000a = 1.000.000m2
Volume Cubic centimeter
Cubic decimeter
Cubic meter
Milliliter
Liter
Hectoliter
cm3
dm3
m3
ml
l
hl
1cm3
= 1.000mm3
= 1ml = 0,001l
1dm3
= 1.000cm3
= 1.000.000mm3
1m3
= 1.000dm3
= 1.000.000cm3
1ml = 0,001l = 1cm3
1l = 1.000 ml = 1dm3
1hl = 100l = 100dm3
Density Gram/
Cubic centimeter
g
cm3
1 1 1 13 3 3
g
cm
kg
dm
t
m
g
ml
= = =
Force
Weight
Newton N
1 1 12
N
kg m
s
J
m
=
•
=
1daN = 10N
Torque Newton meter Nm 1Nm = 1J
Pressure Pascal
Bar
2
inch
pound
psi =
2
cm
kp
Pa
Bar
Psi
1Pa = 1N/m2
= 0,01mbar = 1
2
kg
m s•
Pa
m
N
cm
N
bar 5
22
10000.100101 ===
1psi = 0,06895 bar
bar
cm
kp
981,01 2
=
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 5
Mass Milligram
Gram
Kilogram
Ton
Mega gram
mg
g
kg
t
Mg
1mg = 0,001g
1g = 1.000mg
1kg = 1000g = 1.000.000 mg
1t = 1000kg = 1.000.000g
1Mg = 1t
Acceleration Meter/
per square second
m
s2
1 12
m
s
N
kg
=
1g = 9,81 m/s2
Angular speed One/ Second
Radiant/ Second
1
s
rad
s
ω = 2•π•n n in 1/s
Power Watt
Newton meter/ second
Joule/ second
W
Nm/s
J/s
1 1 1 1 2
W
Nm
s
J
s
kg m
s
m
s
= = =
•
•
Work/ Energy
Heat volume
Watt second
Newton meter
Joule
Kilowatt hour
Kilo joule
Mega joule
Ws
Nm
J
kWh
kJ
MJ
1Ws 1Nm 1
kg m
s
m 1J2
= =
•
• =
1kWh = 1.000 Wh = 1000•3600Ws = 3,6•106
Ws
= 3,6•103
kJ = 3600kJ = 3,6MJ
Mechanic
tension
Newton/ square
millimeter
N
mm2
1 10 12
N
mm
bar MPa= =
Plane angle Second
Minute
Degree
Radiant
´´
´
°
rad
1´´ = 1´/60
1´ = 60´´
1° = 60´ = 3600 ´´= π
180°
rad
1rad = 1m/m = 57,2957°
1rad = 180°/π
Speed One/second
One/minute
1/s
1/min
1
601 1
s
s= =− −
min
1 1
60
1
min
min= =−
s
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 6
Important Characteristic Values of Hydraulic Fluids
HLP HFC HFA
(3%)
HFD
Density at 20°C
[kg/m
3
]
880 1085 1000 925
Kinematic Viscosity
at 40°C
[mm
2
/s]
10-100 36-50 0,7 15-70
Compressions Module E
at 50°C
[Bar]
12000-14000 20400-23800 15000-
17500
18000-
21000
Specific Heat at 20°C
[kJ/kgK]
2,1 3,3 4,2 1,3-1,5
Thermal Conductivity at 20°C
[W/mK]
0,14 0,4 0,6 0,11
Optimal Temperatures
[°C]
40-50 35-50 35-50 35-50
Water Content
[%]
0 40-50 80-97 0
Cavitation Tendency low high very high low
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 7
General Hydraulic Relations
Piston Pressure Force
Figure Equation / Equation Variations Symbols / Units
ApF ••=10
F p A= • •η • 10
A
d
=
•2
4
π
p
F
d
•
••
=
π
1,04
2
4
1,0
d
F
p
•
•
•=
π
F = piston pressure force[N]
p = fluid pressure[bar]
A = piston surface[cm2
]
d = piston diameter[cm]
η = efficiency cylinder
Piston Forces
Figure Equation / Equation Variations Symbols / Units
10••= ApF e
10•••= ηApF e
A
d
=
•2
4
π
A For annulus surface:
A
D d
=
− •( )2 2
4
π
F = piston pressure force[N]
pe = excess pressure on the piston[bar]
A = effective piston surface[cm2
]
d = piston diameter[cm]
η = efficiency cylinder
Hydraulic Press
Figure Equation / Equation Variations Symbols / Units
F
A
F
A
1
1
2
2
=
F s F s1 1 2 2• = •
1
2
2
1
2
1
s
s
A
A
F
F
===ϕ
F1 = Force at the pump piston[N]
F2 = Force at the operating piston[N]
A1 = Surface of the pump piston [cm2
]
A2 = Surface of the operating piston [cm2
]
s1 = Stroke of the pump piston [cm]
s2 = Stroke of the operating piston [cm]
ϕ = Gear ratio
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 8
Continuity Equation
Figure Equation / Equation Variations Symbols / Units
Q Q1 2=
Q A v1 1 1= •
Q A v2 2 2= •
A v A v1 1 2 2• = •
Q1,2 = Volume flows [cm3
/s, dm3
/s, m3
/s]
A1,2 = Area surfaces [cm2
, dm2
, m2
]
v1,2 = Velocities
[cm/s, dm/s, m/s]
Piston Speed
Figure Equation / Equation Variations Symbols / Units
v
Q
A
1
1
1
=
v
Q
A
2
2
2
=
A
d
1
2
4
=
•π
A
D d
2
2 2
4
=
− •( ) π
v1,2 = Piston speed [cm/s]
Q1,2 = Volume flow [cm3
/s]
A1 = Effective piston surface (circle) [cm2
]
A2 = Effective piston surface (ring) [cm2
]
Pressure Intensifier
Figure Equation / Equation Variations Symbols / Units
p A p A1 1 2 2• = •
p1 = Pressure in the small cylinder [bar]
A1 = Piston surface [cm2
]
p2 = Pressure at the large cylinder [bar]
A2 = Piston surface [cm2
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 9
Hydraulic System Components
Hydro Pump
Q
V n vol
=
• •η
1000
[l/min]
P
p Q
an
ges
=
•
•600 η
[kW]
M
V p
mh
=
• •
•
159
100
, ∆
η
[Nm]
η η ηges vol mh= •
Q = Volume flow [l/min]
V = Nominal volume [cm3
]
n = Drive speed of the pump [min-1
]
Pan = Drive power [kW]
p = Service pressure [bar]
M = Drive torque [Nm]
ηges = Total efficiency (0,8-0,85)
ηvol = Volumetric efficiency (0,9-0,95)
ηmh = Hydro-mechanic efficiency(0,9-0,95)
Hydro Motor
Q
V n
vol
=
•
•1000 η
n
Q
V
vol
=
• •η 1000
2
1059,1
20
−
••∆••=
•
••∆
= mh
mh
ab pV
Vp
M η
π
η
P
p Q
ab
ges
=
• •∆ η
600
Q = Volume flow [l/min]
V = Nominal volume [cm3
]
n = Drive speed of the pump [min-1
]
ηges = Total efficiency (0,8-0,85)
ηvol = Volumetric efficiency (0,9-0,95)
ηmh = Hydro-mechanic efficiency
(0,9-0,95)
∆p = Pressure difference between motor inlet and
outlet (bar)
Pab = Output power of the motor [kW]
Mab = Output torque [Nm]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 10
Hydro Motor Variable
M
P
n
d = •
30000
π
P M nd= • •
π
30000
n
P
Md
= •
30000
π
M
M
i
d
d
Getr
=
•
max
η
n
n
i
= max
∆p
M
V
d
g mh
= •
•
20π
η
Q
V ng
vol
=
•
•1000 η
Q
V n
P
g vol
=
• •η
1000
P
Q p
ges
=
•
•
∆
600 η
Md = Torque [Nm]
P = Power [kW]
n = Speed [min-1
]
Mdmax = Max torque [Nm]
i = Gear ratio
ηGetr = Gear efficiency
ηmh = Mech./hydraulic efficiency
ηvol = Vol. efficiency
Vg = Flow volume [cm3
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 11
Hydro Motor Fixed
M
P
n
d = •
30000
π
P M nd= • •
π
30000
n
P
Md
= •
30000
π
M
M
i
d
d
Getr
=
•
max
η
n
n
i
= max
∆p
M
V
d
g mh
= •
•
20π
η
Q
V ng
vol
=
•
•1000 η
Q
V n
P
g vol
=
• •η
1000
P
Q p
ges
=
•
•
∆
600 η
Md = Torque [Nm]
P = Power [kW]
n = Speed [min-1
]
Mdmax = Max torque [Nm]
i = Gear ratio
ηGetr = Gear efficiency
ηmh = Mech./hydraulic efficiency
ηvol = Vol. efficiency
Vg = Flow volume [cm3
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 12
Hydro Motor Intrinsic Frequency
ω π
0
2
2 2
2
=
•
•
+
E
J
V
V
Vred
G
G
R
( )
( )
f0
0
2
=
ω
π
VG = Displacement [cm3
]
ω0 = Intrinsic angular frequency [1/s]
f0 = Intrinsic frequency [Hz]
Jred = Moment of inertia red. [kgm2
]
Eöl = 1400 N/mm2
VR = Volume of the line [cm3
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 13
Hydro Cylinder
A
d d
=
•
=
•1
2
1
2
400
0 785
100
π ,
[cm2
]
A
d
st =
•2
2
0 785
100
,
[cm2
]
A
d d
R =
− •( ) ,1
2
2
2
0 785
100
[cm2
]
10000
785,0
2
1 ••
=
dp
FD [kN]
F
p d d
z =
• − •( ) ,1
2
2
2
0 785
10000
[kN]
v
h
t
Q
A
=
•
=
•1000 6
[m/s]
606 •=••=
t
V
vAQth [l/min]
Q
Qth
vol
=
η .
V
A h
=
•
10000
[l]
t
A h
Q
=
• •
•
6
1000
[s]
d1 = Piston diameter [mm]
d2 = Piston rod diameter [mm]
p = Service pressure [bar]
v = Stroke speed [m/s]
V = Stroke volume [l]
Q = Volume flow, considering the leakages
(l/min)
Qth = Volume flow, without considering the
leakages (l/min)
ηvol = Volumetric efficiency (approx. 0,95)
h = Stroke [mm]
t = Stroke time [s]
FD
FZ
FS
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 14
Differential Cylinder
d
F
p
K
D
K
= •
•
•
100
4
π
p
F
d
K
D
K
=
• •
•
4 104
2
π
p
F
d d
St
Z
K St
=
• •
• −
4 104
2 2
π ( )
dK = Piston diameter [mm]
dst = Rod diameter [mm]
FD = Pressure force [kN]
Fz = Traction force [kN]
pK = Pressure at the piston side [bar]
ϕ = Aspect ratio
QK = Volume flow piston side [l/min]
QSt = Volume flow rod side [l/min]
ϕ =
−
d
d d
K
K St
2
2 2
( )
Q v dK a K=
•
• •
6
400
2π
Q v d dSt e K St=
•
• • −
6
400
2 2π
( )
v
Q
d d
e
St
K St
=
• −
6
400
2 2π
( )
v
Q
d
a
K
K
=
•
6
400
2π
Vol d hp St=
•
• •
π
4 106
2
Vol h d dF K St=
•
• • −
π
4 106
2 2
( )
va = Extending speed [m/s]
ve = Retracting speed [m/s]
Volp = Working volume [l]
VolF = Fill-up volume [l]
h = Stroke [mm]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 15
Double Acting Cylinder
p
F
d d
A
A
K StA
=
•
•
−
4 104
2 2
π ( )
p
F
d d
B
B
K StB
=
•
•
−
4 104
2 2
π ( )
Q v d dA a K StA=
•
• • −
6
400
2 2π
( )
Q v d dB b K StB=
•
• • −
6
400
2 2π
( )
v
Q
d d
e
St
K St
=
• −
6
400
2 2π
( )
v
Q
d
a
K
K
=
•
6
400
2π
Vol d hp St=
•
• •
π
4 106
2
Vol h d dFA K StA=
•
• • −
π
4 106
2 2
( )
Vol h d dFB K StB=
•
• • −
π
4 106
2 2
( )
dK = Piston diameter [mm]
dstA = Rod diameter A-side [mm]
dstB = Rod diameter B-side [mm]
FA = Force A [kN]
FB = Force B [kN]
pA = Pressure at the A-side [bar]
pB = Pressure at the B-side [bar]
QA = Volume flow A-side [l/min]
QB = Volume flow B-side [l/min]
va = Speed a [m/s]
vb = Speed b [m/s]
Volp = Compensating volume [l]
VolFA = Fill-up volume A [l]
VolFB = Fill-up volume B [l]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 16
Cylinder in Differential Control
St
D
st
p
F
d
•
•
•=
π
4
100
p
F
d
K
D
St
=
• •
•
4 104
2
π
p
F
d d
St
Z
K St
=
• •
• −
4 104
2 2
π ( )
Q v da St=
•
• •
6
400
2π
dK = Piston diameter [mm]
dst = Rod diameter [mm]
FD = Pressure force [kN]
Fz = Traction force [kN]
pK = Pressure at the piston side [bar]
pSt = Pressure at the rod side [bar]
h = Stroke [mm]
QK = Volume flow piston side [l/min]
QSt = Volume flow rod side [l/min]
Extension:
v
Q
d
a
P
St
=
•
6
400
2π
Q
Q d
d
K
P K
St
=
•
2
2
Q
Q d d
d
St
P K St
St
=
• −( )
2 2
2
Retraction:
v
Q
d d
e
P
K St
=
• −
6
400
2 2π
( )
QSt=QP
Q
Q d
d d
K
P K
K St
=
•
−
2
2 2
( )
Vol d hp St=
•
• •
π
4 106
2
Vol h d dF K St=
•
• • −
π
4 106
2 2
( )
QP = Pump flow [l/min]
va = Extending speed [m/s]
ve = Retracting speed [m/s]
Volp = Working volume [l]
VolF = Fill-up volume [l]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 17
Cylinder Intrinsic Frequency at Differential Cylinders
A
d
K
K
=
2
4
100
π
A
d d
R
K St
=
−( )
2 2
4
100
π
V
d L
RK
RK K
= •
2
4 1000
π
V
d L
RSt
RSt St
= •
2
4 1000
π
m
V
RK
RK Öl
=
• ρ
1000
m
V
RSt
RSt öl
=
• ρ
1000
)
11
(
333
KR
K
RK
R
RSt
R
R
k
AA
A
V
A
V
A
hA
h
+








−+
•
=
)
10
)(
10
(
1
22
0
RSt
KR
ÖlR
RK
KK
ÖLK
V
hhA
EA
V
hA
EA
m +
−•
•
+
+
•
•
•=ω
f0
0
2
=
ω
π
m m
d
d
m
d
A
ölred RK
K
RK
RSt
RSt
R
=





 +
•





4
1 400
π
AK = Piston surface [cm2
]
AR = Piston ring surface [cm2
]
dK = Piston diameter [mm]
dSt = Piston rod diameter [mm]
dRK = NW- piston side [mm]
LK = Length of piston side [mm]
dRSt = NW-rod side [mm]
LSt = Length of rod side [mm]
h = Stroke [cm]
VRK = Volume of the line piston side [cm3
]
VRSt = Volume of the line rod side [cm3
]
mRK = Mass of the oil in the line piston side [kg]
mRSt = Mass of the oil in the line rod side [kg]
hK = Position at min intrinsic frequency [cm]
f0 = Intrinsic frequency [Hz]
0ω = Angular frequency
ω ω01 0= •
+
m
m m
red
ölred red
f01
01
2
=
ω
π
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 18
Cylinder Intrinsic Frequency at Double Acting Cylinders
A
d d
R
K St
=
−( )
2 2
4
100
π
V
d L
R
RK K
= •
2
4 1000
π
m
V
R
R öl
=
• ρ
1000
ω0
2
100
2
10
= •
•
•
•
+
E
m
A
A h
V
öl
red
R
R
RSt
( )
Equation applies only to the middle position of the
double rod cylinder
Natural frequency of any position can be calculated
using the equation for the differential cylinder (as shown
on page 17, however AK = AR)
f0
0
2
=
ω
π
m m
d
A
ölred RK
R
R
= •
•




2
1 400
4
π
ω ω01 0= •
+
m
m m
red
ölred red
f01
01
2
=
ω
π
AR = Piston ring surface [cm2
]
dK = Piston diameter [mm]
dSt = Piston rod diameter [mm]
dR = NW [mm]
LK = Length of the piston side [mm]
h = Stroke [mm]
VR = Volume of the line [cm3
]
mR = Mass of the oil in the line [kg]
f0 = Intrinsic frequency
0ω = Angular frequency
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 19
Cylinder Intrinsic Frequency for Plunger Cylinders
A
d
K
K
=
2
4
100
π
V
d L
R
K K
= •
2
4 1000
π
m
V
R
R öl
=
• ρ
1000
)(100
2
0
RStK
K
red
öl
VhA
A
m
E
+•
••=ω
f0
0
2
=
ω
π
m m
d
d
ölred R
K
R
= •





2
4
ω ω01 0= •
+
m
m m
red
ölred red
f01
01
2
=
ω
π
AK = Piston surface [cm2
]
dK = Piston diameter [mm]
dR = Diameter of the piping [mm]
LK = Length piston side [mm]
LR = Length of the line [mm]
h = Stroke [mm]
VR = Volume of the line [cm3
]
MR = Mass of the oil in the line [kg]
f0 = Intrinsic frequency
0ω = Angular frequency
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 20
Piping
∆p
l v
d
= •
• • •
•
λ
ρ 2
10
2
λlam.
Re
=
64
4.
Re
316,0
=turbλ
Re =
•
•
v d
υ
103
v
Q
d
=
• •
•
6
4
10
2
2
π
d
Q
v
=
•
•
400
6 π
∆p = Pressure loss at direct piping [bar]
ρ = Density [kg/dm3
] (0,89)
λ = Pipe friction coefficient
λlam. = Pipe friction coefficient for laminar flow
λturb. = Pipe friction coefficient for turbulent flow
l = Length of the line [m]
v = Velocity in the line [m/s]
d = Internal diameter of the piping [mm]
ν = Kinematic viscosity [mm2
/s]
Q = Volume flow in the piping [l/min]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 21
Application Examples for Specification of the Cylinder Pressures
and Volume Flows under Positive and Negative Load
Nomenclature
Parameters Symbols Units
Acceleration / deceleration A m/s2
Cylinder surface A1 cm2
Ring surface A2 cm2
Aspect ratio ϕ=A1/A2 -
Total force FT daN
Acceleration force Fa=0,1•m•a daN
External forces FE daN
Friction forces (coulomb friction) FC daN
Sealing friction force FR daN
Weight force G daN
Mass
m
G
g
mK= +
kg
Piston mass mK kg
Volume flow Q=0,06•A•vmax
vmax
l/min
cm/s
Torque T=α•J+ TL Nm
Load torque TL Nm
Angular acceleration α rad/s2
Inertia moment J kgm2
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 22
Differential Cylinder Extending with Positive Load
Layout:
FT = Fa+FR+FC+FE [daN]
Given Parameters
FT = 4450 daN
PS = 210 bar
PT = 5,25 bar
A1 = 53,50 cm2
A2 = 38,10 cm2
ϕ = 1,40
vmax = 30,00 cm/s
==> p1 und p2
)1(
)]([
3
2
2
2
2
1
ϕ+
++
=
A
ApFRAp
p TTS
bar
2
1
2
ϕ
pp
pp S
T
−
+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A1•vmax l/min
Q Q
p p
N
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar1
2
3
210 38 1 1 4 4450 5 25 38 1
38 1 1 1 4
120=
• + + •
+
=
, , [ ( , , )]
, ( , )
p bar2 2
5 25
210 120
1 4
52= +
−
=,
,
Q= 0,06•53,5•30=96 l/min
Q lN =
−
=96
35
210 120
60 / min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 23
Differential Cylinder Retracting with Positive Load
Layout:
FT = Fa+FR+FC+FE [daN]
Given Parameters
FT = 4450 daN
PS = 210 bar
PT = 5,25 bar
A1 = 53,50 cm2
A2 = 38,10 cm2
ϕ = 1,40
vmax = 30,00 cm/s
==> p1 und p2
)1(
)]()(
3
2
2
3
2
2
ϕ
ϕϕ
+
++
=
A
ApFAp
p TTS
bar
])[( 2
21 ϕpppp ST −+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A2•vmax l/min
Q Q
p p
N
S
=
−
35
2
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar2
2
3
210 381 14 4450 5 25 381 14
381 1 14
187=
• • + + • •
+
=
( , , ) ( , , , )]
, ( , )
p bar1
2
5 25 210 187)1 4 52= + − =, [( , ]
Q= 0,06•38,1•30=69 l/min
Q lN =
−
=96
35
210 187
84 / min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 24
Differential Cylinder Extending with Negative Load
Layout:
FT = Fa+FR-G [daN]
Given Parameters
FT = -2225 daN
PS = 175 bar
PT = 0 bar
A1 = 81,3 cm
2
A2 = 61,3 cm
2
ϕ = 1,3
vmax = 12,7 cm/s
==> p1 und p2
)1(
)]([
3
2
2
2
2
1
ϕ
ϕ
+
++
=
A
ApFAp
p TTS
bar
2
1
2
ϕ
pp
pp S
T
−
+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A1•vmax l/min
Q Q
p p
N
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar1
2
3
175 61 3 1 3 2225 0 61 3
61 3 1 1 3
36=
• + − + •
+
=
, , [ ( , )]
, ( , )
p bar2 2
0
175 36
1 3
82= +
−
=
,
Q= 0,06•81,3•12,7=62 l/min
Q lN =
−
=62
35
175 36
31 / min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 25
Differential Cylinder Retracting with Negative Load
Layout:
FT = Fa+FR-G [daN]
Given Parameters
FT = -4450 daN
PS = 210 bar
PT = 0 bar
A1 = 81,3 cm
2
A2 = 61,3 cm
2
ϕ = 1,3
vmax = 25,4 cm/s
==> p1 und p2
)1(
)]()(
3
2
2
3
2
2
ϕ
ϕϕ
+
++
=
A
ApFAp
p TTS
bar
])[( 2
21 ϕpppp ST −+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A2•vmax l/min
Q Q
p p
N
S
=
−
35
2
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar2
2
3
210 613 13 4450 0 613 13
613 1 13
122=
• + − + • •
+
=
( , , ) ( , , )]
, ( , )
p bar1 0 210 122 149= + − =[( )]
Q= 0,06•61,3•25,4=93 l/min
Q lN =
−
=93
35
210 122
59 / min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 26
Differential Cylinder Retracting at an Inclined Plane with Positive Load
Layout:
FT = Fa+FE+FS+[G•(µ•cosα+sinα)] daN
Given Parameters
FT = 2225 daN
PS = 140 bar
PT = 3,5 bar
A1 = 31,6 cm
2
A2 = 19,9 cm
2
ϕ = 1,6
vmax = 12,7 cm/s
==> p1 and p2
)1(
)]([
3
2
2
2
2
1
ϕ
ϕ
+
++
=
A
ApFAp
p
TS
bar
2
1
2
ϕ
pp
pp S
T
−
+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A1•vmax l/min
Q Q
p p
N
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar1
2
3
140 19 9 16 2225 35 19 9
19 9 1 16
85=
• + + •
+
=
( , ) , [ ( , , )]
, ( , )
p bar2 2
35
140 85
1 6
25= +
−
=
,
Q= 0,06•31,6•12,7=24 l/min
QN =
−
=24
35
140 85
19 l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 27
Differential Cylinder Retracting at an Inclined Plane with Positive Load
Layout:
FT =Fa+FE+FS+[G•(µ•cosα+sinα)] daN
Given Parameters
FT = 1780 daN
PS = 140 bar
PT = 3,5 bar
A1 = 31,6 cm
2
A2 = 19,9 cm
2
ϕ = 1,6
vmax = 12,7 cm/s
==> p1 and p2
)1(
)]()(
3
2
2
3
2
2
ϕ
ϕϕ
+
++
=
A
ApFAp
p
TS
bar
])[( 2
21 ϕpppp ST −+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A2•vmax l/min
Q Q
p p
N
S
=
−
35
2
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar2
3
3
140 19 9 16 1780 35 19 9 16
19 9 1 16
131=
• • + + • •
+
=
( , , ) [ , , , )]
, ( , )
p bar1
2
3 5 140 131 1 6 26= + − • =, [( ) ,
Q= 0,06•19,9•12,7=15 l/min
QN =
−
=15
35
140 131
30 l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 28
Differential Cylinder Extending at an Inclined Plane with Negative Load
Layout:
FT = Fa+FE+FR+[G•(µ•cosα-sinα)] daN
Given Parameters
FT = -6675 daN
PS = 210 bar
PT = 0 bar
A1 = 53,5 cm
2
A2 = 38,1 cm
2
ϕ = 1,4
vmax = 25,4 cm/s
==> p1 und p2
)1(
)]([
3
2
2
2
2
1
ϕ
ϕ
+
++
=
A
ApFAp
p
TS
bar
2
1
2
ϕ
pp
pp S
T
−
+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A1•vmax l/min
Q Q
p p
N
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar1
2
3
210 106 12 6675 0 106
106 1 14
131=
• + − + •
+
=
( ) , [ ( )]
( , )
Caution!!!
Negative load is leading to cylinder cavitation.
Specified parameters to be changed by means of
using a larger cylinder size, increasing the system
pressure or reducing the necessary total force.
A1 = 126 cm
2
A2 = 106 cm
2
R=1,2
p bar2 2
210 44
1 2
116=
−
=
,
Q= 0,06•126•25,4=192 l/min
QN =
−
=192
35
210 44
88 l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 29
Differential Cylinder Retracting at an Inclined Plane with Negative Load
Layout:
F = Fa+FE+FR+[G•(µ•cosα-sinα)] daN
Given Parameters
F = -6675 daN
PS = 210 bar
PT = 0 bar
A1 = 53,5 cm
2
A2 = 38,1 cm
2
ϕ = 1,4
vmax = 25,4 cm/s
==> p1 and p2
)1(
)]()(
3
2
2
3
2
2
ϕ
ϕϕ
+
++
=
A
ApFAp
p TS
bar
])[( 2
21 ϕpppp ST −+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p2.
Q= 0,06•A2•vmax l/min
Q Q
p p
N
S
=
−
35
2
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar2
3
3
210 381 14 6675 0 381 14
381 1 14
107=
• • + − + • •
+
=
( , , ) [ ( , , )]
, ( , )
p bar1
2
0 210 107 1 4 202= + − • =[( ) , ]
Q= 0,06•38,1•25,4=58 l/min
QN =
−
=58
35
210 107
34 l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 30
Hydraulic Motor with a Positive Load
Layout:
T = α•J+TL [Nm]
Given Parameters
T = 56,5 Nm
PS = 210 bar
PT = 0 bar
DM = 82 cm
3
/rad
ωM = 10 rad/s
==> p1 and p2
p
p p T
D
S T
M
1
2
10
=
+
+
π
bar
p p p pS T2 1= − + bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
QM= 0,01•ωM•DM l/min
Q Q
p p
N M
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p bar1
210 0
2
10 56 5
82
127=
+
+
• •
=
π ,
p bar2 210 127 0 83= − + =
QM= 0,01•10•82=8,2 l/min
QN =
−
=8 2
35
210 127
5 3, , l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 31
Hydraulic Motor with a Negative Load
Layout:
T = α•J-TL [Nm]
Given Parameters
T = -170 Nm
PS = 210 bar
PT = 0 bar
DM = 82 cm
3
/rad
ωM = 10 rad/s
==> p1 and p2
p
p p T
D
S T
M
1
2
10
=
+
+
π
bar
p p p pS T2 1= − + bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
QM= 0,01•ωM•DM l/min
Q Q
p p
N M
S
=
−
35
1
l/min
Selection of a Servo valve 10% larger than the
calculated nominal volume flow.
Calculation:
p1
210 0
2
10 170
82
40bar=
+
+
• • −
=
π ( )
p2 210 40 0 170bar= − + =
QM= 0,01•10•82=8,2 l/min
QN =
−
=8 2
35
210 40
3 6, , l/min
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 32
Identification of the Reduced Masses of Different Systems
The different components (cylinder / motors …) have to be dimensioned for the layout of the
necessary forces of a hydraulic system, so that the acceleration and the deceleration of a mass is
correct and targeted.
The mechanics of the system are defining the stroke of the cylinders and motors.
Speed- and force calculations have to be carried out.
Statements with view to acceleration and its effects on the system can be made by fixing the reduced
mass of a system.
The reduced mass (M) is a concentrated mass, exerting the same force – and acceleration
components as the regular mass at the correct system.
The reduced moment of inertia (Ie) has to be considered for rotational systems.
The reduced mass has to be fixed in a first step for considerations with stroke measuring systems or
for applications with deceleration of a mass!
Newton’s second axiom is used for the specification of the acceleration forces.
F m a= • F= force [N]
m= mass [kg]
a= acceleration [m/s2
]
The following equation is applied for rotational movements:
Γ = • ′′I θ Γ = torque [Nm]
Í= moment of inertia [kgm2
]
′′θ = angular acceleration [rad/s2
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 33
Linear Drives
Primary Applications (Energy Method)
The mass is a concentrated mass and the rod l is weightless. The cylinder axis is positioned
rectangular to the rod l.
Relation between cylinder and rod:
′ = =θ
v
r
v
l
c m
′′ = =θ
a
r
a
l
c m
Needed torque for acceleration of the mass:
Γ = ′′ = •IX F rθ
= • ′′m l X2
θ I m l= • 2
= •m l X
a
l
m2
′′ =θ
a
l
m
= •m lXam
==> F
m l a
r
m i am
m=
• •
= • • i
l
r
=
m•i can be considered as mass movement m.
F m i a m i
l a
r
m i a M am
c
c c= • • = • •
•
= • • = •2
mit
a
r
a
l
c m
=
F= cylinder force
M= reduced mass
ac= acceleration of the cylinder rod
General validity: M m i= • 2
The same result can be obtained by the aid of the energy method (kinetic energy of the mass m). The
dependence of the mass movement with the cylinder movement can be specified with the help of the
geometry of the system.
Energy of the mass:
KE I m l= • ′ = • • ′
1
2
1
2
2 2 2
θ θ (I=m•i2
)
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 34
= • •






1
2
2
2
m l
v
r
c
(vc=r• ′θ )
= • •
1
2
2
2
2
m
l
r
vc
=
1
2
2
M vc• M=m•i
2
and i=l/r
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 35
Concentrated Mass with Linear Movements
v is the horizontal component of v´. v´ is positioned rectangular to rod l.
Energy method:
KE I m l= • ′ = • • ′
1
2
1
2
2 2 2
θ θ
= • •
′





1
2
2
2
m l
v
r
( ′θ =v´/r)
= • • ′
1
2
2
2
2
m
l
r
v
=
1
2
2 2
m i v• • ′
with v=v´•cosα
==> KE m i v= • • ′
1
2
2 2
=
•
• = •
1
2
1
2
2
2
2 2m i
v M v
(cos )α
with M m
i
=
2
2
(cos )α
==> M is position-depending
If: α= 0 then, α=1 and M=mi2
α=90° then, cosα=0 and M=∝
α=30° then, cosα=±0,866 and
75,0
2
i
mM =α
If a cylinder is moving a mass, as shown in the preceding figure, and the movement is situated between -30° and
+30°, the acceleration- and deceleration forces have to be calculated in the center of motion with a reduced mass,
twice as large as the one in the neutral center.
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 36
Distributed Mass at Linear Movements
When considering the same rod l with the mass m, you can here also calculate the reduced mass of
the rod.
KE I X m l= • ′ = • • • ′
1
2
1
2
1
3
2 2 2
θ θ
1
3
2
• •m l
= • • •
′





1
2
1
3
2
2
X m l
v
r
( ′θ =v´/r)
= • • • ′
1
2
1
3
2
2
2
X m
l
r
v
=
1
2
1
3
2 2
X m i v• • • ′
with v=v´•cosα
= • •
•
• = • •
1
2
1
3
1
3
2
2
2 2
X
m i
a
v M v
(cos )
M
m i
a
= •
•1
2
2
2
(cos )
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 37
Rotation
If considering now a rotating mass with a moment of inertia I, driven by a motor (ratio D/d).
KE I I
d
D
m= • ′ = • ′•
1
2
1
2
2 2
θ θ( ) I= moment of inertia [kgm2
]
= •





 • ′
1
2
2
2
I
d
D
θ ′θ = angular acceleration [rad/s2
]
= • • ′
1
2
2 2
I i θ
=
1
2
2
Ie • ′θ Ie= I•i2
i=d/D
If a gearbox has to be used, i has to be considered.
If i=D/d, then Ie=I/i
2
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 38
Combination of Linear and Rotational Movement
A mass m is here moved by a wheel with radius r. The wheel is weightless.
KE m v= •
1
2
2
( )= • • ′
1
2
2
m r θ v=r• ′θ
= • • ′
1
2
2 2
m r θ
=
1
2
2
Ie • ′θ Ie= m•r
2
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 39
Hydraulic Resistances
The resistance of an area reduction is the change of the applied pressure difference ∆pto the
corresponding volume flow change.
dQ
pd
R
)(∆
=
Orifice Equation
ρ
π
α
pd
Q B
KBlende
ƥ
•
•
••=
2
4
6,0
2 αK = flow coefficient (0,6-0,8)
ρ = 0,88 [kg/dm3
]
dB = orifice diameter [mm]
∆ p = pressure difference [bar]
Qorifice= [l/min]
Throttle Equation
Q
r
l
p pDrossel =
•
• •
• −
π
η
4
1 2
8
( )
η=ρ•ν
Qthrottle= [m3
/s]
η = dynamic viscosity [kg/ms]
l = throttle length [m]
r = radius [m]
ν = kinematic viscosity [m2
/s]
ρ = 880 [kg/m3
]
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 40
Hydro Accumulator
∆V V
p
p
p
p
=





 • −
















0
0
1
1
1
2
1
1
κ κ
κ
κ






















∆
−
=
1
1
0
0
1
2
1
p
p
V
V
p
p
V
V
p
p
p
p
0
0
1
1
1
2
1
1
=





 • −
















∆
κ κ
κ = 1,4 (adiabatic compression)
∆V = effective volume [l]
V0 = accumulator size [l]
p0 = gas filling pressure [bar]
p1 = service pressure min [bar] (pressure loss at the
valve)
p2 = service pressure max [bar]
p0 = <0,9*P1
Provide an accumulator in the pressure circuit for
pressure-controlled pumps!
Swivel time of pump tSA of the pump catalog.
SAtQV •=∆
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 41
Heat Exchanger (Oil - Water)
ETD t töl K= −
p
P
ETD
V
01 =
∆t
P
V
K
V
K
=
•14
Calculation of ∆tÖl is different, depending on the
respective hydraulic fluid.
VÖl = oil flow [l/min]
PV = dissipation power [kW]
tÖl = inlet temperature oil [°C]
∆tÖl = cooling of the oil [K]
tK = inlet temperature cooling water [°C]
∆tK = heating of the cooling water [K]
VK = cooling water flow [l/min]
ETD = inlet temperature difference [K]
p01 = spec. cooling capacity [kW/h]
HFA HLP/HFD HFC
∆t
P
V
öl
V
öl
=
•14 7,
∆t
P
V
öl
V
öl
=
•36
∆t
P
V
öl
V
öl
=
•17 2,
The size of the heat exchangers can be defined by the calculated value p01 of the diagrams of the
different manufacturers.
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 42
Example AB-Standards:
Sales Industry Sector Metallurgy
Formulary Hydraulics
10.01.2013 43
Layout of a Valve
The necessary volume flow can be calculated
based on the cylinder data as well as on the
extending – and retracting speeds.
P= PS system pr.-PLload pr.-P Treturn pressure
(Load pressure ≈
3
2
*System pressure)
At optimal efficiency
FT = load force [daN]
PS = system pressure [bar]
PT = return pressure [bar]
A1 = piston surface cm2
A2 = ring surface cm2
ϕ = aspect ratio cylinder
vmax = extending speed of the cylinder cm/s
 p1 and p2
)1(
)]()(
3
2
2
3
2
2
ϕ
ϕϕ
+
++
=
A
ApFAp
p TTS
bar
])[( 2
21 ϕpppp ST −+= bar
Verification of the cylinder dimensioning and
calculation of the nominal volume flow QN,
depending on the load pressure p1.
Q= 0,06•A2•vmax l/min
2pp
X
QQ
S
N
−
= l/min
X= 35 (Servo valve) pressure loss via a leading edge
X= 35 (Prop valve) pressure loss via a leading edge
(Prop valve with shell)
X= 5 (Prop valve) pressure loss via a leading edge
(Prop valve without shell)
Selection of a valve 10% larger than the
calculated nominal volume flow
Translation: Harm/March 16, 2011

Contenu connexe

Dernier

kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 

Dernier (20)

kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 

En vedette

How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationErica Santiago
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellSaba Software
 
Introduction to C Programming Language
Introduction to C Programming LanguageIntroduction to C Programming Language
Introduction to C Programming LanguageSimplilearn
 

En vedette (20)

How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 
Introduction to C Programming Language
Introduction to C Programming LanguageIntroduction to C Programming Language
Introduction to C Programming Language
 

Bosch Rexroth. Hydraulic Formulary.

  • 1. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 1 Hydraulic Formulary Author: Houman Hatami Tel.: +49-9352-18-1225 Fax: +49-9352-18-1293 houman.hatami@boschrexroth.de
  • 2. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 2 CONTENTS RELATIONS BETWEEN UNITS............................................................................................................. 4 IMPORTANT CHARACTERISTIC VALUES OF HYDRAULIC FLUIDS................................................ 6 GENERAL HYDRAULIC RELATIONS................................................................................................... 7 PISTON PRESSURE FORCE ...................................................................................................................... 7 PISTON FORCES ..................................................................................................................................... 7 HYDRAULIC PRESS................................................................................................................................. 7 CONTINUITY EQUATION ........................................................................................................................... 8 PISTION SPEED....................................................................................................................................... 8 PRESSURE INTENSIFIER.......................................................................................................................... 8 HYDRAULIC SYSTEM COMPONENT................................................................................................... 9 HYDRO PUMP ......................................................................................................................................... 9 HYDRO MOTOR....................................................................................................................................... 9 Hydro motor variable...................................................................................................................... 10 Hydro motor fixed........................................................................................................................... 11 Hydro motor intrinsic frequency ..................................................................................................... 12 HYDRO PISTON..................................................................................................................................... 13 Differential piston............................................................................................................................ 14 Double acting cylinder.................................................................................................................... 15 Cylinder in differential control......................................................................................................... 16 Cylinder intrinsic frequency at differential cylinder......................................................................... 17 Cylinder intrinsic frequency at double acting cylinder .................................................................... 18 Cylinder intrinsic frequency at plunger cylinder.............................................................................. 19 PIPING................................................................................................................................................... 20 APPLICATION EXAMPLES FOR SPECIFICATION OF THE CYLINDER PRESSURES AND VOLUME FLOWS UNDER POSITIVE AND NEGATIVE LOADS........................................................ 21 DIFFERENTIAL CYLINDER EXTENDING WITH POSITIVE LOAD..................................................................... 22 DIFFERENTIAL CYLINDER RETRACTING WITH POSITIVE LOAD ................................................................... 23 DIFFERENTIAL CYLINDER EXTENDING WITH NETAGIVE LOAD.................................................................... 24 DIFFERENTIAL CYLINDER RETRACTING WITH NEGATIVE LOAD.................................................................. 25 DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH POSITIVE LOAD .................................. 26 DIFFERENTIAL CYLINDER RETRACTING AT AN INCLINED PLANE WITH POSITIVE LOAD................................. 27 DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH NEGATIVE LOAD ................................ 28 DIFFERENTIAL CYLINDER RETRACTING AT AN LINCLINED PBLANE WITH NEGATIVE LOAD............................ 29 HYDRAULIC MOTOR WITH POSITIVE LOAD............................................................................................... 30 HYDRAULIC MOTOR WITH NEGATIVE LOAD.............................................................................................. 31 IDENTIFICATION OF THE REDUCED MASSES OF DIFFERENT SYSTEMS................................... 32 LINEARE DRIVES .................................................................................................................................. 33 Primary applications (Energy method) ........................................................................................... 33 Concentrated mass at linear movements....................................................................................... 35 Distributed mass at linear movements ........................................................................................... 36 ROTATION............................................................................................................................................ 37 COMBINATION OF LINEAR AND ROTATIONAL MOVEMENT.......................................................................... 38 HYDRAULIC RESISTANCES………………………………………………………………………………...39 ORIFICE EQUATION............................................................................................................................... 39 TROTTLE EQUATION.............................................................................................................................. 39
  • 3. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 3 HYDRO ACCUMULATOR .................................................................................................................... 40 HEAT EXCHANGER (OIL- WATER).................................................................................................... 41 LAYOUT OF A VALVE ......................................................................................................................... 43
  • 4. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 4 Relation between Units Size Unit Symbol Relation Lengths Micrometer Millimeter Centimeter Decimeter Meter Kilometer µm mm cm dm m km 1µm = 0,001mm 1mm = 0,1cm = 0,01dm = 0,001m 1cm = 10mm = 10.000µm 1dm = 10cm = 100mm = 100.000µm 1m = 10dm = 100cm = 1.000mm = 1.000.000µm 1km = 1.000m = 100.000cm = 1.000.000mm Surfaces Square centimeter Square decimeter Square meter Are Hectare Square kilometer cm2 dm2 m2 a ha km2 1cm2 = 100mm2 1dm2 = 100cm2 = 10.000mm2 1m2 = 100dm2 = 10.000cm2 = 1.000.000mm2 1a = 100m2 1ha = 100a = 10.000m2 1km2 = 100ha = 10.000a = 1.000.000m2 Volume Cubic centimeter Cubic decimeter Cubic meter Milliliter Liter Hectoliter cm3 dm3 m3 ml l hl 1cm3 = 1.000mm3 = 1ml = 0,001l 1dm3 = 1.000cm3 = 1.000.000mm3 1m3 = 1.000dm3 = 1.000.000cm3 1ml = 0,001l = 1cm3 1l = 1.000 ml = 1dm3 1hl = 100l = 100dm3 Density Gram/ Cubic centimeter g cm3 1 1 1 13 3 3 g cm kg dm t m g ml = = = Force Weight Newton N 1 1 12 N kg m s J m = • = 1daN = 10N Torque Newton meter Nm 1Nm = 1J Pressure Pascal Bar 2 inch pound psi = 2 cm kp Pa Bar Psi 1Pa = 1N/m2 = 0,01mbar = 1 2 kg m s• Pa m N cm N bar 5 22 10000.100101 === 1psi = 0,06895 bar bar cm kp 981,01 2 =
  • 5. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 5 Mass Milligram Gram Kilogram Ton Mega gram mg g kg t Mg 1mg = 0,001g 1g = 1.000mg 1kg = 1000g = 1.000.000 mg 1t = 1000kg = 1.000.000g 1Mg = 1t Acceleration Meter/ per square second m s2 1 12 m s N kg = 1g = 9,81 m/s2 Angular speed One/ Second Radiant/ Second 1 s rad s ω = 2•π•n n in 1/s Power Watt Newton meter/ second Joule/ second W Nm/s J/s 1 1 1 1 2 W Nm s J s kg m s m s = = = • • Work/ Energy Heat volume Watt second Newton meter Joule Kilowatt hour Kilo joule Mega joule Ws Nm J kWh kJ MJ 1Ws 1Nm 1 kg m s m 1J2 = = • • = 1kWh = 1.000 Wh = 1000•3600Ws = 3,6•106 Ws = 3,6•103 kJ = 3600kJ = 3,6MJ Mechanic tension Newton/ square millimeter N mm2 1 10 12 N mm bar MPa= = Plane angle Second Minute Degree Radiant ´´ ´ ° rad 1´´ = 1´/60 1´ = 60´´ 1° = 60´ = 3600 ´´= π 180° rad 1rad = 1m/m = 57,2957° 1rad = 180°/π Speed One/second One/minute 1/s 1/min 1 601 1 s s= =− − min 1 1 60 1 min min= =− s
  • 6. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 6 Important Characteristic Values of Hydraulic Fluids HLP HFC HFA (3%) HFD Density at 20°C [kg/m 3 ] 880 1085 1000 925 Kinematic Viscosity at 40°C [mm 2 /s] 10-100 36-50 0,7 15-70 Compressions Module E at 50°C [Bar] 12000-14000 20400-23800 15000- 17500 18000- 21000 Specific Heat at 20°C [kJ/kgK] 2,1 3,3 4,2 1,3-1,5 Thermal Conductivity at 20°C [W/mK] 0,14 0,4 0,6 0,11 Optimal Temperatures [°C] 40-50 35-50 35-50 35-50 Water Content [%] 0 40-50 80-97 0 Cavitation Tendency low high very high low
  • 7. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 7 General Hydraulic Relations Piston Pressure Force Figure Equation / Equation Variations Symbols / Units ApF ••=10 F p A= • •η • 10 A d = •2 4 π p F d • •• = π 1,04 2 4 1,0 d F p • • •= π F = piston pressure force[N] p = fluid pressure[bar] A = piston surface[cm2 ] d = piston diameter[cm] η = efficiency cylinder Piston Forces Figure Equation / Equation Variations Symbols / Units 10••= ApF e 10•••= ηApF e A d = •2 4 π A For annulus surface: A D d = − •( )2 2 4 π F = piston pressure force[N] pe = excess pressure on the piston[bar] A = effective piston surface[cm2 ] d = piston diameter[cm] η = efficiency cylinder Hydraulic Press Figure Equation / Equation Variations Symbols / Units F A F A 1 1 2 2 = F s F s1 1 2 2• = • 1 2 2 1 2 1 s s A A F F ===ϕ F1 = Force at the pump piston[N] F2 = Force at the operating piston[N] A1 = Surface of the pump piston [cm2 ] A2 = Surface of the operating piston [cm2 ] s1 = Stroke of the pump piston [cm] s2 = Stroke of the operating piston [cm] ϕ = Gear ratio
  • 8. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 8 Continuity Equation Figure Equation / Equation Variations Symbols / Units Q Q1 2= Q A v1 1 1= • Q A v2 2 2= • A v A v1 1 2 2• = • Q1,2 = Volume flows [cm3 /s, dm3 /s, m3 /s] A1,2 = Area surfaces [cm2 , dm2 , m2 ] v1,2 = Velocities [cm/s, dm/s, m/s] Piston Speed Figure Equation / Equation Variations Symbols / Units v Q A 1 1 1 = v Q A 2 2 2 = A d 1 2 4 = •π A D d 2 2 2 4 = − •( ) π v1,2 = Piston speed [cm/s] Q1,2 = Volume flow [cm3 /s] A1 = Effective piston surface (circle) [cm2 ] A2 = Effective piston surface (ring) [cm2 ] Pressure Intensifier Figure Equation / Equation Variations Symbols / Units p A p A1 1 2 2• = • p1 = Pressure in the small cylinder [bar] A1 = Piston surface [cm2 ] p2 = Pressure at the large cylinder [bar] A2 = Piston surface [cm2 ]
  • 9. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 9 Hydraulic System Components Hydro Pump Q V n vol = • •η 1000 [l/min] P p Q an ges = • •600 η [kW] M V p mh = • • • 159 100 , ∆ η [Nm] η η ηges vol mh= • Q = Volume flow [l/min] V = Nominal volume [cm3 ] n = Drive speed of the pump [min-1 ] Pan = Drive power [kW] p = Service pressure [bar] M = Drive torque [Nm] ηges = Total efficiency (0,8-0,85) ηvol = Volumetric efficiency (0,9-0,95) ηmh = Hydro-mechanic efficiency(0,9-0,95) Hydro Motor Q V n vol = • •1000 η n Q V vol = • •η 1000 2 1059,1 20 − ••∆••= • ••∆ = mh mh ab pV Vp M η π η P p Q ab ges = • •∆ η 600 Q = Volume flow [l/min] V = Nominal volume [cm3 ] n = Drive speed of the pump [min-1 ] ηges = Total efficiency (0,8-0,85) ηvol = Volumetric efficiency (0,9-0,95) ηmh = Hydro-mechanic efficiency (0,9-0,95) ∆p = Pressure difference between motor inlet and outlet (bar) Pab = Output power of the motor [kW] Mab = Output torque [Nm]
  • 10. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 10 Hydro Motor Variable M P n d = • 30000 π P M nd= • • π 30000 n P Md = • 30000 π M M i d d Getr = • max η n n i = max ∆p M V d g mh = • • 20π η Q V ng vol = • •1000 η Q V n P g vol = • •η 1000 P Q p ges = • • ∆ 600 η Md = Torque [Nm] P = Power [kW] n = Speed [min-1 ] Mdmax = Max torque [Nm] i = Gear ratio ηGetr = Gear efficiency ηmh = Mech./hydraulic efficiency ηvol = Vol. efficiency Vg = Flow volume [cm3 ]
  • 11. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 11 Hydro Motor Fixed M P n d = • 30000 π P M nd= • • π 30000 n P Md = • 30000 π M M i d d Getr = • max η n n i = max ∆p M V d g mh = • • 20π η Q V ng vol = • •1000 η Q V n P g vol = • •η 1000 P Q p ges = • • ∆ 600 η Md = Torque [Nm] P = Power [kW] n = Speed [min-1 ] Mdmax = Max torque [Nm] i = Gear ratio ηGetr = Gear efficiency ηmh = Mech./hydraulic efficiency ηvol = Vol. efficiency Vg = Flow volume [cm3 ]
  • 12. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 12 Hydro Motor Intrinsic Frequency ω π 0 2 2 2 2 = • • + E J V V Vred G G R ( ) ( ) f0 0 2 = ω π VG = Displacement [cm3 ] ω0 = Intrinsic angular frequency [1/s] f0 = Intrinsic frequency [Hz] Jred = Moment of inertia red. [kgm2 ] Eöl = 1400 N/mm2 VR = Volume of the line [cm3 ]
  • 13. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 13 Hydro Cylinder A d d = • = •1 2 1 2 400 0 785 100 π , [cm2 ] A d st = •2 2 0 785 100 , [cm2 ] A d d R = − •( ) ,1 2 2 2 0 785 100 [cm2 ] 10000 785,0 2 1 •• = dp FD [kN] F p d d z = • − •( ) ,1 2 2 2 0 785 10000 [kN] v h t Q A = • = •1000 6 [m/s] 606 •=••= t V vAQth [l/min] Q Qth vol = η . V A h = • 10000 [l] t A h Q = • • • 6 1000 [s] d1 = Piston diameter [mm] d2 = Piston rod diameter [mm] p = Service pressure [bar] v = Stroke speed [m/s] V = Stroke volume [l] Q = Volume flow, considering the leakages (l/min) Qth = Volume flow, without considering the leakages (l/min) ηvol = Volumetric efficiency (approx. 0,95) h = Stroke [mm] t = Stroke time [s] FD FZ FS
  • 14. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 14 Differential Cylinder d F p K D K = • • • 100 4 π p F d K D K = • • • 4 104 2 π p F d d St Z K St = • • • − 4 104 2 2 π ( ) dK = Piston diameter [mm] dst = Rod diameter [mm] FD = Pressure force [kN] Fz = Traction force [kN] pK = Pressure at the piston side [bar] ϕ = Aspect ratio QK = Volume flow piston side [l/min] QSt = Volume flow rod side [l/min] ϕ = − d d d K K St 2 2 2 ( ) Q v dK a K= • • • 6 400 2π Q v d dSt e K St= • • • − 6 400 2 2π ( ) v Q d d e St K St = • − 6 400 2 2π ( ) v Q d a K K = • 6 400 2π Vol d hp St= • • • π 4 106 2 Vol h d dF K St= • • • − π 4 106 2 2 ( ) va = Extending speed [m/s] ve = Retracting speed [m/s] Volp = Working volume [l] VolF = Fill-up volume [l] h = Stroke [mm]
  • 15. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 15 Double Acting Cylinder p F d d A A K StA = • • − 4 104 2 2 π ( ) p F d d B B K StB = • • − 4 104 2 2 π ( ) Q v d dA a K StA= • • • − 6 400 2 2π ( ) Q v d dB b K StB= • • • − 6 400 2 2π ( ) v Q d d e St K St = • − 6 400 2 2π ( ) v Q d a K K = • 6 400 2π Vol d hp St= • • • π 4 106 2 Vol h d dFA K StA= • • • − π 4 106 2 2 ( ) Vol h d dFB K StB= • • • − π 4 106 2 2 ( ) dK = Piston diameter [mm] dstA = Rod diameter A-side [mm] dstB = Rod diameter B-side [mm] FA = Force A [kN] FB = Force B [kN] pA = Pressure at the A-side [bar] pB = Pressure at the B-side [bar] QA = Volume flow A-side [l/min] QB = Volume flow B-side [l/min] va = Speed a [m/s] vb = Speed b [m/s] Volp = Compensating volume [l] VolFA = Fill-up volume A [l] VolFB = Fill-up volume B [l]
  • 16. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 16 Cylinder in Differential Control St D st p F d • • •= π 4 100 p F d K D St = • • • 4 104 2 π p F d d St Z K St = • • • − 4 104 2 2 π ( ) Q v da St= • • • 6 400 2π dK = Piston diameter [mm] dst = Rod diameter [mm] FD = Pressure force [kN] Fz = Traction force [kN] pK = Pressure at the piston side [bar] pSt = Pressure at the rod side [bar] h = Stroke [mm] QK = Volume flow piston side [l/min] QSt = Volume flow rod side [l/min] Extension: v Q d a P St = • 6 400 2π Q Q d d K P K St = • 2 2 Q Q d d d St P K St St = • −( ) 2 2 2 Retraction: v Q d d e P K St = • − 6 400 2 2π ( ) QSt=QP Q Q d d d K P K K St = • − 2 2 2 ( ) Vol d hp St= • • • π 4 106 2 Vol h d dF K St= • • • − π 4 106 2 2 ( ) QP = Pump flow [l/min] va = Extending speed [m/s] ve = Retracting speed [m/s] Volp = Working volume [l] VolF = Fill-up volume [l]
  • 17. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 17 Cylinder Intrinsic Frequency at Differential Cylinders A d K K = 2 4 100 π A d d R K St = −( ) 2 2 4 100 π V d L RK RK K = • 2 4 1000 π V d L RSt RSt St = • 2 4 1000 π m V RK RK Öl = • ρ 1000 m V RSt RSt öl = • ρ 1000 ) 11 ( 333 KR K RK R RSt R R k AA A V A V A hA h +         −+ • = ) 10 )( 10 ( 1 22 0 RSt KR ÖlR RK KK ÖLK V hhA EA V hA EA m + −• • + + • • •=ω f0 0 2 = ω π m m d d m d A ölred RK K RK RSt RSt R =       + •      4 1 400 π AK = Piston surface [cm2 ] AR = Piston ring surface [cm2 ] dK = Piston diameter [mm] dSt = Piston rod diameter [mm] dRK = NW- piston side [mm] LK = Length of piston side [mm] dRSt = NW-rod side [mm] LSt = Length of rod side [mm] h = Stroke [cm] VRK = Volume of the line piston side [cm3 ] VRSt = Volume of the line rod side [cm3 ] mRK = Mass of the oil in the line piston side [kg] mRSt = Mass of the oil in the line rod side [kg] hK = Position at min intrinsic frequency [cm] f0 = Intrinsic frequency [Hz] 0ω = Angular frequency ω ω01 0= • + m m m red ölred red f01 01 2 = ω π
  • 18. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 18 Cylinder Intrinsic Frequency at Double Acting Cylinders A d d R K St = −( ) 2 2 4 100 π V d L R RK K = • 2 4 1000 π m V R R öl = • ρ 1000 ω0 2 100 2 10 = • • • • + E m A A h V öl red R R RSt ( ) Equation applies only to the middle position of the double rod cylinder Natural frequency of any position can be calculated using the equation for the differential cylinder (as shown on page 17, however AK = AR) f0 0 2 = ω π m m d A ölred RK R R = • •     2 1 400 4 π ω ω01 0= • + m m m red ölred red f01 01 2 = ω π AR = Piston ring surface [cm2 ] dK = Piston diameter [mm] dSt = Piston rod diameter [mm] dR = NW [mm] LK = Length of the piston side [mm] h = Stroke [mm] VR = Volume of the line [cm3 ] mR = Mass of the oil in the line [kg] f0 = Intrinsic frequency 0ω = Angular frequency
  • 19. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 19 Cylinder Intrinsic Frequency for Plunger Cylinders A d K K = 2 4 100 π V d L R K K = • 2 4 1000 π m V R R öl = • ρ 1000 )(100 2 0 RStK K red öl VhA A m E +• ••=ω f0 0 2 = ω π m m d d ölred R K R = •      2 4 ω ω01 0= • + m m m red ölred red f01 01 2 = ω π AK = Piston surface [cm2 ] dK = Piston diameter [mm] dR = Diameter of the piping [mm] LK = Length piston side [mm] LR = Length of the line [mm] h = Stroke [mm] VR = Volume of the line [cm3 ] MR = Mass of the oil in the line [kg] f0 = Intrinsic frequency 0ω = Angular frequency
  • 20. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 20 Piping ∆p l v d = • • • • • λ ρ 2 10 2 λlam. Re = 64 4. Re 316,0 =turbλ Re = • • v d υ 103 v Q d = • • • 6 4 10 2 2 π d Q v = • • 400 6 π ∆p = Pressure loss at direct piping [bar] ρ = Density [kg/dm3 ] (0,89) λ = Pipe friction coefficient λlam. = Pipe friction coefficient for laminar flow λturb. = Pipe friction coefficient for turbulent flow l = Length of the line [m] v = Velocity in the line [m/s] d = Internal diameter of the piping [mm] ν = Kinematic viscosity [mm2 /s] Q = Volume flow in the piping [l/min]
  • 21. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 21 Application Examples for Specification of the Cylinder Pressures and Volume Flows under Positive and Negative Load Nomenclature Parameters Symbols Units Acceleration / deceleration A m/s2 Cylinder surface A1 cm2 Ring surface A2 cm2 Aspect ratio ϕ=A1/A2 - Total force FT daN Acceleration force Fa=0,1•m•a daN External forces FE daN Friction forces (coulomb friction) FC daN Sealing friction force FR daN Weight force G daN Mass m G g mK= + kg Piston mass mK kg Volume flow Q=0,06•A•vmax vmax l/min cm/s Torque T=α•J+ TL Nm Load torque TL Nm Angular acceleration α rad/s2 Inertia moment J kgm2
  • 22. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 22 Differential Cylinder Extending with Positive Load Layout: FT = Fa+FR+FC+FE [daN] Given Parameters FT = 4450 daN PS = 210 bar PT = 5,25 bar A1 = 53,50 cm2 A2 = 38,10 cm2 ϕ = 1,40 vmax = 30,00 cm/s ==> p1 und p2 )1( )]([ 3 2 2 2 2 1 ϕ+ ++ = A ApFRAp p TTS bar 2 1 2 ϕ pp pp S T − += bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A1•vmax l/min Q Q p p N S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar1 2 3 210 38 1 1 4 4450 5 25 38 1 38 1 1 1 4 120= • + + • + = , , [ ( , , )] , ( , ) p bar2 2 5 25 210 120 1 4 52= + − =, , Q= 0,06•53,5•30=96 l/min Q lN = − =96 35 210 120 60 / min
  • 23. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 23 Differential Cylinder Retracting with Positive Load Layout: FT = Fa+FR+FC+FE [daN] Given Parameters FT = 4450 daN PS = 210 bar PT = 5,25 bar A1 = 53,50 cm2 A2 = 38,10 cm2 ϕ = 1,40 vmax = 30,00 cm/s ==> p1 und p2 )1( )]()( 3 2 2 3 2 2 ϕ ϕϕ + ++ = A ApFAp p TTS bar ])[( 2 21 ϕpppp ST −+= bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A2•vmax l/min Q Q p p N S = − 35 2 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar2 2 3 210 381 14 4450 5 25 381 14 381 1 14 187= • • + + • • + = ( , , ) ( , , , )] , ( , ) p bar1 2 5 25 210 187)1 4 52= + − =, [( , ] Q= 0,06•38,1•30=69 l/min Q lN = − =96 35 210 187 84 / min
  • 24. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 24 Differential Cylinder Extending with Negative Load Layout: FT = Fa+FR-G [daN] Given Parameters FT = -2225 daN PS = 175 bar PT = 0 bar A1 = 81,3 cm 2 A2 = 61,3 cm 2 ϕ = 1,3 vmax = 12,7 cm/s ==> p1 und p2 )1( )]([ 3 2 2 2 2 1 ϕ ϕ + ++ = A ApFAp p TTS bar 2 1 2 ϕ pp pp S T − += bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A1•vmax l/min Q Q p p N S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar1 2 3 175 61 3 1 3 2225 0 61 3 61 3 1 1 3 36= • + − + • + = , , [ ( , )] , ( , ) p bar2 2 0 175 36 1 3 82= + − = , Q= 0,06•81,3•12,7=62 l/min Q lN = − =62 35 175 36 31 / min
  • 25. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 25 Differential Cylinder Retracting with Negative Load Layout: FT = Fa+FR-G [daN] Given Parameters FT = -4450 daN PS = 210 bar PT = 0 bar A1 = 81,3 cm 2 A2 = 61,3 cm 2 ϕ = 1,3 vmax = 25,4 cm/s ==> p1 und p2 )1( )]()( 3 2 2 3 2 2 ϕ ϕϕ + ++ = A ApFAp p TTS bar ])[( 2 21 ϕpppp ST −+= bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A2•vmax l/min Q Q p p N S = − 35 2 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar2 2 3 210 613 13 4450 0 613 13 613 1 13 122= • + − + • • + = ( , , ) ( , , )] , ( , ) p bar1 0 210 122 149= + − =[( )] Q= 0,06•61,3•25,4=93 l/min Q lN = − =93 35 210 122 59 / min
  • 26. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 26 Differential Cylinder Retracting at an Inclined Plane with Positive Load Layout: FT = Fa+FE+FS+[G•(µ•cosα+sinα)] daN Given Parameters FT = 2225 daN PS = 140 bar PT = 3,5 bar A1 = 31,6 cm 2 A2 = 19,9 cm 2 ϕ = 1,6 vmax = 12,7 cm/s ==> p1 and p2 )1( )]([ 3 2 2 2 2 1 ϕ ϕ + ++ = A ApFAp p TS bar 2 1 2 ϕ pp pp S T − += bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A1•vmax l/min Q Q p p N S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar1 2 3 140 19 9 16 2225 35 19 9 19 9 1 16 85= • + + • + = ( , ) , [ ( , , )] , ( , ) p bar2 2 35 140 85 1 6 25= + − = , Q= 0,06•31,6•12,7=24 l/min QN = − =24 35 140 85 19 l/min
  • 27. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 27 Differential Cylinder Retracting at an Inclined Plane with Positive Load Layout: FT =Fa+FE+FS+[G•(µ•cosα+sinα)] daN Given Parameters FT = 1780 daN PS = 140 bar PT = 3,5 bar A1 = 31,6 cm 2 A2 = 19,9 cm 2 ϕ = 1,6 vmax = 12,7 cm/s ==> p1 and p2 )1( )]()( 3 2 2 3 2 2 ϕ ϕϕ + ++ = A ApFAp p TS bar ])[( 2 21 ϕpppp ST −+= bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A2•vmax l/min Q Q p p N S = − 35 2 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar2 3 3 140 19 9 16 1780 35 19 9 16 19 9 1 16 131= • • + + • • + = ( , , ) [ , , , )] , ( , ) p bar1 2 3 5 140 131 1 6 26= + − • =, [( ) , Q= 0,06•19,9•12,7=15 l/min QN = − =15 35 140 131 30 l/min
  • 28. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 28 Differential Cylinder Extending at an Inclined Plane with Negative Load Layout: FT = Fa+FE+FR+[G•(µ•cosα-sinα)] daN Given Parameters FT = -6675 daN PS = 210 bar PT = 0 bar A1 = 53,5 cm 2 A2 = 38,1 cm 2 ϕ = 1,4 vmax = 25,4 cm/s ==> p1 und p2 )1( )]([ 3 2 2 2 2 1 ϕ ϕ + ++ = A ApFAp p TS bar 2 1 2 ϕ pp pp S T − += bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A1•vmax l/min Q Q p p N S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar1 2 3 210 106 12 6675 0 106 106 1 14 131= • + − + • + = ( ) , [ ( )] ( , ) Caution!!! Negative load is leading to cylinder cavitation. Specified parameters to be changed by means of using a larger cylinder size, increasing the system pressure or reducing the necessary total force. A1 = 126 cm 2 A2 = 106 cm 2 R=1,2 p bar2 2 210 44 1 2 116= − = , Q= 0,06•126•25,4=192 l/min QN = − =192 35 210 44 88 l/min
  • 29. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 29 Differential Cylinder Retracting at an Inclined Plane with Negative Load Layout: F = Fa+FE+FR+[G•(µ•cosα-sinα)] daN Given Parameters F = -6675 daN PS = 210 bar PT = 0 bar A1 = 53,5 cm 2 A2 = 38,1 cm 2 ϕ = 1,4 vmax = 25,4 cm/s ==> p1 and p2 )1( )]()( 3 2 2 3 2 2 ϕ ϕϕ + ++ = A ApFAp p TS bar ])[( 2 21 ϕpppp ST −+= bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p2. Q= 0,06•A2•vmax l/min Q Q p p N S = − 35 2 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar2 3 3 210 381 14 6675 0 381 14 381 1 14 107= • • + − + • • + = ( , , ) [ ( , , )] , ( , ) p bar1 2 0 210 107 1 4 202= + − • =[( ) , ] Q= 0,06•38,1•25,4=58 l/min QN = − =58 35 210 107 34 l/min
  • 30. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 30 Hydraulic Motor with a Positive Load Layout: T = α•J+TL [Nm] Given Parameters T = 56,5 Nm PS = 210 bar PT = 0 bar DM = 82 cm 3 /rad ωM = 10 rad/s ==> p1 and p2 p p p T D S T M 1 2 10 = + + π bar p p p pS T2 1= − + bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. QM= 0,01•ωM•DM l/min Q Q p p N M S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p bar1 210 0 2 10 56 5 82 127= + + • • = π , p bar2 210 127 0 83= − + = QM= 0,01•10•82=8,2 l/min QN = − =8 2 35 210 127 5 3, , l/min
  • 31. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 31 Hydraulic Motor with a Negative Load Layout: T = α•J-TL [Nm] Given Parameters T = -170 Nm PS = 210 bar PT = 0 bar DM = 82 cm 3 /rad ωM = 10 rad/s ==> p1 and p2 p p p T D S T M 1 2 10 = + + π bar p p p pS T2 1= − + bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. QM= 0,01•ωM•DM l/min Q Q p p N M S = − 35 1 l/min Selection of a Servo valve 10% larger than the calculated nominal volume flow. Calculation: p1 210 0 2 10 170 82 40bar= + + • • − = π ( ) p2 210 40 0 170bar= − + = QM= 0,01•10•82=8,2 l/min QN = − =8 2 35 210 40 3 6, , l/min
  • 32. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 32 Identification of the Reduced Masses of Different Systems The different components (cylinder / motors …) have to be dimensioned for the layout of the necessary forces of a hydraulic system, so that the acceleration and the deceleration of a mass is correct and targeted. The mechanics of the system are defining the stroke of the cylinders and motors. Speed- and force calculations have to be carried out. Statements with view to acceleration and its effects on the system can be made by fixing the reduced mass of a system. The reduced mass (M) is a concentrated mass, exerting the same force – and acceleration components as the regular mass at the correct system. The reduced moment of inertia (Ie) has to be considered for rotational systems. The reduced mass has to be fixed in a first step for considerations with stroke measuring systems or for applications with deceleration of a mass! Newton’s second axiom is used for the specification of the acceleration forces. F m a= • F= force [N] m= mass [kg] a= acceleration [m/s2 ] The following equation is applied for rotational movements: Γ = • ′′I θ Γ = torque [Nm] Í= moment of inertia [kgm2 ] ′′θ = angular acceleration [rad/s2 ]
  • 33. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 33 Linear Drives Primary Applications (Energy Method) The mass is a concentrated mass and the rod l is weightless. The cylinder axis is positioned rectangular to the rod l. Relation between cylinder and rod: ′ = =θ v r v l c m ′′ = =θ a r a l c m Needed torque for acceleration of the mass: Γ = ′′ = •IX F rθ = • ′′m l X2 θ I m l= • 2 = •m l X a l m2 ′′ =θ a l m = •m lXam ==> F m l a r m i am m= • • = • • i l r = m•i can be considered as mass movement m. F m i a m i l a r m i a M am c c c= • • = • • • = • • = •2 mit a r a l c m = F= cylinder force M= reduced mass ac= acceleration of the cylinder rod General validity: M m i= • 2 The same result can be obtained by the aid of the energy method (kinetic energy of the mass m). The dependence of the mass movement with the cylinder movement can be specified with the help of the geometry of the system. Energy of the mass: KE I m l= • ′ = • • ′ 1 2 1 2 2 2 2 θ θ (I=m•i2 )
  • 34. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 34 = • •       1 2 2 2 m l v r c (vc=r• ′θ ) = • • 1 2 2 2 2 m l r vc = 1 2 2 M vc• M=m•i 2 and i=l/r
  • 35. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 35 Concentrated Mass with Linear Movements v is the horizontal component of v´. v´ is positioned rectangular to rod l. Energy method: KE I m l= • ′ = • • ′ 1 2 1 2 2 2 2 θ θ = • • ′      1 2 2 2 m l v r ( ′θ =v´/r) = • • ′ 1 2 2 2 2 m l r v = 1 2 2 2 m i v• • ′ with v=v´•cosα ==> KE m i v= • • ′ 1 2 2 2 = • • = • 1 2 1 2 2 2 2 2m i v M v (cos )α with M m i = 2 2 (cos )α ==> M is position-depending If: α= 0 then, α=1 and M=mi2 α=90° then, cosα=0 and M=∝ α=30° then, cosα=±0,866 and 75,0 2 i mM =α If a cylinder is moving a mass, as shown in the preceding figure, and the movement is situated between -30° and +30°, the acceleration- and deceleration forces have to be calculated in the center of motion with a reduced mass, twice as large as the one in the neutral center.
  • 36. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 36 Distributed Mass at Linear Movements When considering the same rod l with the mass m, you can here also calculate the reduced mass of the rod. KE I X m l= • ′ = • • • ′ 1 2 1 2 1 3 2 2 2 θ θ 1 3 2 • •m l = • • • ′      1 2 1 3 2 2 X m l v r ( ′θ =v´/r) = • • • ′ 1 2 1 3 2 2 2 X m l r v = 1 2 1 3 2 2 X m i v• • • ′ with v=v´•cosα = • • • • = • • 1 2 1 3 1 3 2 2 2 2 X m i a v M v (cos ) M m i a = • •1 2 2 2 (cos )
  • 37. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 37 Rotation If considering now a rotating mass with a moment of inertia I, driven by a motor (ratio D/d). KE I I d D m= • ′ = • ′• 1 2 1 2 2 2 θ θ( ) I= moment of inertia [kgm2 ] = •       • ′ 1 2 2 2 I d D θ ′θ = angular acceleration [rad/s2 ] = • • ′ 1 2 2 2 I i θ = 1 2 2 Ie • ′θ Ie= I•i2 i=d/D If a gearbox has to be used, i has to be considered. If i=D/d, then Ie=I/i 2
  • 38. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 38 Combination of Linear and Rotational Movement A mass m is here moved by a wheel with radius r. The wheel is weightless. KE m v= • 1 2 2 ( )= • • ′ 1 2 2 m r θ v=r• ′θ = • • ′ 1 2 2 2 m r θ = 1 2 2 Ie • ′θ Ie= m•r 2
  • 39. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 39 Hydraulic Resistances The resistance of an area reduction is the change of the applied pressure difference ∆pto the corresponding volume flow change. dQ pd R )(∆ = Orifice Equation ρ π α pd Q B KBlende ∆• • • ••= 2 4 6,0 2 αK = flow coefficient (0,6-0,8) ρ = 0,88 [kg/dm3 ] dB = orifice diameter [mm] ∆ p = pressure difference [bar] Qorifice= [l/min] Throttle Equation Q r l p pDrossel = • • • • − π η 4 1 2 8 ( ) η=ρ•ν Qthrottle= [m3 /s] η = dynamic viscosity [kg/ms] l = throttle length [m] r = radius [m] ν = kinematic viscosity [m2 /s] ρ = 880 [kg/m3 ]
  • 40. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 40 Hydro Accumulator ∆V V p p p p =       • −                 0 0 1 1 1 2 1 1 κ κ κ κ                       ∆ − = 1 1 0 0 1 2 1 p p V V p p V V p p p p 0 0 1 1 1 2 1 1 =       • −                 ∆ κ κ κ = 1,4 (adiabatic compression) ∆V = effective volume [l] V0 = accumulator size [l] p0 = gas filling pressure [bar] p1 = service pressure min [bar] (pressure loss at the valve) p2 = service pressure max [bar] p0 = <0,9*P1 Provide an accumulator in the pressure circuit for pressure-controlled pumps! Swivel time of pump tSA of the pump catalog. SAtQV •=∆
  • 41. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 41 Heat Exchanger (Oil - Water) ETD t töl K= − p P ETD V 01 = ∆t P V K V K = •14 Calculation of ∆tÖl is different, depending on the respective hydraulic fluid. VÖl = oil flow [l/min] PV = dissipation power [kW] tÖl = inlet temperature oil [°C] ∆tÖl = cooling of the oil [K] tK = inlet temperature cooling water [°C] ∆tK = heating of the cooling water [K] VK = cooling water flow [l/min] ETD = inlet temperature difference [K] p01 = spec. cooling capacity [kW/h] HFA HLP/HFD HFC ∆t P V öl V öl = •14 7, ∆t P V öl V öl = •36 ∆t P V öl V öl = •17 2, The size of the heat exchangers can be defined by the calculated value p01 of the diagrams of the different manufacturers.
  • 42. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 42 Example AB-Standards:
  • 43. Sales Industry Sector Metallurgy Formulary Hydraulics 10.01.2013 43 Layout of a Valve The necessary volume flow can be calculated based on the cylinder data as well as on the extending – and retracting speeds. P= PS system pr.-PLload pr.-P Treturn pressure (Load pressure ≈ 3 2 *System pressure) At optimal efficiency FT = load force [daN] PS = system pressure [bar] PT = return pressure [bar] A1 = piston surface cm2 A2 = ring surface cm2 ϕ = aspect ratio cylinder vmax = extending speed of the cylinder cm/s  p1 and p2 )1( )]()( 3 2 2 3 2 2 ϕ ϕϕ + ++ = A ApFAp p TTS bar ])[( 2 21 ϕpppp ST −+= bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06•A2•vmax l/min 2pp X QQ S N − = l/min X= 35 (Servo valve) pressure loss via a leading edge X= 35 (Prop valve) pressure loss via a leading edge (Prop valve with shell) X= 5 (Prop valve) pressure loss via a leading edge (Prop valve without shell) Selection of a valve 10% larger than the calculated nominal volume flow Translation: Harm/March 16, 2011