SlideShare une entreprise Scribd logo
1  sur  18
Linear algebra: matrix Eigen-value
Problems
Eng. Shubham Kumbhar
Part 3
Eigenvalue Problems
1. Eigenvalues and eigenvectors
2. Vector spaces
3. Linear transformations
4. Matrix diagonalization
The Eigenvalue Problem
Consider a nxn matrix A
Vector equation: Ax = λx
» Seek solutions for x and λ
» λ satisfying the equation are the eigenvalues
» Eigenvalues can be real and/or imaginary; distinct and/or
repeated
» x satisfying the equation are the eigenvectors
Nomenclature
» The set of all eigenvalues is called the spectrum
» Absolute value of an eigenvalue:
» The largest of the absolute values of the eigenvalues is
called the spectral radius
22
baiba jj +=⇒+= λλ
Determining Eigenvalues
Vector equation
» Ax = λx  (A-λΙ)x = 0
» A-λΙ is called the characteristic matrix
Non-trivial solutions exist if and only if:
» This is called the characteristic equation
Characteristic polynomial
» nth-order polynomial in λ
» Roots are the eigenvalues {λ1, λ2, …, λn}
0)det(
21
22221
11211
=
−
−
−
=−
λ
λ
λ
λ
nnnn
n
n
aaa
aaa
aaa




IA
Eigenvalue Example
Characteristic matrix
Characteristic equation
Eigenvalues: λ1 = -5, λ2 = 2






−−
−
=





−





−
=−
λ
λ
λλ
43
21
10
01
43
21
IA
0103)3)(2()4)(1( 2
=−+=−−−−=− λλλλλIA
Eigenvalue Properties
Eigenvalues of A and AT
are equal
Singular matrix has at least one zero eigenvalue
Eigenvalues of A-1
: 1/λ1, 1/λ2, …, 1/λn
Eigenvalues of diagonal and triangular matrices are
equal to the diagonal elements
Trace
Determinant
∑=
=
n
j
jTr
1
)( λA
∏=
=
n
j
j
1
λA
Determining Eigenvectors
First determine eigenvalues: {λ1, λ2, …, λn}
Then determine eigenvector corresponding to
each eigenvalue:
Eigenvectors determined up to scalar multiple
Distinct eigenvalues
» Produce linearly independent eigenvectors
Repeated eigenvalues
» Produce linearly dependent eigenvectors
» Procedure to determine eigenvectors more complex (see
text)
» Will demonstrate in Matlab
0)(0)( =−⇒=− kk xIAxIA λλ
Eigenvector Example
Eigenvalues
Determine eigenvectors: Ax = λx
Eigenvector for λ1 = -5
Eigenvector for λ1 = 2






−
=




−
=⇒
=+
=+
3
1
or
9487.0
3162.0
03
026
11
21
21
xx
xx
xx






=





=⇒
=−
=+−
1
2
or
4472.0
8944.0
063
02
22
21
21
xx
xx
xx
2
5
43
21
2
1
=
−=






−
=
λ
λ
A
0)4(3
02)1(
43
2
21
21
221
121
=+−
=+−
⇒
=−
=+
xx
xx
xxx
xxx
λ
λ
λ
λ
Matlab Examples
>> A=[ 1 2; 3 -4];
>> e=eig(A)
e =
2
-5
>> [X,e] = eig(A)
X =
0.8944 -0.3162
0.4472 0.9487
e =
2 0
0 -5
>> A=[2 5; 0 2];
>> e=eig(A)
e =
2
2
>> [X,e]=eig(A)
X =
1.0000 -1.0000
0 0.0000
e =
2 0
0 2
Vector Spaces
Real vector space V
» Set of all n-dimensional vectors with real elements
» Often denoted Rn
» Element of real vector space denoted
Properties of a real vector space
» Vector addition
» Scalar multiplication
V∈x
0aawvuwvu
a0aabba
=−+++=++
=++=+
)()()(
aaaaa
aababa
=+=+
=+=+
1)(
)()()(
kckc
ckkcccc
Vector Spaces cont.
Linearly independent vectors
» Elements:
» Linear combination:
» Equation satisfied only for cj = 0
Basis
» n-dimensional vector space V contains exactly n linearly
independent vectors
» Any n linearly independent vectors form a basis for V
» Any element of V can be expressed as a linear
combination of the basis vectors
Example: unit basis vectors in R3
021 =+++ (m)(2)(1) aaa mccc 
V∈(m)(2)(1) aaa ,,, 










=










+










+










=++=
3
2
1
3213321
1
0
0
0
1
0
0
0
1
c
c
c
cccccc )((2)(1) aaax
Inner Product Spaces
Inner product
Properties of an inner product space
Two vectors with zero inner product are called orthogonal
Relationship to vector norm
» Euclidean norm
» General norm
» Unit vector: ||a|| = 1
∑=
+++==⋅==
n
k
nnkk
T
babababa
1
2211),( bababa
0ifonlyandif0),(0),(
),(),(
),(),(),( 2121
==≥
=
+=+
aaaaa
acca
cbcacba qqqq
22
2
2
1),( n
T
aaa +++=== aaaaa
babababa +≤+≤),(
Linear Transformation
Properties of a linear operator F
» Linear operator example: multiplication by a matrix
» Nonlinear operator example: Euclidean norm
Linear transformation
Invertible transformation
» Often called a coordinate transformation
)()()()()( xxxvxv cFcFFFF =+=+
Axy
A
yx
=
∈
∈∈
tionTransforma
Operator
,Elements
xnm
mn
R
RR
yAx
Axy
Ayx
1
x
tionTransformaInverse
tionTransforma
,,Dimensions
−
=
=
∈∈∈ nnnn
RRR
Orthogonal Transformations
Orthogonal matrix
» A square matrix satisfying: AT
= A-1
» Determinant has value +1 or -1
» Eigenvalues are real or complex conjugate pairs with
absolute value of unity
» A square matrix is orthonormal if:
Orthogonal transformation
» y = Ax where A is an orthogonal matrix
» Preserves the inner product between any two vectors
» The norm is also invariant to orthogonal transformation
bavuAbvAau ⋅=⋅⇒== ,



=
≠
=
kj
kj
k
T
j
if1
if0
aa
vbua ==
Similarity Transformations
Eigenbasis
» If a nxn matrix has n distinct eigenvalues, the
eigenvectors form a basis for Rn
» The eigenvectors of a symmetric matrix form an
orthonormal basis for Rn
» If a nxn matrix has repeated eigenvalues, the
eigenvectors may not form a basis for Rn
(see text)
Similar matrices
» Two nxn matrices are similar if there exists a
nonsingular nxn matrix P such that:
» Similar matrices have the same eigenvalues
» If x is an eigenvector of A, then y = P-1
x is an
eigenvector of the similar matrix
APPA 1ˆ −
=
Matrix Diagonalization
Assume the nxn matrix A has an eigenbasis
Form the nxn modal matrix X with the eigenvectors
of A as column vectors: X = [x1, x2, …, xn]
Then the similar matrix D = X-1
AX is diagonal with
the eigenvalues of A as the diagonal elements
Companion relation: XDX-1
= A












==⇒












= −
nnnnn
n
n
aaa
aaa
aaa
λ
λ
λ








00
00
00
2
1
1
21
22221
11211
AXXDA
Matrix Diagonalization Example
[ ]





−
=




−





 −
==






−





−




 −
==





 −
=





−
==






==





−
=−=





−
=
−
−
−
20
05
215
45
13
21
7
1
13
21
43
21
13
21
7
1
13
21
7
1
13
21
1
2
,2
3
1
,5
43
21
1
1
1
21
2211
AXXD
AXXD
XxxX
xxA λλ
Matlab Example
>> A=[-1 2 3; 4 -5 6; 7 8 -9];
>> [X,e]=eig(A)
X =
-0.5250 -0.6019 -0.1182
-0.5918 0.7045 -0.4929
-0.6116 0.3760 0.8620
e =
4.7494 0 0
0 -5.2152 0
0 0 -14.5343
>> D=inv(X)*A*X
D =
4.7494 -0.0000 -0.0000
-0.0000 -5.2152 -0.0000
0.0000 -0.0000 -14.5343

Contenu connexe

Tendances

Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
Riddhi Patel
 
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Christopher Gratton
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
Matthew Leingang
 

Tendances (20)

Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Matrix Algebra seminar ppt
Matrix Algebra seminar pptMatrix Algebra seminar ppt
Matrix Algebra seminar ppt
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Rank nullity theorem
Rank nullity theoremRank nullity theorem
Rank nullity theorem
 
Application of eigen value eigen vector to design
Application of eigen value eigen vector to designApplication of eigen value eigen vector to design
Application of eigen value eigen vector to design
 
Rank of a matrix
Rank of a matrixRank of a matrix
Rank of a matrix
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Maths
MathsMaths
Maths
 
Eigen value and vectors
Eigen value and vectorsEigen value and vectors
Eigen value and vectors
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
Application of matrices in real life and matrix
Application of matrices in real life and matrixApplication of matrices in real life and matrix
Application of matrices in real life and matrix
 
Diagonalization
DiagonalizationDiagonalization
Diagonalization
 

Similaire à Eigen values and eigen vectors engineering

CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPTCLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
05092000
 
linear equation in two variable.pptx
linear equation in two variable.pptxlinear equation in two variable.pptx
linear equation in two variable.pptx
KirtiChauhan62
 

Similaire à Eigen values and eigen vectors engineering (20)

Linear Algebra
Linear AlgebraLinear Algebra
Linear Algebra
 
Eigenvalue eigenvector slides
Eigenvalue eigenvector slidesEigenvalue eigenvector slides
Eigenvalue eigenvector slides
 
Power method
Power methodPower method
Power method
 
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Matrix_PPT.pptx
Matrix_PPT.pptxMatrix_PPT.pptx
Matrix_PPT.pptx
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
 
DOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdfDOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdf
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Null space and rank nullity theorem
Null space and rank nullity theoremNull space and rank nullity theorem
Null space and rank nullity theorem
 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear Algebra
 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
 
Ch05 1
Ch05 1Ch05 1
Ch05 1
 
SVD-1 (1).pdf
SVD-1 (1).pdfSVD-1 (1).pdf
SVD-1 (1).pdf
 
Matlab eig
Matlab eigMatlab eig
Matlab eig
 
CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPTCLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
CLASS 9 LINEAR EQUATIONS IN TWO VARIABLES PPT
 
Matrices
MatricesMatrices
Matrices
 
linear equation in two variable.pptx
linear equation in two variable.pptxlinear equation in two variable.pptx
linear equation in two variable.pptx
 
Tutorial on EM algorithm – Part 1
Tutorial on EM algorithm – Part 1Tutorial on EM algorithm – Part 1
Tutorial on EM algorithm – Part 1
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 

Plus de shubham211 (6)

Renewable Energy Sources
Renewable Energy SourcesRenewable Energy Sources
Renewable Energy Sources
 
Top 20 figures of speech
Top 20 figures of speechTop 20 figures of speech
Top 20 figures of speech
 
Republic day speeches India
Republic day speeches IndiaRepublic day speeches India
Republic day speeches India
 
06 laser-basics
06 laser-basics06 laser-basics
06 laser-basics
 
Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II) Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II)
 
Grounding for BASIC ELECTRICAL ENGINEERING
Grounding for BASIC ELECTRICAL ENGINEERINGGrounding for BASIC ELECTRICAL ENGINEERING
Grounding for BASIC ELECTRICAL ENGINEERING
 

Dernier

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 

Dernier (20)

Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 

Eigen values and eigen vectors engineering

  • 1. Linear algebra: matrix Eigen-value Problems Eng. Shubham Kumbhar Part 3
  • 2. Eigenvalue Problems 1. Eigenvalues and eigenvectors 2. Vector spaces 3. Linear transformations 4. Matrix diagonalization
  • 3. The Eigenvalue Problem Consider a nxn matrix A Vector equation: Ax = λx » Seek solutions for x and λ » λ satisfying the equation are the eigenvalues » Eigenvalues can be real and/or imaginary; distinct and/or repeated » x satisfying the equation are the eigenvectors Nomenclature » The set of all eigenvalues is called the spectrum » Absolute value of an eigenvalue: » The largest of the absolute values of the eigenvalues is called the spectral radius 22 baiba jj +=⇒+= λλ
  • 4. Determining Eigenvalues Vector equation » Ax = λx  (A-λΙ)x = 0 » A-λΙ is called the characteristic matrix Non-trivial solutions exist if and only if: » This is called the characteristic equation Characteristic polynomial » nth-order polynomial in λ » Roots are the eigenvalues {λ1, λ2, …, λn} 0)det( 21 22221 11211 = − − − =− λ λ λ λ nnnn n n aaa aaa aaa     IA
  • 5. Eigenvalue Example Characteristic matrix Characteristic equation Eigenvalues: λ1 = -5, λ2 = 2       −− − =      −      − =− λ λ λλ 43 21 10 01 43 21 IA 0103)3)(2()4)(1( 2 =−+=−−−−=− λλλλλIA
  • 6. Eigenvalue Properties Eigenvalues of A and AT are equal Singular matrix has at least one zero eigenvalue Eigenvalues of A-1 : 1/λ1, 1/λ2, …, 1/λn Eigenvalues of diagonal and triangular matrices are equal to the diagonal elements Trace Determinant ∑= = n j jTr 1 )( λA ∏= = n j j 1 λA
  • 7. Determining Eigenvectors First determine eigenvalues: {λ1, λ2, …, λn} Then determine eigenvector corresponding to each eigenvalue: Eigenvectors determined up to scalar multiple Distinct eigenvalues » Produce linearly independent eigenvectors Repeated eigenvalues » Produce linearly dependent eigenvectors » Procedure to determine eigenvectors more complex (see text) » Will demonstrate in Matlab 0)(0)( =−⇒=− kk xIAxIA λλ
  • 8. Eigenvector Example Eigenvalues Determine eigenvectors: Ax = λx Eigenvector for λ1 = -5 Eigenvector for λ1 = 2       − =     − =⇒ =+ =+ 3 1 or 9487.0 3162.0 03 026 11 21 21 xx xx xx       =      =⇒ =− =+− 1 2 or 4472.0 8944.0 063 02 22 21 21 xx xx xx 2 5 43 21 2 1 = −=       − = λ λ A 0)4(3 02)1( 43 2 21 21 221 121 =+− =+− ⇒ =− =+ xx xx xxx xxx λ λ λ λ
  • 9. Matlab Examples >> A=[ 1 2; 3 -4]; >> e=eig(A) e = 2 -5 >> [X,e] = eig(A) X = 0.8944 -0.3162 0.4472 0.9487 e = 2 0 0 -5 >> A=[2 5; 0 2]; >> e=eig(A) e = 2 2 >> [X,e]=eig(A) X = 1.0000 -1.0000 0 0.0000 e = 2 0 0 2
  • 10. Vector Spaces Real vector space V » Set of all n-dimensional vectors with real elements » Often denoted Rn » Element of real vector space denoted Properties of a real vector space » Vector addition » Scalar multiplication V∈x 0aawvuwvu a0aabba =−+++=++ =++=+ )()()( aaaaa aababa =+=+ =+=+ 1)( )()()( kckc ckkcccc
  • 11. Vector Spaces cont. Linearly independent vectors » Elements: » Linear combination: » Equation satisfied only for cj = 0 Basis » n-dimensional vector space V contains exactly n linearly independent vectors » Any n linearly independent vectors form a basis for V » Any element of V can be expressed as a linear combination of the basis vectors Example: unit basis vectors in R3 021 =+++ (m)(2)(1) aaa mccc  V∈(m)(2)(1) aaa ,,,            =           +           +           =++= 3 2 1 3213321 1 0 0 0 1 0 0 0 1 c c c cccccc )((2)(1) aaax
  • 12. Inner Product Spaces Inner product Properties of an inner product space Two vectors with zero inner product are called orthogonal Relationship to vector norm » Euclidean norm » General norm » Unit vector: ||a|| = 1 ∑= +++==⋅== n k nnkk T babababa 1 2211),( bababa 0ifonlyandif0),(0),( ),(),( ),(),(),( 2121 ==≥ = +=+ aaaaa acca cbcacba qqqq 22 2 2 1),( n T aaa +++=== aaaaa babababa +≤+≤),(
  • 13. Linear Transformation Properties of a linear operator F » Linear operator example: multiplication by a matrix » Nonlinear operator example: Euclidean norm Linear transformation Invertible transformation » Often called a coordinate transformation )()()()()( xxxvxv cFcFFFF =+=+ Axy A yx = ∈ ∈∈ tionTransforma Operator ,Elements xnm mn R RR yAx Axy Ayx 1 x tionTransformaInverse tionTransforma ,,Dimensions − = = ∈∈∈ nnnn RRR
  • 14. Orthogonal Transformations Orthogonal matrix » A square matrix satisfying: AT = A-1 » Determinant has value +1 or -1 » Eigenvalues are real or complex conjugate pairs with absolute value of unity » A square matrix is orthonormal if: Orthogonal transformation » y = Ax where A is an orthogonal matrix » Preserves the inner product between any two vectors » The norm is also invariant to orthogonal transformation bavuAbvAau ⋅=⋅⇒== ,    = ≠ = kj kj k T j if1 if0 aa vbua ==
  • 15. Similarity Transformations Eigenbasis » If a nxn matrix has n distinct eigenvalues, the eigenvectors form a basis for Rn » The eigenvectors of a symmetric matrix form an orthonormal basis for Rn » If a nxn matrix has repeated eigenvalues, the eigenvectors may not form a basis for Rn (see text) Similar matrices » Two nxn matrices are similar if there exists a nonsingular nxn matrix P such that: » Similar matrices have the same eigenvalues » If x is an eigenvector of A, then y = P-1 x is an eigenvector of the similar matrix APPA 1ˆ − =
  • 16. Matrix Diagonalization Assume the nxn matrix A has an eigenbasis Form the nxn modal matrix X with the eigenvectors of A as column vectors: X = [x1, x2, …, xn] Then the similar matrix D = X-1 AX is diagonal with the eigenvalues of A as the diagonal elements Companion relation: XDX-1 = A             ==⇒             = − nnnnn n n aaa aaa aaa λ λ λ         00 00 00 2 1 1 21 22221 11211 AXXDA
  • 17. Matrix Diagonalization Example [ ]      − =     −       − ==       −      −      − ==       − =      − ==       ==      − =−=      − = − − − 20 05 215 45 13 21 7 1 13 21 43 21 13 21 7 1 13 21 7 1 13 21 1 2 ,2 3 1 ,5 43 21 1 1 1 21 2211 AXXD AXXD XxxX xxA λλ
  • 18. Matlab Example >> A=[-1 2 3; 4 -5 6; 7 8 -9]; >> [X,e]=eig(A) X = -0.5250 -0.6019 -0.1182 -0.5918 0.7045 -0.4929 -0.6116 0.3760 0.8620 e = 4.7494 0 0 0 -5.2152 0 0 0 -14.5343 >> D=inv(X)*A*X D = 4.7494 -0.0000 -0.0000 -0.0000 -5.2152 -0.0000 0.0000 -0.0000 -14.5343