SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
Crystallography of Materials
Shyue Ping Ong
Department of NanoEngineering
University of California, San Diego
Readings
¡Chapter 3 of Structure of Materials
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
What is a crystal?
¡A crystal is a time-invariant, 3D arrangement of
atoms or molecules on a lattice.
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
Perovskite SrTiO3
The “motif”
repeated on each point in the cubic
lattice below…
Nets and Lattices
¡A lattice (3D) or net (2D) is an abstract concept of
an infinite array of discrete points generated by a
set of translation operations.
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
The motif
Repeated
infinitely in all
directions
Concept of Symmetry
¡You have just encountered
your first symmetry concept
– translational symmetry.
¡A symmetry operation is a
permutation of atoms such
that the molecule or crystal
is indistinguishable before
and after the operation.
¡It also means that all lattice
points have exactly the
same “environment”.
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
Identify the nets in the following
patterns
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
Identify the nets in the following
patterns
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
Basis and translation vectors
¡ How are points in a lattice related to one another (e.g.
how do we get from point A to point B)?
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
A
B
b
a
Let us define basis vectors a and b.
All points in the lattice can therefore be
reached by integer linear combinations of the
basis vectors, i.e.,
By inspection, we can see that
If we choose A to be the arbitrary origin with
coordinates (0, 0), all other lattice points can
be represented as (u, v). For example,B = (2,
1). t is then known as the translation vector.
t
t = ua + vb, u,v ∈ Z
B- A = 2a + b
Basis and translation vectors
¡ For 3D lattices, there are three basis vectors instead of
two. Notationally,
¡ And each lattice point/node can be represented by
coordinates (u, v, w)
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
t = ua + vb+ wc, u,v,w ∈ Z
Net and Lattice parameters
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
a = Length of a
b = Length of b
c = Length of c
α = Angle between b and c
β = Angle between a and c
γ = Angle between a and b
a,b,c,α,β,γ{ }
a = Length of a
b = Length of b
γ = Angle between a and b
a,b,γ{ }
Lattice math example
¡A lattice is given by the following vectors in
Cartesian space:
¡ Calculate the lattice parameters a, b, c, α, β, γ.
¡ If a lattice node is given by coordinates (3, 2, 1) in
crystal coordinates, what are its coordinates in Cartesian
coordinates?
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
a =
1
0
0
!
"
#
#
#
$
%
&
&
&
, b=
−1/ 2
3 / 2
0
!
"
#
#
##
$
%
&
&
&&
, c =
0
0
3
!
"
#
#
#
$
%
&
&
&
Blackboard
Deriving the 2D Crystal Systems
¡ What values can take? Or phrased in another way,
what special values of would result in additional
symmetry?
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
a,b,γ{ }
a,b,γ{ }
Consider arbitrary
a,b,γ{ }
What are the symmetry
elements in this net?
The oblique net (and all 2D nets) has two-fold rotational symmetry.
Higher symmetry nets
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
a ≠ b,γ = 90°
a = b,γ = 90°
Rectangular net Square net
a = b,γ =120°
Hexagonal net
Adding new nodes
¡Can we get a new distinct net by adding more
lattice points to existing nets?
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
New centered rectangular
net, all nodes have the
same environment.
No new net!
If we reorient the lattice by 45
deg, we see that what we have
is simply a square net with
shorter vectors.
Not a net at all. All nodes
do not have the same
environment.
Rectangular
Five 2D nets
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
p: primitive
c: centered
(lower case for 2D)
International symbols for 2D nets
Oblique Square Hexagonal
Four 2D crystal systems
m: monoclinic
o: orthorhombic
t: tetragonal
h: hexagonal
Unit Cells
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
¡ A unit cell is simply a geometric unit that can be stacked
infinitely to reproduce the entire lattice.
¡ Primitive unit cells – only 1 lattice point in the cell
¡ Non-primitive cells – more than 1 lattice point in the cell
• Which of these cells are
primitive?
• How many lattice points
are there in each cell?
• Which cell(s) reflect the
full symmetry of the net?
The Wigner-Seitz Cell
¡ The Wigner-Seitz (WS) cell around a lattice point is
defined as the locus of points in space that are closer to
that lattice point than to any of the other lattice points.
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
The WS cell
• is a unit cell, i.e., tiles
space to reproduce the
lattice;
• can have more than 4
sides in 2D and more
than 6 sides in 3D;
• Preserves symmetry of
net/lattice.

Contenu connexe

Tendances

Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Shuvan Prashant
 
Unit i-crystal structure
Unit i-crystal structureUnit i-crystal structure
Unit i-crystal structureAkhil Chowdhury
 
Brillouin zones newton sow
Brillouin zones newton sowBrillouin zones newton sow
Brillouin zones newton sowSoundar Rajan
 
Crystalography
CrystalographyCrystalography
Crystalographymd5358dm
 
Wiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon TransportWiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon TransportKouki Nakata
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materialskrishslide
 
Metal Nanoparticles - Solids
Metal Nanoparticles - SolidsMetal Nanoparticles - Solids
Metal Nanoparticles - SolidsPhi Hoàng
 
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)AnitaMalviya
 
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...Daniel Moore
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio PresentationRicardo Vidrio
 
Solution combustion method for syntheis of nano particles
Solution combustion method for syntheis of nano particlesSolution combustion method for syntheis of nano particles
Solution combustion method for syntheis of nano particlesGanapathirao Kandregula
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1Dr. Abeer Kamal
 

Tendances (20)

Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 
Crystal dynamics
Crystal dynamicsCrystal dynamics
Crystal dynamics
 
Unit i-crystal structure
Unit i-crystal structureUnit i-crystal structure
Unit i-crystal structure
 
Brillouin zones newton sow
Brillouin zones newton sowBrillouin zones newton sow
Brillouin zones newton sow
 
Crystalography
CrystalographyCrystalography
Crystalography
 
Crystal Physics
Crystal PhysicsCrystal Physics
Crystal Physics
 
Carbon nanotubes
Carbon nanotubesCarbon nanotubes
Carbon nanotubes
 
Engineering Physics - Crystal structure - Dr. Victor Vedanayakam.S
Engineering Physics - Crystal structure - Dr. Victor Vedanayakam.SEngineering Physics - Crystal structure - Dr. Victor Vedanayakam.S
Engineering Physics - Crystal structure - Dr. Victor Vedanayakam.S
 
Wiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon TransportWiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon Transport
 
Classical Mechanics-MSc
Classical Mechanics-MScClassical Mechanics-MSc
Classical Mechanics-MSc
 
Crystal growth
Crystal growthCrystal growth
Crystal growth
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
Metal Nanoparticles - Solids
Metal Nanoparticles - SolidsMetal Nanoparticles - Solids
Metal Nanoparticles - Solids
 
interplanar spacing.pptx
interplanar spacing.pptxinterplanar spacing.pptx
interplanar spacing.pptx
 
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)
PLASMA DIAGNOSTIC BY ELECTRIC PROBE(single and double probe)
 
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio Presentation
 
Solution combustion method for syntheis of nano particles
Solution combustion method for syntheis of nano particlesSolution combustion method for syntheis of nano particles
Solution combustion method for syntheis of nano particles
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1
 

En vedette

UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUniversity of California, San Diego
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...University of California, San Diego
 
Chemistry445lecture7 grouptheory
Chemistry445lecture7 grouptheoryChemistry445lecture7 grouptheory
Chemistry445lecture7 grouptheorybarunbk
 
Introduction to Crystallography
Introduction to CrystallographyIntroduction to Crystallography
Introduction to CrystallographyNazim Naeem
 
Crystal structure
Crystal structureCrystal structure
Crystal structurejo
 
Introduction to Crystallography
Introduction to CrystallographyIntroduction to Crystallography
Introduction to Crystallographykalai vanan
 

En vedette (20)

UCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in CrystallographyUCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in Crystallography
 
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space GroupsUCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space Groups
 
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point GroupsUCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
 
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensorsUCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensors
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
 
UCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in MaterialsUCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in Materials
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and ElasticityUCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
 
An Introduction to Crystallography
An Introduction to CrystallographyAn Introduction to Crystallography
An Introduction to Crystallography
 
Crystallography
CrystallographyCrystallography
Crystallography
 
Chemistry445lecture7 grouptheory
Chemistry445lecture7 grouptheoryChemistry445lecture7 grouptheory
Chemistry445lecture7 grouptheory
 
Introduction to Crystallography
Introduction to CrystallographyIntroduction to Crystallography
Introduction to Crystallography
 
Crystallography
Crystallography Crystallography
Crystallography
 
Phys 4710 lec 3
Phys 4710 lec 3Phys 4710 lec 3
Phys 4710 lec 3
 
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Introduction to Crystallography
Introduction to CrystallographyIntroduction to Crystallography
Introduction to Crystallography
 
MAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodianMAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodian
 

Similaire à UCSD NANO106 - 01 - Introduction to Crystallography

BP219 class 4 04 2011
BP219 class 4 04 2011BP219 class 4 04 2011
BP219 class 4 04 2011waddling
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011waddling
 
Introduccion a la fisica del estado solido
Introduccion a la fisica del estado solidoIntroduccion a la fisica del estado solido
Introduccion a la fisica del estado solidoIgnacio Rojas Rodriguez
 
Xray diff pma
Xray diff pmaXray diff pma
Xray diff pmasadaf635
 
Bp219 2011
Bp219 2011Bp219 2011
Bp219 2011waddling
 
Solid state__physics (1)by D.Udayanga.
Solid  state__physics (1)by D.Udayanga.Solid  state__physics (1)by D.Udayanga.
Solid state__physics (1)by D.Udayanga.damitha udayanga
 
X ray diffraction for m.sc. chemistry
X ray diffraction for m.sc. chemistry X ray diffraction for m.sc. chemistry
X ray diffraction for m.sc. chemistry shyam sunder pandiya
 
Crystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewCrystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewNakkiran Arulmozhi
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientationsmitamalik
 
X-ray diffraction by Dr.A S Charan
X-ray diffraction by Dr.A S CharanX-ray diffraction by Dr.A S Charan
X-ray diffraction by Dr.A S CharanCharan Archakam
 
Solid state physics unit 1.pdf
Solid state physics unit 1.pdfSolid state physics unit 1.pdf
Solid state physics unit 1.pdfshadreckalmando
 

Similaire à UCSD NANO106 - 01 - Introduction to Crystallography (20)

Physics 460_lecture4.pptx
Physics 460_lecture4.pptxPhysics 460_lecture4.pptx
Physics 460_lecture4.pptx
 
X-Ray Topic.ppt
X-Ray Topic.pptX-Ray Topic.ppt
X-Ray Topic.ppt
 
BP219 class 4 04 2011
BP219 class 4 04 2011BP219 class 4 04 2011
BP219 class 4 04 2011
 
A_I_Structure.pdf
A_I_Structure.pdfA_I_Structure.pdf
A_I_Structure.pdf
 
Crystal physics
Crystal physicsCrystal physics
Crystal physics
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
 
Introduccion a la fisica del estado solido
Introduccion a la fisica del estado solidoIntroduccion a la fisica del estado solido
Introduccion a la fisica del estado solido
 
Crystallography
CrystallographyCrystallography
Crystallography
 
Xray diff pma
Xray diff pmaXray diff pma
Xray diff pma
 
Bp219 2011
Bp219 2011Bp219 2011
Bp219 2011
 
Bp219 2011-4.13
Bp219 2011-4.13Bp219 2011-4.13
Bp219 2011-4.13
 
Solid state__physics (1)by D.Udayanga.
Solid  state__physics (1)by D.Udayanga.Solid  state__physics (1)by D.Udayanga.
Solid state__physics (1)by D.Udayanga.
 
Lecture3
Lecture3Lecture3
Lecture3
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
X ray diffraction for m.sc. chemistry
X ray diffraction for m.sc. chemistry X ray diffraction for m.sc. chemistry
X ray diffraction for m.sc. chemistry
 
Crystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewCrystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick Overview
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientation
 
X-ray diffraction by Dr.A S Charan
X-ray diffraction by Dr.A S CharanX-ray diffraction by Dr.A S Charan
X-ray diffraction by Dr.A S Charan
 
Lattices.ppt
Lattices.pptLattices.ppt
Lattices.ppt
 
Solid state physics unit 1.pdf
Solid state physics unit 1.pdfSolid state physics unit 1.pdf
Solid state physics unit 1.pdf
 

Plus de University of California, San Diego

NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceUniversity of California, San Diego
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designUniversity of California, San Diego
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...University of California, San Diego
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingUniversity of California, San Diego
 

Plus de University of California, San Diego (16)

A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
 
NANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modelingNANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modeling
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
NANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling TradeNANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling Trade
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
 
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 

Dernier

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 

Dernier (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 

UCSD NANO106 - 01 - Introduction to Crystallography

  • 1. Crystallography of Materials Shyue Ping Ong Department of NanoEngineering University of California, San Diego
  • 2. Readings ¡Chapter 3 of Structure of Materials NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
  • 3. What is a crystal? ¡A crystal is a time-invariant, 3D arrangement of atoms or molecules on a lattice. NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 Perovskite SrTiO3 The “motif” repeated on each point in the cubic lattice below…
  • 4. Nets and Lattices ¡A lattice (3D) or net (2D) is an abstract concept of an infinite array of discrete points generated by a set of translation operations. NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 The motif Repeated infinitely in all directions
  • 5. Concept of Symmetry ¡You have just encountered your first symmetry concept – translational symmetry. ¡A symmetry operation is a permutation of atoms such that the molecule or crystal is indistinguishable before and after the operation. ¡It also means that all lattice points have exactly the same “environment”. NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
  • 6. Identify the nets in the following patterns NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
  • 7. Identify the nets in the following patterns NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1
  • 8. Basis and translation vectors ¡ How are points in a lattice related to one another (e.g. how do we get from point A to point B)? NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 A B b a Let us define basis vectors a and b. All points in the lattice can therefore be reached by integer linear combinations of the basis vectors, i.e., By inspection, we can see that If we choose A to be the arbitrary origin with coordinates (0, 0), all other lattice points can be represented as (u, v). For example,B = (2, 1). t is then known as the translation vector. t t = ua + vb, u,v ∈ Z B- A = 2a + b
  • 9. Basis and translation vectors ¡ For 3D lattices, there are three basis vectors instead of two. Notationally, ¡ And each lattice point/node can be represented by coordinates (u, v, w) NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 t = ua + vb+ wc, u,v,w ∈ Z
  • 10. Net and Lattice parameters NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 a = Length of a b = Length of b c = Length of c α = Angle between b and c β = Angle between a and c γ = Angle between a and b a,b,c,α,β,γ{ } a = Length of a b = Length of b γ = Angle between a and b a,b,γ{ }
  • 11. Lattice math example ¡A lattice is given by the following vectors in Cartesian space: ¡ Calculate the lattice parameters a, b, c, α, β, γ. ¡ If a lattice node is given by coordinates (3, 2, 1) in crystal coordinates, what are its coordinates in Cartesian coordinates? NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 a = 1 0 0 ! " # # # $ % & & & , b= −1/ 2 3 / 2 0 ! " # # ## $ % & & && , c = 0 0 3 ! " # # # $ % & & & Blackboard
  • 12. Deriving the 2D Crystal Systems ¡ What values can take? Or phrased in another way, what special values of would result in additional symmetry? NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 a,b,γ{ } a,b,γ{ } Consider arbitrary a,b,γ{ } What are the symmetry elements in this net? The oblique net (and all 2D nets) has two-fold rotational symmetry.
  • 13. Higher symmetry nets NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 a ≠ b,γ = 90° a = b,γ = 90° Rectangular net Square net a = b,γ =120° Hexagonal net
  • 14. Adding new nodes ¡Can we get a new distinct net by adding more lattice points to existing nets? NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 New centered rectangular net, all nodes have the same environment. No new net! If we reorient the lattice by 45 deg, we see that what we have is simply a square net with shorter vectors. Not a net at all. All nodes do not have the same environment.
  • 15. Rectangular Five 2D nets NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 p: primitive c: centered (lower case for 2D) International symbols for 2D nets Oblique Square Hexagonal Four 2D crystal systems m: monoclinic o: orthorhombic t: tetragonal h: hexagonal
  • 16. Unit Cells NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 ¡ A unit cell is simply a geometric unit that can be stacked infinitely to reproduce the entire lattice. ¡ Primitive unit cells – only 1 lattice point in the cell ¡ Non-primitive cells – more than 1 lattice point in the cell • Which of these cells are primitive? • How many lattice points are there in each cell? • Which cell(s) reflect the full symmetry of the net?
  • 17. The Wigner-Seitz Cell ¡ The Wigner-Seitz (WS) cell around a lattice point is defined as the locus of points in space that are closer to that lattice point than to any of the other lattice points. NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 1 The WS cell • is a unit cell, i.e., tiles space to reproduce the lattice; • can have more than 4 sides in 2D and more than 6 sides in 3D; • Preserves symmetry of net/lattice.