SlideShare une entreprise Scribd logo
1  sur  56
Télécharger pour lire hors ligne
Multiband RF Transceiver System
Chapter 2 Noises and Nonlinearities
李健榮 助理教授
Department of Electronic Engineering
National Taipei University of Technology
Outline
• Thermal Noise and Noise Temperature
• Noise Temperature Measurement:
 Gain Method
 Y-factor Method
• Noise Figure
• Output Noise Power of Cascaded Circuits
• Nonlinear Effects on an RF Signal
• 1-dB-Compression Point (P1dB)
• Second- and Third-order Intercept Point (IP2, and IP3)
• Nonlinear Effect of a Cascaded System
Department of Electronic Engineering, NTUT2/56
where is Boltzman’s constant
Available Thermal Noise Power
• Thermal Noise:
23
1.380 10 J/Kk 
 
NAP kTBAvailable noise power:
Thermal noise source
,n rmsvR
 KT


Noisy resistor
,n rmsv
Thevenin’s Equivalent Circuit
Noise-free resistor
R
2
, ?n rmsv 
R
R
Matched Load
2
,
2
n rms
NA
v
P kTB
R
 
 
  
,n rmsv
,
2
n rmsv


Available Noise Power
2
, 4n rmsv kTBR
Open-circuited
noise voltage?
Department of Electronic Engineering, NTUT3/56
where is Boltzman’s constant
Thermal Noise Equivalent Circuits
• Thermal Noise:
23
1.380 10 J/Kk 
 
NAP kTBAvailable noise power:
Thermal noise source
,n rmsv,n rmsvR
 KT


Thevenin’s Equivalent Circuit
Noisy resistor
Noise-free resistor
Norton’s Equivalent Circuit
Noise-free resistor
R
R
2
, 4n rmsv kTBR
,n rmsi
2
,2
,
4
4n rms
n rms
v kTB
i kTBG
R R
 
   
 
2
, 4n rmsv kTBR
Department of Electronic Engineering, NTUT4/56
Thermal Noise Power Spectrum Density
• Available noise power :
• Thermal Noise at 290 K (17 oC):
Department of Electronic Engineering, NTUT
Ideal
bandpass
filter
B
R
R
,n rmsv
NAP kTB
PSD (W/Hz, or dBm/Hz)
f (Hz)
Bandwidth B (Hz)
kT
Integrate to get noise power
0 0NAP kT BAvailable noise power:
   21
0, 0 4 10 W Hz 174 dBm HzPSDN kT 
   Power spectrum density:
5/56
Equivalent Noise Temperature (I)
• If an arbitrary source of noise (thermal or nonthermal) is
“white”, it can be modeled as an equivalent thermal noise
source, and characterized with an equivalent noise temperature.
• An arbitrary white noise source with a driving-point
impedance of R and delivers a noise power No to a load
resistor R. This noise source can be replaced by a noisy
resistor of value R, at temperature Te (equivalent temperature):
Department of Electronic Engineering, NTUT
oN
R
Arbitrary
white
noise
source
R
oN
RR
eT
o
e
N
T
kB

6/56
Equivalent Noise Temperature (II)
• How to define the equivalent noise temperature for a two-port
component? Let’s take a noisy amplifier as an example.
• In order to know the amplifier inherent noise No, you may like
to measure the amplifier by using a noise source with 0 K
temperature. Is that possible?
Noisy amplifier
R
oN
aGR
0 KsT 
This means that the output noise No is
only generated from the amplifier.
Noiseless amplifier
R
o a iN G N
aGR
iN
o
i e
a
N
N kT B
G
 i o
e
a
N N
T
kB G kB
 
Department of Electronic Engineering, NTUT7/56
Gain Method
• Use a noise source with the known noise temperature Ts.
Noiseless amplifier
R
o a iN G N
aGR
i s eN kT B kT B 
sT
eT
Noisy amplifier
R
_o a i o addN G N N 
aGR
i sN kT B
sT
   o a s e a s eN G kT B kT B G kB T T   
o
s e
a
N
T T
G
 
o
e s
a
N
T T
G
 
 Need to know the amplifier power gain Ga.
 Due to the noise floor of the analyzer, the
gain method is suitable for measuring high
gain and high noise devices.
Department of Electronic Engineering, NTUT8/56
The Y-factor Method
• Use two loads at significantly different temperatures (hot and
cold ) to measure the noise temperature.
• Defined the Y-factor as
Department of Electronic Engineering, NTUT
1 1a a eN G kT B G kT B 
2 2a a eN G kT B G kT B 
1 2
1
e
T YT
T
Y



11
2 2
1e
e
T TN
Y
N T T

  

R
R
1T
2T
aG
B eT 1N
2N
(hot)
(cold)
 You don’t have to know Ga.
 The Y-factor method is not suitable for measuring a very high noise device, since
it will make to cause some error. Thus, we may like a noise source with high
ENR for measuring high noise devices.
1Y 
 Sometimes, you may need a pre-amplifier to lower analyzer noise for measuring a
low noise device .
9/56
Noise Figure (NF) – (I)
• The amount of noise added to a signal that is being processed
is of critical importance in most RF systems. The addition of
noise by the system is characterized by its noise figure (NF).
• Noise Factor (or Figure) is a measure of the degradation in the
signal-to-noise ratio (SNR) between the input and output:
where Si , Ni are the input and noise powers, and So, No are the output signal
and noise powers
1i i i
o o o
SNR S N
F
SNR S N
    dB 10logNF F
Gain = 20 dB
P (dBm)
Frequency (Hz)
00
60
SNRi = 40 dB
NF = ?
P (dBm)
Frequency (Hz)
80
40
SNRo= 32 dB
72 NF = 8 dB
Noisy Amplifier
Department of Electronic Engineering, NTUT10/56
Noise Figure (NF) – (II)
• By definition, the input noise power is assumed to be the
thermal noise power resulting from a matched resistor at T0
(=290 K); that is, , and the noise figure is given as
Department of Electronic Engineering, NTUT
 0
0 0
1 1ei i e
o i
kGB T TSNR S T
F
SNR kT B GS T

    
0iN kT B
  01eT F T 
Noisy
Network
G B eT
R
0T
R
i i iP S N  o o oP S N 
23
1.380 10 J/ Kk 
  
where is Boltzman’s constant0NAP kT B
   21
0 4 10 W Hz 174 dBm HzTN kT 
   
 Use the concept of SNR
 Use the concept of noise only
0 0
0 0 0
1 1o add e e
i
N kGBT N kGBT kGBT T
F
GN GkT B GkT B T
 
     
11/56
Resistive-type Passive Circuits (I)
• The circuit is with a matched source resistor, which is also at
temperature T.
• The output noise power :
• We can think of this power coming from the source resistor
(through the lossy line), and from the noise generated by the
line itself. Thus,
Department of Electronic Engineering, NTUT
0P kTB
0 addedP kTB GkTB GN  
 
1
1added e
G
N kTB L kTB kT B
G

   
where is the noise generated by the line.addedN
12/56
Resistive-type Passive Circuits (II)
• The lossy line equivalent noise temperature :
• The noise figure is
where T0 denotes room temperature, T is the actual physical temperature (K). Note
that the loss L may depend on frequency.
• Output noise power :
where input thermal noise power
Department of Electronic Engineering, NTUT
 
1
1e
G
T T L T
G

  
 
0
1 1
T
F L
T
    dB 10logNF F
     dBm dBm dBout inN N L NF  
 WattinN kTB
 dBminN
f
 dBmoutN
f
inN L NF 
13/56
Active Circuits
• An active circuit is with noise figure NF and available gain G.
(Note that NF and G are usually depend on frequency.)
Department of Electronic Engineering, NTUT
 dBmout inS S G 
 174 10log dBminN B  
 dBmout inN N NF G  
 dBminN
f f
 dBmoutN
BW
 dBminS
f
 dBmoutS
f
BW
 dBmin inS N
f
 dBmout outS N
f
BW
 dBG
 dBNF
14/56
Multiple Stages Cascaded
• Multiple stages cascaded
where Fi is the noise factor and Gi is the available power gain of each stage.
Department of Electronic Engineering, NTUT
1
1
0
1
1
N
i
i
i
j
j
F
F
G




  

2 3
1
1 1 2 1 2 1
e e eN
eT e
N
T T T
T T
G G G G G G 
    

1eT
1G 2G
2eT eNT
NG
g T addkT G NgkT
1ekT 2ekT eNkT
gkT  T g eTkG T T
eTkT
1 2T NG G G G 
1 1 1g ekT G kT G
 1 1 1 2 2 2g e ekT G kT G G kT G 
 1 2 1 1 2 2g N e N e N eN NkT G G G kT G G kT G G kT G      
1
1 2
0
i
T N j
j
G G G G G


  
  01eT F T 
Cascade System
Equivalent System
  32
1
1 1 2 1 2 1
1 11
1 1 N
N
F FF
F F
G G G G G G 
 
      

1st stage dominate less significant
15/56
Output Noise Power of Cascaded Circuits (II)
• When the noise temperature and gain of each stage are determined,
the overall noise temperature and gain of the whole system can be
obtained.
• Use the following methods to calculate the output noise ,
(1) Cascade Formula
(2) Walk-Through method
(3) Summation method
Department of Electronic Engineering, NTUT
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
oN
16/56
Cascade Formula Method
Department of Electronic Engineering, NTUT
   1 1 11 1.259 1 300 77.7 KeT L T     
   3 3 31 2.512 1 300 453.6 KeT L T     
150 453.6 700
77.7 275.42 K
0.794 0.794 316.23 0.794 316.23 0.398
eTT     
  

   23 21
1.38 10 50 275.42 =4.5 10 Watts Hz= 173.5 dBm Hzs eTk T T  
      
0 173.5 1 25 4 30 dBm HzN      
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
Stage 1 Teff :
Stage 3 Teff :
System equivalent noise temperature and output noise :
17/56
Walk-Through Method – Stage 1
• Calculate the noise signal from stage to stage. At first,
calculate the noise density stage by stage:
 Antenna noise:
 Cable 1 noise:
Department of Electronic Engineering, NTUT
23 19
1.38 10 50=6.9 10 mW Hz 181.6 dBm HzskT  
     
   1 1 11 1.259 1 300 77.7 KeT L T     
23 19
1 1.38 10 77.7=10.72 10 mW Hz 179.7 dBm HzekT  
     
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
Stage Input A Input B Sum Output Noise Density (dBm/Hz)
1 181.6 179.7 177.5 178.5
2 178.5
18/56
Walk-Through Method – Stage 2
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
 LNA Noise:
23 19
2 1.38 10 150=2.07 10 mW Hz 176.8 dBm HzekT  
     
Stage Input A Input B Sum Output Noise Density (dBm/Hz)
1 181.6 179.7 177.5 178.5
2 178.5 176.8 174.6 149.6
3 149.6
Department of Electronic Engineering, NTUT19/56
Walk-Through Method – Stage 3
Stage Input A Input B Sum Output Noise Density (dBm/Hz)
1 181.6 179.7 177.5 178.5
2 178.5 176.8 174.6 149.6
3 149.6 172.0 149.6 153.6
4 153.6
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
 Cable 2 Noise:
   3 3 31 2.512 1 300 453.6 KeT L T     
23 19
2 1.38 10 453.6=6.26 10 mW Hz 172 dBm HzekT  
     
Department of Electronic Engineering, NTUT20/56
Walk-Through Method – Stage 4
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
 Gain amplifier noise:
23 19
4 1.38 10 700=9.66 10 mW Hz 170.2 dBm HzekT  
     
Stage Input A Input B Sum Output Noise Density (dBm/Hz)
1 181.6 179.7 177.5 178.5
2 178.5 176.8 174.6 149.6
3 149.6 172.0 149.6 153.6
4 153.6 170.2 153.5 123.5
Department of Electronic Engineering, NTUT21/56
Summation Method
• Each noise source is individually taken through the various
gains and loses to the output, and the sum of all output noises
is just the total output noise (Superposition).
 For stage1:
 For stage2:
 For stage3:
 For stage4:
Department of Electronic Engineering, NTUT
181.6 1 25 4 30 131.6 dBm Hz      
179.7 1 25 4 30 129.7 dBm Hz      
176.8 25 4 30 125.8 dBm Hz     
172 4 30 146 dBm Hz    
170.2 30 140.2 dBm Hz   
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
oN
Noise Contributor Output Noise Density (dBm/Hz)
Environment 131.6
Stage 1 129.7
Stage 2 125.8
Stage 3 146.0
Stage 4 140.2
Total 123.5
22/56
Noise Figure Method
1 1 dBL 
1 300 KT  
1 300 KT  
3 4 dBL 
2 150 KeT  
2 25 dBG 
4 700 KeT  
4 30 dBG 
50 KsT  
oN
stage1 stage2 stage3 stage4
Atten1 Amp2 Atten3 Amp4
Gain (dB) -1 25 -4 30
Gain 0.79432823 316.227766 0.39810717 1000
T 300 150 300 700
F 1.26785387 1.51724138 2.56402045 3.4137931
NF (dB) 1.03069202 1.81054679 4.08921484 5.33237197
Cumumlatvie Gain 0.79432823 251.188643 100 100000
Fcas 1.26785387 1.91902219 1.92524867 1.9493866
NFcas (dB) 2.89897976
Gcas (dB) 50
Ni (Ts=50 K) (dBm) -181.611509
No=Ni+Gcas+NFcas -128.7125 Wrong!Since NF is defined@290 K
Fcas=1+(Te/T0)
Te 275.322114
No=Gcas(kTsB+kTeB) 4.4894E-16 -123.47807 Correct!
Department of Electronic Engineering, NTUT23/56
Nonlinear Effects
• The distortion of an RF transceiver are resulted from internal
interferences and external interferences.
1) The internal interferences are generated from the nonlinear
effect of its own devices.
2) The external interference are from outside the transceiver
and intercepted by the antenna or EM coupling.
3) Internal distortion is primarily generated from power
amplifier.
Department of Electronic Engineering, NTUT24/56
Nonlinear Memoryless Device (I)
• An input-output relationship of a nonlinear memoryless
device can be represented as
         2 3 4
0 1 2 3 4out in in in inv t v t v t v t v t         
 inv t  outv t
inV
outV
linear
nonlinear
small signal
large signal
linear output
distorted output
f
f
Perfect sinusoid
Harmonics
Department of Electronic Engineering, NTUT25/56
Nonlinear Memoryless Device (II)
Coefficients αi are depending on
1) DC bias, RF characteristics of the active device used in the circuit.
2) Magnitude vin of the signal.
3) When Pin < P1dB (linear region), all can be treated as constant.
• Assume the input and output impedance of the circuit are ,
and ,respectively. Considering a CW input signal with the
voltage ,the input available power is
 inv t  outv t
  sin 2in in cv t V f t    2
2in c in in cP f V Z f
Department of Electronic Engineering, NTUT
 inZ f
 outZ f
         2 3 4
0 1 2 3 4out in in in inv t v t v t v t v t         
26/56
Small-signal Power Gain (Linear Gain)
• For linear operation
where Pin is the available input power and G1 is the available small-signal
power gain, which equals to
   1 1 sin 2out in in cv t v t V t   
 
 
2 2 2 2
2 21
1 1
1 1 1
2 2 2
in cout in in in
out in
out out in out out c
Z fV V V Z
P P
Z Z Z Z Z f

    
 
 120log 10log in c
out in
out c
Z f
P P
Z f
        1 dBmout c in cP f P f G 
 
 1 120log 10log in c
out c
Z f
G
Z f
 
  sin 2in in cv t V f t
Department of Electronic Engineering, NTUT
         2 3 4
0 1 2 3 4out in in in inv t v t v t v t v t         
 inv t  outv t
Assume , we have .   in c out cZ f Z f 1 120logG 
27/56
Linear Amplification
   dBmin cP f
1G
1
1
   dBmout cP f
   dBmin cP f
1G
   dBmout cP f
inP
cf
f
f
1out inP P G 
Department of Electronic Engineering, NTUT
 inv t  outv t
28/56
Third-order Effect
• For a single-tone input signal,
• α3 < 0 gives gain compression phenomenon
• α3 > 0 gives gain enhancement phenomenon
  1cosinv t A t
   3 3
1 1 3 1cos cosoutv t A t A t    
3 3
1 3 1 3 1
3 1
cos cos3
4 4
A A t A t    
 
   
 
Out-of-band Distortion (3rd Harmonic)
3rd-order effect
In-band Distortion
3rd-order effect
Desired Signal
linear effect
 inv t  outv t
     3
1 3out in inv t v t v t  
Department of Electronic Engineering, NTUT29/56
1 dB-Compression Point
• When the input signal becomes stronger, the output signal will
not grow proportionally but with a slower rate. It is a
saturation phenomena.
1 dB
1dBOP
G
1dBIP
 out cP f
   dBmin cP f
1
1
• When the actual output power is 1 dB less than
the linear extrapolated power, it reaches the 1-
dB gain compression point. At this point, the
input power is called the input 1-dB-
compressed power (IP1dB), the output power is
called the output 1-dB-compressed power
(OP1dB) ,and the gain is called the 1-dB-
compressed gain (G1dB).
Department of Electronic Engineering, NTUT
  3 3
1 3 1 3 1
3 1
cos cos3
4 4
outv t A A t A t    
 
   
 
α3 < 0
30/56
Analysis of 1dB-Compression Point (I)
• At P1dB , the output power is compressed 1 dB, i.e.,
• The input voltage magnitude at P1dB as
3
11 1dB 3 1dB
20
1 1dB
3
4 0.891 10
A A
A
 

  
  
 
 
3
1 1dB 3 1dB
desired+distorted
desired 1 1dB
3
410log 20log 1 dB
A AP
P A
 


  
1
1dB
3
0.145A



 
2
1dB 1 1
1dB
3 3
1
10log 30 10log 0.0725 30 18.6 10log dBm
2 in in in
A
IP
R R R
 
 
  
       
   
 
2
3
3 31 1dB 3 1dB
1 1
1dB
3 3
3
1 0.05754
10log 30 10log 30 17.6 10log dBm
2 out in out
A A
OP
R R R
 
 
 
  
            
   
 
 
Department of Electronic Engineering, NTUT
   21
1 1 1
3
17.6 10log 1 dBmdB
out
IP G
R



 
      
 
31/56
Analysis of 1dB-Compression Point (II)
1G
 dBminP
cf
cf
1out inP P G 
 1dB 1 1out in inP P G P G    
1out inP P G 
Department of Electronic Engineering, NTUT32/56
Measurement of P1dB
• By network analyzer in the power sweep mode:
Obtain small signal gain and .
• By spectrum analyzer :
Test various input signal power level to measurement the output power spectral
content to obtain output v.s. input power curve.
1 120logG  1dBG
Department of Electronic Engineering, NTUT
Network Analyzer
Amplifier
Signal Generator
Amplifier
Spectrum Analyzer
33/56
Distortion Characterization (I)
• Amplifier input-output relation:
• If only one signal is present, the undesired components will
be harmonics of the fundamental, but, if there are more
signals at input, signals will be produced with frequencies
that are mathematical combinations of the frequencies of the
input signals, called intermodulation products (IMPs) or
intermods. It is instructive to study the results when there are
two input signals (although we will eventually consider large
numbers of signals).
         2 3 4
0 1 2 3 4out in in in inv t v t v t v t v t         
Department of Electronic Engineering, NTUT34/56
Distortion Characterization (II)
• Characterized by 1-dB gain compression, IPs , 2-tone
intermodulation distortions (IMDs)
1cosinv A t
,1 1cosout ov G A t
,2 2 1cos2outv A t 
,3 3 1cos3outv A t 
Department of Electronic Engineering, NTUT
Single-tone excitation
Nonlinear Harmonics
1f
f
1f
f
12 f 13 f 14 f
35/56
Distortion Characterization (III)
Designed Amplifier
1f 2f
f
1f 2f
f
1 22 f f 2 12 f f
1f 2f
f
1 22 f f 2 12 f f
1f 2f
f
1 22 f f 2 12 f f
IMD from AM/AM distortion
IMD from AM/PM distortion
Department of Electronic Engineering, NTUT
Two-tone excitation
Nonlinear
IM
Products
• Characterized by 1-dB gain compression, IPs , 2-tone IMDs
36/56
Intercept Points
• The nonlinear properties can be described by the concept of
intercept points (IPs). The input intercept point (IIPn) is a
fictitious input power where the desired output signal
component equals in amplitude the undesired component.
 out nP f
 out cP f
   dBmin cP f
IIPn1dBIP
OIPn
1dBOP
1 dB
1
1 1
n
OutputPower(dBm)
Department of Electronic Engineering, NTUT37/56
Second-Order Nonlinear Effect (I)
• Single-tone excitation:
• For the inclusion of only the linear term and the second term,
the output voltage is
  sin 2in cv t A t
 
 
2
2
in c
in c
A
P f
Z f

         
22
1 2 1 2sin 2 sin 2out in in c cv t v t v t A f t A f t        
   
2
22
1 2sin 2 sin 2
2
c c
A
A f t A f t

     
2 2
2 1 2
1 1
sin cos2
2 2
c cA A t A t      
Out-of-band Distortion
2nd-order effect
DC Offset
2nd-order effect
Desired Signal
linear effect
Department of Electronic Engineering, NTUT
 in cZ f
 inv t  outv t
cf
f
0
38/56
Second-Order Nonlinear Effect (II)
• Two-tone Excitation:   1 2sin sininv t A t B t  
     
2
1 1 2 2 1 2sin sin sin sinoutv t A t B t A t B t        
   2 2
2 1 1 1 2
1
sin sin
2
A B A t B t    
 
     
   2 1 2 2 1 2cos cosAB t AB t              
2 2
2 1 2 2
1 1
cos2 cos2
2 2
A t B t   
 
    
2 1f f0 1f 2f 12 f 22 f1 2f f
a b
c
e
d
fg
g : DC term
a, b : linear term
c : IM (down beating)
d : IM (up beating)
e, f : 2nd harmonic
Department of Electronic Engineering, NTUT
a bg
c d
e f
39/56
Linear and 2nd-order Effects
• Linear effect:
A superscript (1) of denotes that the power content contributed from the first-
order term (linear term).
• 2nd-order effect:
 
   
 
 
1
120log 10log in c
out c in c
out c
Z f
P f P f
Z f
  
 
     1
1 dBmout c in cP f P f G 
 1
outP
Department of Electronic Engineering, NTUT
Linear Gain
 
 
   
 
 
 
 
2
2
2
2 222
2 2 2 2
2 2
1
1 1 12
2
2 2 2 2 2 2 2
in c in c
out c in
out c in c out c out c
A
Z f Z fA
P f P
Z f Z f Z f Z f

 
 
       
 
 
 
 
2
220log 3 2 dBm 10log
2
in c
in
out c
Z f
P
Z f
   
 
     2
22 2 dBmout c in cP f G P f 
 
 
 
2
2 2dB 20log 3 10log
2
in c
out c
Z f
G
Z f
  
Slope of 2
40/56
Second-Order Intercept Point
6 dB
6dB
IM2
2nd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
6dB
6 dB
• The 2nd-order products increase twice
as fast as the desired fundamental, the
straight lines cross. At the crossing
point, either for the intermod or the
harmonic, the fundamental and the
2nd-order product have equal output
powers.
• Since the slopes of the straight lines
are known, these crossing points,
called intercept points (IPs), define
the 2nd-order products at low levels.
OIP2H
OIP2IM
IIP2IM IIP2H
6 dB
• Typically, the larger of the input or
output intercept points is specified; so
amplifiers use OIPs and mixers use
IIPs. Some may even add the power
of the two fundamentals, increasing
the value of the IP by 3 dB.
6dB
Department of Electronic Engineering, NTUT41/56
Example
• For an amplifier with 21 dB linear gain and the OIP2H is at 17
dBm, find the output 2nd harmonic power when the
fundamental output signal power is 8 dBm.
 12 2 dBmH HOIP IIP G 
OIP2H = 17 dBm
2nd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
IP2H
8 dBm
25dB
25dB
33 dBm
29 dBm 4 dBm
(IIP2H )
 17 2 21 dBmHIIP 
 2 4 dBmHIIP  
       2 2 dBmout c out c H out cP f P f OIP P f    
   8 17 8 33 dBm     
Department of Electronic Engineering, NTUT42/56
Third-Order Nonlinear Effect (I)
• Consider only the first-order and the third-order effect of a
nonlinear device, i.e., .
• Single-tone excitation:
The input signal contains only a sinusoidal signal , where its available
power can be obtained as .
• In-band and out-of-band distortions
The output voltage becomes
3
1 3out in inv v v  
1cosiv A t
 2
2in inP A Z
Department of Electronic Engineering, NTUT
3 3
1 1 3 1cos cosoutv A t A t    
3 3
1 3 1 3 1
3 1
cos cos3
4 4
A A t A t    
 
   
 
   
   1 3 3
1 1 1 3 1cos cos3V V t V t   
Out-of-band Distortion
3rd-order effect
In-band Distortion
3rd-order effect
Desired Signal
linear effect
3rd harmonic
43/56
Third-Order Nonlinear Effect (II)
• Gain Compression or Enhancement:
At f1, the amplified linear-term signal has been mixed with the third-order term
If α3 < 0 , the linear gain is compressed, otherwise, it is enhanced
  3
1 1 3 1
3
cos
4
outv f A A t  
 
  
 
3 0 
   dBmin cP f
3 0 
1
1
Department of Electronic Engineering, NTUT44/56
Third-Order Nonlinear Effect (III)
• Two-tone excitation:
Department of Electronic Engineering, NTUT
  1 2 1 2sin sin ,inv t A t B t     
i : DC term
a, b : linear term(desired signal)
+inband distortion
c , d : IM3, adjacent band distortion
e, f : 3rd harmonics
g, h : out of band distortion
     3
1 3out in inv t v t v t  
2 2 3 3
3 3 1 3 1 1 3 2
3 3 9 9
cos cos
2 2 4 4
A B AB A A t B B t       
     
          
     
   2 2 3 3
3 1 2 3 2 1 3 1 3 2
3 3 1 1
cos 2 cos 2 cos3 cos3
4 4 4 4
A B t AB t A t B t              
   2 2
3 1 2 3 1 2
3 3
cos 2 cos 2
4 4
A B t AB t        
a bi
c d fe
g h
c g
fe
d
a b
h
1 22 f f
0 1f 2f 13 f 23 f
1 22 f f2 12 f f 1 22f f
   2-toneIMR 2 3 2 3in outIIP P OIP P     

45/56
Third-order Intercept Point
10 dB
10dB
IM3
3rd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
4.77dB
4.77 dB
OIP3H
OIP3IM
IIP3IM IIP3H
4.77 dB
9.54dB
• The slopes for the 3rd-order products
are steeper than 2nd-order products
since they represent cubic
nonlinearities rather than squares. IMs
and harmonics change 3 dB for each
dB change in the inputs and
fundamental outputs.
• Since the slopes of the straight lines
are known, these crossing points,
called intercept points (IPs), define
the 3rd-order products at low levels.
Department of Electronic Engineering, NTUT
   2-toneIMR dB 2 3 inIIP P   
 2 3 outOIP P 
• Intermodulation Ratio (IMR)

46/56
Example
• For an amplifier with 9 dB linear gain and the OIP3IM is at 21
dBm, find the output IM3 power when the fundamental input
signal power for each signal is 4 dBm.
 13 3 dBmIM IMOIP IIP G  OIP3IM = 21 dBm
IM3
Fundamental
Fundamental input power in each signal (dBm)
Outputpower(dBm)
IP3IM
dBm
16dB
32dB
27 dBm
4 dBm dBm
(IIP3IM )
 21 3 9 dBmIMIIP 
 3 12 dBmIMIIP 
     3 2 3 dBmIM out c IM out cP P f OIP P f    
   5 2 21 5 27 dBm    
Department of Electronic Engineering, NTUT47/56
Relationship Between Products
• IMs may be predictable from harmonics:
IM2s are 6 dB higher than the 2nd-order harmonics
IM3s are 9.54 dB greater than the 3rd-order harmonics
IP3H exceeds the IP3IM by 4.77 dB
• In addition, we may be able to relate the −1-dB compression
level to the IP3:
 
3
1 1dB 3 1dB
desired+distorted
desired 1 1dB
3
410log 20log 1 dB
A AP
P A
 


   23
1dB
1
3
0.10875
4
A



3
3, 1 3, 3 3,
3
4
OIP IM IIP IM IIP IMA A A   2 1
3,
3
4
3
IIP IMA



2
1dB 1dB
2
3,
0.10875 9.64 dB
3IIP IM IM
A IP
A IIP
   
 1 3 1 9.64 dB 3 10.64 dBdB IM IMOP IIP G OIP     
Department of Electronic Engineering, NTUT
P1dB:
very useful result!
OIP3:
48/56
Cascaded System (I)
• We take a three-stage system as an example of cascaded IP3
and then extend to an N-stage system.
inP 1C 2C 3C
1I 2I 3I
3I2I
3I
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G 2G 3G
49/56
Cascaded System (II)
1 1inC P G
 
3
1
1 2
13
inP G
I
IIP

2
1 1
1
3
in
C IIP
I P
 
  
 
inP
1C
1I
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G
50/56
Cascaded System (III)
2 1 2 1 2inC C G P G G 
 
3
1 2
2 1 2 2
13
inP G G
I I G
IIP
  
   
3 33
1 21 2
2 2 2
2 23 3
inP G GC G
I
IIP IIP
  
3 3 3
1 2 1 2
2 2 2
2 13 3
in inP G G P G G
I I I
IIP IIP
     2
2
2 2 1
2 1
1
1
3 3
in
C
I G
P
IIP IIP

 
 
 
inP 1C 2C
1I
2I
2I
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G 2G
51/56
Cascaded System (IV)
3 1 2 3inC P G G G
 
3
1 2
3 2 3 32
13
inP G G
I I G G
IIP
  
 
2
2
3 1 2 1
3 3 3 1 2 3
3 2 1
1
3 3 3
in
G G G
I I I I P G G G
IIP IIP IIP
 
       
 
 
3 3
1 2
3 2 3 32
23
inP G G
I I G G
IIP
  
   
3 3 3 3
2 3 1 2 3
3 2 2
3 33 3
inC G P G G G
I
IIP IIP
 
3 1 2 3
2 3
1 2 33 2 1 2 1
3 2 1
1
1
33 3 3
tot in
intot
in
tot
C C G G G P
P G G GI IG G G
P IIPIIP IIP IIP
  
 
  
 
1 2 1
3 2 1
1 1
3 3 3 3tot
G G G
IIP IIP IIP IIP
  
inP 1C 2C 3C
1I 2I 3I
3I2I
3I
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT52/56
Cascaded System (V)
• IIP3 of a N-Stage System
• The above equation shows that the IIP3 of an inter-stage is
reduced by a factor of the previous stage subtotal gain. It
means, the back-end stage will enter saturation first.
• OIP3 of a N-Stage System
1
1 1 1 2
1 1 2 3
1 1
3 3 3 3 3
n
kN
k
ntot n
G
G G G
IIP IIP IIP IIP IIP



    

 
Department of Electronic Engineering, NTUT
   1 2 3 2 3 4 3
1 1 1 1 1 1
3 3 3 3 3 3tot T tot T N N N NOIP G IIP G IIP G G G IIP G G G IIP G IIP
     
  

 
     2 3 1 3 4 2 4 5 3
1 1 1 1
3 3 3 3N N N NG G G OIP G G G OIP G G G OIP OIP
    


  
53/56
Example (I)
• Calculate the cascaded OIP3 of the following stages.
Department of Electronic Engineering, NTUT
21 dBm  25 dBm
10 dB 3 dB 10 dB
3OIP
Gain
21 dBm  25 dBm
15 dB 3 dB 10 dB
3OIP
Gain
stage 1 stage 2 stage3
Gain (dB) 10 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 15
Gain (linear) 10 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 31.622777
1/IIP3cas (linear) 0.2379221
IIP3cas (linear) 4.2030556
IIP3cas (dBm) 6.2356514
OIP3cas(dBm) 23.235651
stage 1 stage 2 stage3
Gain (dB) 15 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 6 103 15
Gain (linear) 31.622777 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 3.9810717 1.995E+10 31.622777
1/IIP3cas (linear) 0.7523759
IIP3cas (linear) 1.3291229
IIP3cas (dBm) 1.2356514
OIP3cas(dBm) 23.235651
54/56
Example (II)
Department of Electronic Engineering, NTUT
21 dBm  25 dBm
10 dB 3 dB 10 dB
3OIP
Gain
21 dBm  25 dBm
10 dB 3 dB 15 dB
3OIP
Gain
stage 1 stage 2 stage3
Gain (dB) 10 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 15
Gain (linear) 10 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 31.622777
1/IIP3cas (linear) 0.2379221
IIP3cas (linear) 4.2030556
IIP3cas (dBm) 6.2356514
OIP3cas(dBm) 23.235651
stage 1 stage 2 stage3
Gain (dB) 10 -3 15
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 10
Gain (linear) 10 0.5011872 31.622777
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 10
1/IIP3cas (linear) 0.5806201
IIP3cas (linear) 1.7222967
IIP3cas (dBm) 2.3610797
OIP3cas(dBm) 24.36108
55/56
Summary
• The measuring methods of the equivalent noise temperature (and
thus the NF) are the practical procedure corresponding to the noise
theory. Each method has its own pros and cons.
• The calculation of a cascade system output noise was also
introduced by using cascade formula, walk-through, and output
summation methods.
• Besides, 2nd-order and 3rd-order nonlinear effects were introduced.
These nonlinearities will result in harmonics and intermodulation
distortions in frequency domain.
• The distortion can be easily defined using frequency-domain
parameters related to signal power. It is easier to qualify the
distortion by frequency components than time-domain waveforms.
The nonlinearities can be described by P1dB and intercept points.
• The cascaded formula was also derived to show that the IIP3 of an
inter-stage is reduced by a factor of the previous stage subtotal gain.
It means, the back-end stage will enter saturation first.
Department of Electronic Engineering, NTUT56/56

Contenu connexe

Tendances

射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationPei-Che Chang
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 

Tendances (20)

射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
Saw filters
Saw filtersSaw filters
Saw filters
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 

En vedette

[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

En vedette (12)

[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similaire à Multiband Transceivers - [Chapter 2] Noises and Linearities

Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication SystemIzah Asmadi
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory EffectsSohail Khanifar
 
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...Rohde & Schwarz North America
 
Optical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverMadhumita Tamhane
 
Satellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiSatellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiMarco Lisi
 
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...megha agrawal
 
1993 prl quantum optical cloning amp_grangier
1993 prl quantum optical cloning amp_grangier1993 prl quantum optical cloning amp_grangier
1993 prl quantum optical cloning amp_grangierKyoungyoon Park
 
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdf
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdfElectronic_Compensation_Technique_to_Mitigate_Nonl.pdf
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdfNaveen Sudhamsetti
 

Similaire à Multiband Transceivers - [Chapter 2] Noises and Linearities (20)

Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication System
 
13.pdf
13.pdf13.pdf
13.pdf
 
12.pdf
12.pdf12.pdf
12.pdf
 
ece477_7.ppt
ece477_7.pptece477_7.ppt
ece477_7.ppt
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
 
Analog communication.ppt
Analog communication.pptAnalog communication.ppt
Analog communication.ppt
 
Optical receivers
Optical receiversOptical receivers
Optical receivers
 
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
 
OC_Part (8).pdf
OC_Part (8).pdfOC_Part (8).pdf
OC_Part (8).pdf
 
Optical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital Receiver
 
blah
blahblah
blah
 
Noise.pptx
Noise.pptxNoise.pptx
Noise.pptx
 
Noise
NoiseNoise
Noise
 
Satellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiSatellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_Lisi
 
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
 
1993 prl quantum optical cloning amp_grangier
1993 prl quantum optical cloning amp_grangier1993 prl quantum optical cloning amp_grangier
1993 prl quantum optical cloning amp_grangier
 
UNIT5_1.pdf
UNIT5_1.pdfUNIT5_1.pdf
UNIT5_1.pdf
 
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdf
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdfElectronic_Compensation_Technique_to_Mitigate_Nonl.pdf
Electronic_Compensation_Technique_to_Mitigate_Nonl.pdf
 

Plus de Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 

Plus de Simen Li (9)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 

Dernier

The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 

Dernier (20)

The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 

Multiband Transceivers - [Chapter 2] Noises and Linearities

  • 1. Multiband RF Transceiver System Chapter 2 Noises and Nonlinearities 李健榮 助理教授 Department of Electronic Engineering National Taipei University of Technology
  • 2. Outline • Thermal Noise and Noise Temperature • Noise Temperature Measurement:  Gain Method  Y-factor Method • Noise Figure • Output Noise Power of Cascaded Circuits • Nonlinear Effects on an RF Signal • 1-dB-Compression Point (P1dB) • Second- and Third-order Intercept Point (IP2, and IP3) • Nonlinear Effect of a Cascaded System Department of Electronic Engineering, NTUT2/56
  • 3. where is Boltzman’s constant Available Thermal Noise Power • Thermal Noise: 23 1.380 10 J/Kk    NAP kTBAvailable noise power: Thermal noise source ,n rmsvR  KT   Noisy resistor ,n rmsv Thevenin’s Equivalent Circuit Noise-free resistor R 2 , ?n rmsv  R R Matched Load 2 , 2 n rms NA v P kTB R        ,n rmsv , 2 n rmsv   Available Noise Power 2 , 4n rmsv kTBR Open-circuited noise voltage? Department of Electronic Engineering, NTUT3/56
  • 4. where is Boltzman’s constant Thermal Noise Equivalent Circuits • Thermal Noise: 23 1.380 10 J/Kk    NAP kTBAvailable noise power: Thermal noise source ,n rmsv,n rmsvR  KT   Thevenin’s Equivalent Circuit Noisy resistor Noise-free resistor Norton’s Equivalent Circuit Noise-free resistor R R 2 , 4n rmsv kTBR ,n rmsi 2 ,2 , 4 4n rms n rms v kTB i kTBG R R         2 , 4n rmsv kTBR Department of Electronic Engineering, NTUT4/56
  • 5. Thermal Noise Power Spectrum Density • Available noise power : • Thermal Noise at 290 K (17 oC): Department of Electronic Engineering, NTUT Ideal bandpass filter B R R ,n rmsv NAP kTB PSD (W/Hz, or dBm/Hz) f (Hz) Bandwidth B (Hz) kT Integrate to get noise power 0 0NAP kT BAvailable noise power:    21 0, 0 4 10 W Hz 174 dBm HzPSDN kT     Power spectrum density: 5/56
  • 6. Equivalent Noise Temperature (I) • If an arbitrary source of noise (thermal or nonthermal) is “white”, it can be modeled as an equivalent thermal noise source, and characterized with an equivalent noise temperature. • An arbitrary white noise source with a driving-point impedance of R and delivers a noise power No to a load resistor R. This noise source can be replaced by a noisy resistor of value R, at temperature Te (equivalent temperature): Department of Electronic Engineering, NTUT oN R Arbitrary white noise source R oN RR eT o e N T kB  6/56
  • 7. Equivalent Noise Temperature (II) • How to define the equivalent noise temperature for a two-port component? Let’s take a noisy amplifier as an example. • In order to know the amplifier inherent noise No, you may like to measure the amplifier by using a noise source with 0 K temperature. Is that possible? Noisy amplifier R oN aGR 0 KsT  This means that the output noise No is only generated from the amplifier. Noiseless amplifier R o a iN G N aGR iN o i e a N N kT B G  i o e a N N T kB G kB   Department of Electronic Engineering, NTUT7/56
  • 8. Gain Method • Use a noise source with the known noise temperature Ts. Noiseless amplifier R o a iN G N aGR i s eN kT B kT B  sT eT Noisy amplifier R _o a i o addN G N N  aGR i sN kT B sT    o a s e a s eN G kT B kT B G kB T T    o s e a N T T G   o e s a N T T G    Need to know the amplifier power gain Ga.  Due to the noise floor of the analyzer, the gain method is suitable for measuring high gain and high noise devices. Department of Electronic Engineering, NTUT8/56
  • 9. The Y-factor Method • Use two loads at significantly different temperatures (hot and cold ) to measure the noise temperature. • Defined the Y-factor as Department of Electronic Engineering, NTUT 1 1a a eN G kT B G kT B  2 2a a eN G kT B G kT B  1 2 1 e T YT T Y    11 2 2 1e e T TN Y N T T      R R 1T 2T aG B eT 1N 2N (hot) (cold)  You don’t have to know Ga.  The Y-factor method is not suitable for measuring a very high noise device, since it will make to cause some error. Thus, we may like a noise source with high ENR for measuring high noise devices. 1Y   Sometimes, you may need a pre-amplifier to lower analyzer noise for measuring a low noise device . 9/56
  • 10. Noise Figure (NF) – (I) • The amount of noise added to a signal that is being processed is of critical importance in most RF systems. The addition of noise by the system is characterized by its noise figure (NF). • Noise Factor (or Figure) is a measure of the degradation in the signal-to-noise ratio (SNR) between the input and output: where Si , Ni are the input and noise powers, and So, No are the output signal and noise powers 1i i i o o o SNR S N F SNR S N     dB 10logNF F Gain = 20 dB P (dBm) Frequency (Hz) 00 60 SNRi = 40 dB NF = ? P (dBm) Frequency (Hz) 80 40 SNRo= 32 dB 72 NF = 8 dB Noisy Amplifier Department of Electronic Engineering, NTUT10/56
  • 11. Noise Figure (NF) – (II) • By definition, the input noise power is assumed to be the thermal noise power resulting from a matched resistor at T0 (=290 K); that is, , and the noise figure is given as Department of Electronic Engineering, NTUT  0 0 0 1 1ei i e o i kGB T TSNR S T F SNR kT B GS T       0iN kT B   01eT F T  Noisy Network G B eT R 0T R i i iP S N  o o oP S N  23 1.380 10 J/ Kk     where is Boltzman’s constant0NAP kT B    21 0 4 10 W Hz 174 dBm HzTN kT       Use the concept of SNR  Use the concept of noise only 0 0 0 0 0 1 1o add e e i N kGBT N kGBT kGBT T F GN GkT B GkT B T         11/56
  • 12. Resistive-type Passive Circuits (I) • The circuit is with a matched source resistor, which is also at temperature T. • The output noise power : • We can think of this power coming from the source resistor (through the lossy line), and from the noise generated by the line itself. Thus, Department of Electronic Engineering, NTUT 0P kTB 0 addedP kTB GkTB GN     1 1added e G N kTB L kTB kT B G      where is the noise generated by the line.addedN 12/56
  • 13. Resistive-type Passive Circuits (II) • The lossy line equivalent noise temperature : • The noise figure is where T0 denotes room temperature, T is the actual physical temperature (K). Note that the loss L may depend on frequency. • Output noise power : where input thermal noise power Department of Electronic Engineering, NTUT   1 1e G T T L T G       0 1 1 T F L T     dB 10logNF F      dBm dBm dBout inN N L NF    WattinN kTB  dBminN f  dBmoutN f inN L NF  13/56
  • 14. Active Circuits • An active circuit is with noise figure NF and available gain G. (Note that NF and G are usually depend on frequency.) Department of Electronic Engineering, NTUT  dBmout inS S G   174 10log dBminN B    dBmout inN N NF G    dBminN f f  dBmoutN BW  dBminS f  dBmoutS f BW  dBmin inS N f  dBmout outS N f BW  dBG  dBNF 14/56
  • 15. Multiple Stages Cascaded • Multiple stages cascaded where Fi is the noise factor and Gi is the available power gain of each stage. Department of Electronic Engineering, NTUT 1 1 0 1 1 N i i i j j F F G         2 3 1 1 1 2 1 2 1 e e eN eT e N T T T T T G G G G G G        1eT 1G 2G 2eT eNT NG g T addkT G NgkT 1ekT 2ekT eNkT gkT  T g eTkG T T eTkT 1 2T NG G G G  1 1 1g ekT G kT G  1 1 1 2 2 2g e ekT G kT G G kT G   1 2 1 1 2 2g N e N e N eN NkT G G G kT G G kT G G kT G       1 1 2 0 i T N j j G G G G G        01eT F T  Cascade System Equivalent System   32 1 1 1 2 1 2 1 1 11 1 1 N N F FF F F G G G G G G            1st stage dominate less significant 15/56
  • 16. Output Noise Power of Cascaded Circuits (II) • When the noise temperature and gain of each stage are determined, the overall noise temperature and gain of the whole system can be obtained. • Use the following methods to calculate the output noise , (1) Cascade Formula (2) Walk-Through method (3) Summation method Department of Electronic Engineering, NTUT 1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4 oN 16/56
  • 17. Cascade Formula Method Department of Electronic Engineering, NTUT    1 1 11 1.259 1 300 77.7 KeT L T         3 3 31 2.512 1 300 453.6 KeT L T      150 453.6 700 77.7 275.42 K 0.794 0.794 316.23 0.794 316.23 0.398 eTT             23 21 1.38 10 50 275.42 =4.5 10 Watts Hz= 173.5 dBm Hzs eTk T T          0 173.5 1 25 4 30 dBm HzN       1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4 Stage 1 Teff : Stage 3 Teff : System equivalent noise temperature and output noise : 17/56
  • 18. Walk-Through Method – Stage 1 • Calculate the noise signal from stage to stage. At first, calculate the noise density stage by stage:  Antenna noise:  Cable 1 noise: Department of Electronic Engineering, NTUT 23 19 1.38 10 50=6.9 10 mW Hz 181.6 dBm HzskT            1 1 11 1.259 1 300 77.7 KeT L T      23 19 1 1.38 10 77.7=10.72 10 mW Hz 179.7 dBm HzekT         1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4 Stage Input A Input B Sum Output Noise Density (dBm/Hz) 1 181.6 179.7 177.5 178.5 2 178.5 18/56
  • 19. Walk-Through Method – Stage 2 1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4  LNA Noise: 23 19 2 1.38 10 150=2.07 10 mW Hz 176.8 dBm HzekT         Stage Input A Input B Sum Output Noise Density (dBm/Hz) 1 181.6 179.7 177.5 178.5 2 178.5 176.8 174.6 149.6 3 149.6 Department of Electronic Engineering, NTUT19/56
  • 20. Walk-Through Method – Stage 3 Stage Input A Input B Sum Output Noise Density (dBm/Hz) 1 181.6 179.7 177.5 178.5 2 178.5 176.8 174.6 149.6 3 149.6 172.0 149.6 153.6 4 153.6 1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4  Cable 2 Noise:    3 3 31 2.512 1 300 453.6 KeT L T      23 19 2 1.38 10 453.6=6.26 10 mW Hz 172 dBm HzekT         Department of Electronic Engineering, NTUT20/56
  • 21. Walk-Through Method – Stage 4 1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4  Gain amplifier noise: 23 19 4 1.38 10 700=9.66 10 mW Hz 170.2 dBm HzekT         Stage Input A Input B Sum Output Noise Density (dBm/Hz) 1 181.6 179.7 177.5 178.5 2 178.5 176.8 174.6 149.6 3 149.6 172.0 149.6 153.6 4 153.6 170.2 153.5 123.5 Department of Electronic Engineering, NTUT21/56
  • 22. Summation Method • Each noise source is individually taken through the various gains and loses to the output, and the sum of all output noises is just the total output noise (Superposition).  For stage1:  For stage2:  For stage3:  For stage4: Department of Electronic Engineering, NTUT 181.6 1 25 4 30 131.6 dBm Hz       179.7 1 25 4 30 129.7 dBm Hz       176.8 25 4 30 125.8 dBm Hz      172 4 30 146 dBm Hz     170.2 30 140.2 dBm Hz    1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4 oN Noise Contributor Output Noise Density (dBm/Hz) Environment 131.6 Stage 1 129.7 Stage 2 125.8 Stage 3 146.0 Stage 4 140.2 Total 123.5 22/56
  • 23. Noise Figure Method 1 1 dBL  1 300 KT   1 300 KT   3 4 dBL  2 150 KeT   2 25 dBG  4 700 KeT   4 30 dBG  50 KsT   oN stage1 stage2 stage3 stage4 Atten1 Amp2 Atten3 Amp4 Gain (dB) -1 25 -4 30 Gain 0.79432823 316.227766 0.39810717 1000 T 300 150 300 700 F 1.26785387 1.51724138 2.56402045 3.4137931 NF (dB) 1.03069202 1.81054679 4.08921484 5.33237197 Cumumlatvie Gain 0.79432823 251.188643 100 100000 Fcas 1.26785387 1.91902219 1.92524867 1.9493866 NFcas (dB) 2.89897976 Gcas (dB) 50 Ni (Ts=50 K) (dBm) -181.611509 No=Ni+Gcas+NFcas -128.7125 Wrong!Since NF is defined@290 K Fcas=1+(Te/T0) Te 275.322114 No=Gcas(kTsB+kTeB) 4.4894E-16 -123.47807 Correct! Department of Electronic Engineering, NTUT23/56
  • 24. Nonlinear Effects • The distortion of an RF transceiver are resulted from internal interferences and external interferences. 1) The internal interferences are generated from the nonlinear effect of its own devices. 2) The external interference are from outside the transceiver and intercepted by the antenna or EM coupling. 3) Internal distortion is primarily generated from power amplifier. Department of Electronic Engineering, NTUT24/56
  • 25. Nonlinear Memoryless Device (I) • An input-output relationship of a nonlinear memoryless device can be represented as          2 3 4 0 1 2 3 4out in in in inv t v t v t v t v t           inv t  outv t inV outV linear nonlinear small signal large signal linear output distorted output f f Perfect sinusoid Harmonics Department of Electronic Engineering, NTUT25/56
  • 26. Nonlinear Memoryless Device (II) Coefficients αi are depending on 1) DC bias, RF characteristics of the active device used in the circuit. 2) Magnitude vin of the signal. 3) When Pin < P1dB (linear region), all can be treated as constant. • Assume the input and output impedance of the circuit are , and ,respectively. Considering a CW input signal with the voltage ,the input available power is  inv t  outv t   sin 2in in cv t V f t    2 2in c in in cP f V Z f Department of Electronic Engineering, NTUT  inZ f  outZ f          2 3 4 0 1 2 3 4out in in in inv t v t v t v t v t          26/56
  • 27. Small-signal Power Gain (Linear Gain) • For linear operation where Pin is the available input power and G1 is the available small-signal power gain, which equals to    1 1 sin 2out in in cv t v t V t        2 2 2 2 2 21 1 1 1 1 1 2 2 2 in cout in in in out in out out in out out c Z fV V V Z P P Z Z Z Z Z f          120log 10log in c out in out c Z f P P Z f         1 dBmout c in cP f P f G     1 120log 10log in c out c Z f G Z f     sin 2in in cv t V f t Department of Electronic Engineering, NTUT          2 3 4 0 1 2 3 4out in in in inv t v t v t v t v t           inv t  outv t Assume , we have .   in c out cZ f Z f 1 120logG  27/56
  • 28. Linear Amplification    dBmin cP f 1G 1 1    dBmout cP f    dBmin cP f 1G    dBmout cP f inP cf f f 1out inP P G  Department of Electronic Engineering, NTUT  inv t  outv t 28/56
  • 29. Third-order Effect • For a single-tone input signal, • α3 < 0 gives gain compression phenomenon • α3 > 0 gives gain enhancement phenomenon   1cosinv t A t    3 3 1 1 3 1cos cosoutv t A t A t     3 3 1 3 1 3 1 3 1 cos cos3 4 4 A A t A t             Out-of-band Distortion (3rd Harmonic) 3rd-order effect In-band Distortion 3rd-order effect Desired Signal linear effect  inv t  outv t      3 1 3out in inv t v t v t   Department of Electronic Engineering, NTUT29/56
  • 30. 1 dB-Compression Point • When the input signal becomes stronger, the output signal will not grow proportionally but with a slower rate. It is a saturation phenomena. 1 dB 1dBOP G 1dBIP  out cP f    dBmin cP f 1 1 • When the actual output power is 1 dB less than the linear extrapolated power, it reaches the 1- dB gain compression point. At this point, the input power is called the input 1-dB- compressed power (IP1dB), the output power is called the output 1-dB-compressed power (OP1dB) ,and the gain is called the 1-dB- compressed gain (G1dB). Department of Electronic Engineering, NTUT   3 3 1 3 1 3 1 3 1 cos cos3 4 4 outv t A A t A t             α3 < 0 30/56
  • 31. Analysis of 1dB-Compression Point (I) • At P1dB , the output power is compressed 1 dB, i.e., • The input voltage magnitude at P1dB as 3 11 1dB 3 1dB 20 1 1dB 3 4 0.891 10 A A A              3 1 1dB 3 1dB desired+distorted desired 1 1dB 3 410log 20log 1 dB A AP P A        1 1dB 3 0.145A      2 1dB 1 1 1dB 3 3 1 10log 30 10log 0.0725 30 18.6 10log dBm 2 in in in A IP R R R                      2 3 3 31 1dB 3 1dB 1 1 1dB 3 3 3 1 0.05754 10log 30 10log 30 17.6 10log dBm 2 out in out A A OP R R R                               Department of Electronic Engineering, NTUT    21 1 1 1 3 17.6 10log 1 dBmdB out IP G R               31/56
  • 32. Analysis of 1dB-Compression Point (II) 1G  dBminP cf cf 1out inP P G   1dB 1 1out in inP P G P G     1out inP P G  Department of Electronic Engineering, NTUT32/56
  • 33. Measurement of P1dB • By network analyzer in the power sweep mode: Obtain small signal gain and . • By spectrum analyzer : Test various input signal power level to measurement the output power spectral content to obtain output v.s. input power curve. 1 120logG  1dBG Department of Electronic Engineering, NTUT Network Analyzer Amplifier Signal Generator Amplifier Spectrum Analyzer 33/56
  • 34. Distortion Characterization (I) • Amplifier input-output relation: • If only one signal is present, the undesired components will be harmonics of the fundamental, but, if there are more signals at input, signals will be produced with frequencies that are mathematical combinations of the frequencies of the input signals, called intermodulation products (IMPs) or intermods. It is instructive to study the results when there are two input signals (although we will eventually consider large numbers of signals).          2 3 4 0 1 2 3 4out in in in inv t v t v t v t v t          Department of Electronic Engineering, NTUT34/56
  • 35. Distortion Characterization (II) • Characterized by 1-dB gain compression, IPs , 2-tone intermodulation distortions (IMDs) 1cosinv A t ,1 1cosout ov G A t ,2 2 1cos2outv A t  ,3 3 1cos3outv A t  Department of Electronic Engineering, NTUT Single-tone excitation Nonlinear Harmonics 1f f 1f f 12 f 13 f 14 f 35/56
  • 36. Distortion Characterization (III) Designed Amplifier 1f 2f f 1f 2f f 1 22 f f 2 12 f f 1f 2f f 1 22 f f 2 12 f f 1f 2f f 1 22 f f 2 12 f f IMD from AM/AM distortion IMD from AM/PM distortion Department of Electronic Engineering, NTUT Two-tone excitation Nonlinear IM Products • Characterized by 1-dB gain compression, IPs , 2-tone IMDs 36/56
  • 37. Intercept Points • The nonlinear properties can be described by the concept of intercept points (IPs). The input intercept point (IIPn) is a fictitious input power where the desired output signal component equals in amplitude the undesired component.  out nP f  out cP f    dBmin cP f IIPn1dBIP OIPn 1dBOP 1 dB 1 1 1 n OutputPower(dBm) Department of Electronic Engineering, NTUT37/56
  • 38. Second-Order Nonlinear Effect (I) • Single-tone excitation: • For the inclusion of only the linear term and the second term, the output voltage is   sin 2in cv t A t     2 2 in c in c A P f Z f            22 1 2 1 2sin 2 sin 2out in in c cv t v t v t A f t A f t             2 22 1 2sin 2 sin 2 2 c c A A f t A f t        2 2 2 1 2 1 1 sin cos2 2 2 c cA A t A t       Out-of-band Distortion 2nd-order effect DC Offset 2nd-order effect Desired Signal linear effect Department of Electronic Engineering, NTUT  in cZ f  inv t  outv t cf f 0 38/56
  • 39. Second-Order Nonlinear Effect (II) • Two-tone Excitation:   1 2sin sininv t A t B t         2 1 1 2 2 1 2sin sin sin sinoutv t A t B t A t B t            2 2 2 1 1 1 2 1 sin sin 2 A B A t B t                2 1 2 2 1 2cos cosAB t AB t               2 2 2 1 2 2 1 1 cos2 cos2 2 2 A t B t           2 1f f0 1f 2f 12 f 22 f1 2f f a b c e d fg g : DC term a, b : linear term c : IM (down beating) d : IM (up beating) e, f : 2nd harmonic Department of Electronic Engineering, NTUT a bg c d e f 39/56
  • 40. Linear and 2nd-order Effects • Linear effect: A superscript (1) of denotes that the power content contributed from the first- order term (linear term). • 2nd-order effect:           1 120log 10log in c out c in c out c Z f P f P f Z f           1 1 dBmout c in cP f P f G   1 outP Department of Electronic Engineering, NTUT Linear Gain                 2 2 2 2 222 2 2 2 2 2 2 1 1 1 12 2 2 2 2 2 2 2 2 in c in c out c in out c in c out c out c A Z f Z fA P f P Z f Z f Z f Z f                      2 220log 3 2 dBm 10log 2 in c in out c Z f P Z f            2 22 2 dBmout c in cP f G P f        2 2 2dB 20log 3 10log 2 in c out c Z f G Z f    Slope of 2 40/56
  • 41. Second-Order Intercept Point 6 dB 6dB IM2 2nd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) 6dB 6 dB • The 2nd-order products increase twice as fast as the desired fundamental, the straight lines cross. At the crossing point, either for the intermod or the harmonic, the fundamental and the 2nd-order product have equal output powers. • Since the slopes of the straight lines are known, these crossing points, called intercept points (IPs), define the 2nd-order products at low levels. OIP2H OIP2IM IIP2IM IIP2H 6 dB • Typically, the larger of the input or output intercept points is specified; so amplifiers use OIPs and mixers use IIPs. Some may even add the power of the two fundamentals, increasing the value of the IP by 3 dB. 6dB Department of Electronic Engineering, NTUT41/56
  • 42. Example • For an amplifier with 21 dB linear gain and the OIP2H is at 17 dBm, find the output 2nd harmonic power when the fundamental output signal power is 8 dBm.  12 2 dBmH HOIP IIP G  OIP2H = 17 dBm 2nd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) IP2H 8 dBm 25dB 25dB 33 dBm 29 dBm 4 dBm (IIP2H )  17 2 21 dBmHIIP   2 4 dBmHIIP          2 2 dBmout c out c H out cP f P f OIP P f        8 17 8 33 dBm      Department of Electronic Engineering, NTUT42/56
  • 43. Third-Order Nonlinear Effect (I) • Consider only the first-order and the third-order effect of a nonlinear device, i.e., . • Single-tone excitation: The input signal contains only a sinusoidal signal , where its available power can be obtained as . • In-band and out-of-band distortions The output voltage becomes 3 1 3out in inv v v   1cosiv A t  2 2in inP A Z Department of Electronic Engineering, NTUT 3 3 1 1 3 1cos cosoutv A t A t     3 3 1 3 1 3 1 3 1 cos cos3 4 4 A A t A t                    1 3 3 1 1 1 3 1cos cos3V V t V t    Out-of-band Distortion 3rd-order effect In-band Distortion 3rd-order effect Desired Signal linear effect 3rd harmonic 43/56
  • 44. Third-Order Nonlinear Effect (II) • Gain Compression or Enhancement: At f1, the amplified linear-term signal has been mixed with the third-order term If α3 < 0 , the linear gain is compressed, otherwise, it is enhanced   3 1 1 3 1 3 cos 4 outv f A A t          3 0     dBmin cP f 3 0  1 1 Department of Electronic Engineering, NTUT44/56
  • 45. Third-Order Nonlinear Effect (III) • Two-tone excitation: Department of Electronic Engineering, NTUT   1 2 1 2sin sin ,inv t A t B t      i : DC term a, b : linear term(desired signal) +inband distortion c , d : IM3, adjacent band distortion e, f : 3rd harmonics g, h : out of band distortion      3 1 3out in inv t v t v t   2 2 3 3 3 3 1 3 1 1 3 2 3 3 9 9 cos cos 2 2 4 4 A B AB A A t B B t                                  2 2 3 3 3 1 2 3 2 1 3 1 3 2 3 3 1 1 cos 2 cos 2 cos3 cos3 4 4 4 4 A B t AB t A t B t                  2 2 3 1 2 3 1 2 3 3 cos 2 cos 2 4 4 A B t AB t         a bi c d fe g h c g fe d a b h 1 22 f f 0 1f 2f 13 f 23 f 1 22 f f2 12 f f 1 22f f    2-toneIMR 2 3 2 3in outIIP P OIP P       45/56
  • 46. Third-order Intercept Point 10 dB 10dB IM3 3rd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) 4.77dB 4.77 dB OIP3H OIP3IM IIP3IM IIP3H 4.77 dB 9.54dB • The slopes for the 3rd-order products are steeper than 2nd-order products since they represent cubic nonlinearities rather than squares. IMs and harmonics change 3 dB for each dB change in the inputs and fundamental outputs. • Since the slopes of the straight lines are known, these crossing points, called intercept points (IPs), define the 3rd-order products at low levels. Department of Electronic Engineering, NTUT    2-toneIMR dB 2 3 inIIP P     2 3 outOIP P  • Intermodulation Ratio (IMR)  46/56
  • 47. Example • For an amplifier with 9 dB linear gain and the OIP3IM is at 21 dBm, find the output IM3 power when the fundamental input signal power for each signal is 4 dBm.  13 3 dBmIM IMOIP IIP G  OIP3IM = 21 dBm IM3 Fundamental Fundamental input power in each signal (dBm) Outputpower(dBm) IP3IM dBm 16dB 32dB 27 dBm 4 dBm dBm (IIP3IM )  21 3 9 dBmIMIIP   3 12 dBmIMIIP       3 2 3 dBmIM out c IM out cP P f OIP P f        5 2 21 5 27 dBm     Department of Electronic Engineering, NTUT47/56
  • 48. Relationship Between Products • IMs may be predictable from harmonics: IM2s are 6 dB higher than the 2nd-order harmonics IM3s are 9.54 dB greater than the 3rd-order harmonics IP3H exceeds the IP3IM by 4.77 dB • In addition, we may be able to relate the −1-dB compression level to the IP3:   3 1 1dB 3 1dB desired+distorted desired 1 1dB 3 410log 20log 1 dB A AP P A        23 1dB 1 3 0.10875 4 A    3 3, 1 3, 3 3, 3 4 OIP IM IIP IM IIP IMA A A   2 1 3, 3 4 3 IIP IMA    2 1dB 1dB 2 3, 0.10875 9.64 dB 3IIP IM IM A IP A IIP      1 3 1 9.64 dB 3 10.64 dBdB IM IMOP IIP G OIP      Department of Electronic Engineering, NTUT P1dB: very useful result! OIP3: 48/56
  • 49. Cascaded System (I) • We take a three-stage system as an example of cascaded IP3 and then extend to an N-stage system. inP 1C 2C 3C 1I 2I 3I 3I2I 3I 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 2G 3G 49/56
  • 50. Cascaded System (II) 1 1inC P G   3 1 1 2 13 inP G I IIP  2 1 1 1 3 in C IIP I P        inP 1C 1I 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 50/56
  • 51. Cascaded System (III) 2 1 2 1 2inC C G P G G    3 1 2 2 1 2 2 13 inP G G I I G IIP        3 33 1 21 2 2 2 2 2 23 3 inP G GC G I IIP IIP    3 3 3 1 2 1 2 2 2 2 2 13 3 in inP G G P G G I I I IIP IIP      2 2 2 2 1 2 1 1 1 3 3 in C I G P IIP IIP        inP 1C 2C 1I 2I 2I 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 2G 51/56
  • 52. Cascaded System (IV) 3 1 2 3inC P G G G   3 1 2 3 2 3 32 13 inP G G I I G G IIP      2 2 3 1 2 1 3 3 3 1 2 3 3 2 1 1 3 3 3 in G G G I I I I P G G G IIP IIP IIP               3 3 1 2 3 2 3 32 23 inP G G I I G G IIP        3 3 3 3 2 3 1 2 3 3 2 2 3 33 3 inC G P G G G I IIP IIP   3 1 2 3 2 3 1 2 33 2 1 2 1 3 2 1 1 1 33 3 3 tot in intot in tot C C G G G P P G G GI IG G G P IIPIIP IIP IIP           1 2 1 3 2 1 1 1 3 3 3 3tot G G G IIP IIP IIP IIP    inP 1C 2C 3C 1I 2I 3I 3I2I 3I 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT52/56
  • 53. Cascaded System (V) • IIP3 of a N-Stage System • The above equation shows that the IIP3 of an inter-stage is reduced by a factor of the previous stage subtotal gain. It means, the back-end stage will enter saturation first. • OIP3 of a N-Stage System 1 1 1 1 2 1 1 2 3 1 1 3 3 3 3 3 n kN k ntot n G G G G IIP IIP IIP IIP IIP            Department of Electronic Engineering, NTUT    1 2 3 2 3 4 3 1 1 1 1 1 1 3 3 3 3 3 3tot T tot T N N N NOIP G IIP G IIP G G G IIP G G G IIP G IIP                  2 3 1 3 4 2 4 5 3 1 1 1 1 3 3 3 3N N N NG G G OIP G G G OIP G G G OIP OIP           53/56
  • 54. Example (I) • Calculate the cascaded OIP3 of the following stages. Department of Electronic Engineering, NTUT 21 dBm  25 dBm 10 dB 3 dB 10 dB 3OIP Gain 21 dBm  25 dBm 15 dB 3 dB 10 dB 3OIP Gain stage 1 stage 2 stage3 Gain (dB) 10 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 15 Gain (linear) 10 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 31.622777 1/IIP3cas (linear) 0.2379221 IIP3cas (linear) 4.2030556 IIP3cas (dBm) 6.2356514 OIP3cas(dBm) 23.235651 stage 1 stage 2 stage3 Gain (dB) 15 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 6 103 15 Gain (linear) 31.622777 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 3.9810717 1.995E+10 31.622777 1/IIP3cas (linear) 0.7523759 IIP3cas (linear) 1.3291229 IIP3cas (dBm) 1.2356514 OIP3cas(dBm) 23.235651 54/56
  • 55. Example (II) Department of Electronic Engineering, NTUT 21 dBm  25 dBm 10 dB 3 dB 10 dB 3OIP Gain 21 dBm  25 dBm 10 dB 3 dB 15 dB 3OIP Gain stage 1 stage 2 stage3 Gain (dB) 10 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 15 Gain (linear) 10 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 31.622777 1/IIP3cas (linear) 0.2379221 IIP3cas (linear) 4.2030556 IIP3cas (dBm) 6.2356514 OIP3cas(dBm) 23.235651 stage 1 stage 2 stage3 Gain (dB) 10 -3 15 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 10 Gain (linear) 10 0.5011872 31.622777 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 10 1/IIP3cas (linear) 0.5806201 IIP3cas (linear) 1.7222967 IIP3cas (dBm) 2.3610797 OIP3cas(dBm) 24.36108 55/56
  • 56. Summary • The measuring methods of the equivalent noise temperature (and thus the NF) are the practical procedure corresponding to the noise theory. Each method has its own pros and cons. • The calculation of a cascade system output noise was also introduced by using cascade formula, walk-through, and output summation methods. • Besides, 2nd-order and 3rd-order nonlinear effects were introduced. These nonlinearities will result in harmonics and intermodulation distortions in frequency domain. • The distortion can be easily defined using frequency-domain parameters related to signal power. It is easier to qualify the distortion by frequency components than time-domain waveforms. The nonlinearities can be described by P1dB and intercept points. • The cascaded formula was also derived to show that the IIP3 of an inter-stage is reduced by a factor of the previous stage subtotal gain. It means, the back-end stage will enter saturation first. Department of Electronic Engineering, NTUT56/56