SlideShare une entreprise Scribd logo
1  sur  47
2.3 Carbohydrates and lipids
Essential idea: Compounds of carbon, hydrogen and oxygen are used
to supply and store energy.
Understandings, Applications and Skills
Statement Guidance
2.3 U.1 Monosaccharide monomers are linked together by
condensation reactions to form disaccharides and
polysaccharide polymers.
Sucrose, lactose and maltose should be
included as examples of disaccharides
produced by combining monosaccharides. The
structure of starch should include amylose and
amylopectin.
2.3 U.2 Fatty acids can be saturated, monounsaturated or
polyunsaturated.
Named examples of fatty acids are not
required.
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
2.3 U.4 Triglycerides are formed by condensation from
three fatty acids and one glycerol.
2.3 A.1 Structure and function of cellulose and starch in
plants and glycogen in humans.
2.3 A.2 Scientific evidence for health risks of trans fats and
saturated fatty acids.
2.3 A.3 Lipids are more suitable for long-term energy
storage in humans than carbohydrates.
2.3 A.4 Evaluation of evidence and the methods used to
obtain the evidence for health claims made about
lipids.
2.3 S.1 Use of molecular visualization software to compare
cellulose, starch and glycogen.
2.3 S.2 Determination of body mass index by calculation or
use of a nomogram.
Carbohydrates
Are organic compounds
made of sugars and their
monomers.
1. Monosaccharide Single units
called monomers.
2. Disaccharides 2 monomers joined.
3. Polysaccharides long chains of
repeating units
2.3 U.1 Monosaccharide monomers are linked together by condensation
reactions to form disaccharides and polysaccharide polymers.
http://www.cookrepublic.com/images/blog/archive/almondrose_bread4.jpg
1. Monosaccharide
A. Glucose
• has the formula C6H12O6.
It forms a hexagonal ring
(hexose)
• Glucose is the form of
sugar that fuels
respiration
• Glucose forms the base
unit for many polymers
• 5 of the carbons form
corners on the ring with
the 6th corner taken by
oxygen
2.3 U.1 Monosaccharide monomers are linked together by condensation
reactions to form disaccharides and polysaccharide polymers.
B. Galactose
• Sugar which is less sweet
than glucose.
• It is found in dairy
products, in sugar beets
and gums. When
combined with glucose,
through a dehydration
reaction, the result is the
disaccharide lactose
found in most milks.
Galactose
Glucose
Glucose
Difference in the Structure
C. Monosaccharide
Fructose
• Fructose is another pentose
sugar
• Commonly found in fruits and
honey
• It is the sweetest naturally
occurring carbohydrate
https://www.drfuhrman.com/images/Misc/Pomegranate_Image.png
•C5H10O5
•Carbon 1 is attached to Carbon 4
•Each Carbon has a -H group (C5
has 2)
•Each Carbon has a -OH group
Properties of Ribose
• Ribose is a pentose sugar, it has
a pentagonal ring
• It forms the backbone of RNA
• Deoxyribose differs as shown in
the diagram, and forms the
backbone of DNA
• Soluble
D. Monosaccharide Ribose
2. Disaccharides
• Are double sugars that
contain two
monosaccharides.
• Are formed through the
process of condensation
synthesis.
Monosaccharide + monosaccharide 
Disaccharide
Principle: Monomer + Monomer = Polymers
Condensation and Hydrolysis Reactions
Water is removed
Glycosidic bond is formed
2.3 U.1 Monosaccharide monomers are linked together by condensation
reactions to form disaccharides and polysaccharide polymers.
A. Disaccharide
Maltose
The basket contains Sweet Potatoes which have some of the highest
contents of Maltose ((C12H22O11) is a dimer of glucose) of any food
was α glucose
was α glucose
https://ugandapeopleandculture.files.wordpress.com/2013/03/sweet-potato-in-basket-lo-r.jpg
Disaccharide #2
(Literally “two sugars”)
Lactose (C12H22O11) is most
commonly found in milk
http://commons.wikimedia.org/wiki/File:Alpha-lactose-from-xtal-3D-balls.png
The two subunits that
make up lactose are
glucose and galactose,
our friends from a
couple of slides ago.
was galactose
was α glucose
Sucrose (C12H22O11) Disaccharide
The two subunits that
make up sucrose are
glucose and fructose.
• Sucrose (C12H22O11) is
also known as table sugar
• The two
monosaccharides that
make it up are glucose
and fructose
was fructose
was α glucose
3. Polysaccharides
• Macromolecules that are
polymers of a few hundred or
thousand monosaccharide.
Important in:
Energy Storage
Structural support
Examples
Starch (energy)
Glycogen (energy)
Cellulose
(structure)
2.3 U.1 Monosaccharide monomers are linked together by condensation
reactions to form disaccharides and polysaccharide polymers.
2.3 U.1 Monosaccharide monomers are linked together by condensation
reactions to form disaccharides and polysaccharide polymers.
Cellulose Polysaccharide #1
http://en.wikipedia.org/wiki/File:Cellulose_spacefilling_model.jpg
2.3 A.1 Structure and function of cellulose and starch in plants and
glycogen in humans.
• Cellulose molecules are unbranched chains of β-glucose linking carbon atom 1 to carbon atom 4 on the
next β-glucose.
• Hydrogen bonds link the the molecules together.
• The glucose subunits in the chain are oriented alternately upwards and downwards.
• The consequence of this is that the cellulose molecule is a straight chain, rather than curved.
• The linked molecules form bundles called cellulose microfibrils.
• They have very high tensile strength (the basis of cell walls).
Polysaccharide #2
http://commons.wikimedia.org/wiki/File:Amylose3.svg
Amylose and
Amylopectin are both
forms of starch and
made from repeating
glucose units
http://www.flickr.com/photos/caroslines/5534432762/
• Starch is made by linking together α-glucose molecules
• Condensation reactions link carbon atom 1 to carbon atom 4 on the next α-
glucose
• all the glucose molecules in starch can be orientated in the same way
• The consequence of this is that the starch molecule is curved, rather than straight.
• Size of the molecule is not fixed
Polysaccharide #2
http://www.flickr.com/photos/caroslines/5534432762/
• In amylopectin the chain is branched,
so has a more globular shape.
• Due it’s branched nature amylopectin
can be much larger consisting of
2,000-200,000 units
• Starch is only made by plant cells.
• Molecules of both types of starch are hydrophilic but are too large to be soluble in water.
• Starch does not affect the osmotic balance of cells, i.e. cause too much water to enter
them
• It is easy to add or remove extra glucose molecules to starch
• Therefore starch is useful in cells for glucose, and consequently energy, storage.
• In seeds and storage organs such as potato cells glucose held as starch.
• Starch is made as a temporary store in leaf cells when glucose is being made faster by
photosynthesis than it can be exported to other parts of the plant.
• In amylose the chain of α-glucose
molecules is un-branched and forms a helix.
• Typically amylose is made up of 300-3,000
glucose units
Polysaccharide #3 Glycogen
• Glycogen (C6H10O5)n is a polymer made
from repeating glucose subunits
• Condensation reactions link carbon
atom 1 - 4 on the next α-glucose.
Branches occur where a condensation
reaction instead links carbon atom 1 –
6. As a result the molecule is compact
• Glycogen is made by animals and also
some fungi.
• It is stored in the liver and some
muscles in humans.
• It is used in cells where large stores of
dissolved glucose would cause osmotic
problems.
http://en.wikipedia.org/wiki/File:Glycogen_spacefilling_model.jpg
Monosaccharides
glucose Energy molecule used in
aerobic respiration
galactose Nutritive sweetener in foods
fructose Fruit sugar
Ribose
Disaccharides
maltose Malt sugar found in barley,
consists of 2 glucose
molecules
lactose Sugar found in milk
sucrose Transport sugar found in
plants because of its
solubility
Polysaccharides
starch (amylose) Storage carbohydrate in
plants (more linear shape)
glycogen Storage carbohydrate in
animals
cellulose Main component in plant cell
walls
starch (amylopectin) Storage carbohydrate in
plants (more globular shape)
2.3 S.1 Use of molecular visualization software to compare cellulose,
starch and glycogen.
The easiest way to use jmol is to use the ready-made models from
on the biotopics website
• Click on the models or the logo below to access them
• Play with the models, move them, zoom in and out
• Test yourself by answering the questions below:
1. Select the the glucose molecule and identify the colors
used to represent carbon, hydrogen and oxygen atoms
2. Using the models identify and describe the differences
between glucose, sucrose and fructose (hint: descriptions
will be clearest if you refer to the numbered carbon atoms,
see 2.3.U1)
3. Look at the amylose model and zoom out from it. Describe
the overall shape of the molecule.
http://www.biotopics.co.uk/jsmol/glucose.html
2.3 S.1 Use of molecular visualization software to compare cellulose,
starch and glycogen.
4. Zoom in on the amylose molecule. Each glucose
sub-unit is bonded to how many other sub-units?
Which carbons atoms used to form the glycosidic
bonds? Are there any exceptions to these rules?
5. Select the amylopectin model and zoom in on the
branch point. This glucose sub-unit is bonded how
many others and which carbon atoms are used for
bonded compared with the un-branched amylose
molecule?
6. Using a similar approach to that above investigate
the structure of glycogen and find the similarities
and differences between it and both amylose and
amylopectin.
2. Lipids
• Diverse group of molecules that
are non-polar.
• Constructed from a glycerol
attached to 3 fatty acid chains.
• Glycerol is a 3-C alcohol.
• Fatty acids are hydrocarbons with
a carboxyl group at one end.
Sometimes they are called
carboxylic acids.
• Hydrocarbon tail is extremely
hydrophobic. They can contain
multiple double bonds
(polyunsaturated), one double
bond (monounsaturated) or no
double bonds (saturated).
2.1 S.2 Identification of biochemicals such as sugars, lipids or amino
acids from molecular diagrams.
Lipid Molecule Structure
Glycerol
• 3 carbons
• each has a -OH group
• Each carbon has single
bonds with another carbon
or a hydrogen to fill its four
bond sites.
Fatty Acid
• This is a long chain of CH2
with an carboxyl group
(COOH) at the end . The
other end is methyl group
CH3
2.1 S.2 Identification of biochemicals such as sugars, lipids or amino
acids from molecular diagrams.
2.3 U.2 Fatty acids can be saturated, monounsaturated or
polyunsaturated.
Saturated, monounsaturated or polyunsaturated?
Q1 Oleic Acid
Q2 Caproic Acid
Q3 α-Linolenic Acid
Saturated, monounsaturated or polyunsaturated?
Q1 Oleic Acid 1 double bond therefore monounsaturated
Q2 Caproic Acid no double bonds therefore saturated
Q3 α-Linolenic Acid 3 double bonds therefore polyunsaturated
n.b. the term saturated refers to
whether more hydrogen can be
added to the fatty acid. A double
bond can be replaced if two
hydrogen atoms are added. If there
are no double bonds a fatty acid is
said to be saturated as no more
hydrogen atoms can be added.
https://commons.wikimedia.org/wiki/Fatty_acids#Polyunsaturated_fatty_acids_2
2.3 U.2 Fatty acids can be saturated, monounsaturated or
polyunsaturated.
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
Cis-isomers Trans-isomers
Very common in nature Rare in nature – usually artificially produced to
produce solid fats, e.g. margarine from vegetable oils.
the hydrogen atoms are on the same side of the two
carbon atoms
the hydrogen atoms are on the same side of the two
carbon atoms
The double bond causes a bend in the fatty
acid chain
The double bond does not causes a bend
in the fatty acid chain
Therefore cis-isomers are only loosely packed Trans-isomers can be closely packed
Triglycerides formed from cis-isomers have low melting
points – they usually liquid at room temperature
Triglycerides formed from trans-isomers have high
melting points – they usually solid at room
temperature
Q1 trans or cis isomers?
???
???
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
Q1 trans or cis isomers?
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
Q2 trans or cis isomer of α-Linolenic Acid?
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
Q2 trans or cis isomer of α-Linolenic Acid?
All 3 double bonds are cis, each one causes a bend in
the fatty acid chain.
2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
Functions of lipids
• Energy storage
• Insulation
• Protection (of internal organs)
• Buoyancy
• Component of cell membranes
• Electrical insulation by myelin
sheath
• Hormones
• Cell receptors
http://sciblogs.co.nz/fieldwork/files/2013/03/Seal-4_sm.jpg
2.3 A.3 Lipids are more suitable for long-term energy storage in humans
than carbohydrates.
Glycogen is the medium-term energy storage molecule in animals. It is stored in the
liver and muscles. The energy stored in glycogen is more readily available than the
energy stored in fat.
Glucose in the bloodstream is for immediate use and will either be used in
respiration to yield ATP or converted to glycogen or fat
An analogy:
You are
paid in cash
Wallet
Bank
Spend it!
(Glycogen)
(Fat)
(Glucose)
(Respiration)
easy to get to,
would be too big if you put
in all your money
Can put lots of money here, more
of a hassle to get it back out
2.3 A.3 Lipids are more suitable for long-term energy storage in humans
than carbohydrates.
2.3 A.3 Lipids are more suitable for long-term energy storage in humans
than carbohydrates.
Why is glycogen needed at all?
• Glycogen can be broken down to glucose rapidly
• and then transported easily by the blood to where
it is needed
• Fats cannot be mobilized as rapidly
• Glucose can be used either in anaerobic or aerobic
cell respiration whereas fats and fatty acids can
only be used in aerobic respiration
2.3 A.3 Lipids are more suitable for long-term energy storage in
humans than carbohydrates.
Reasons for using lipids for
long-term energy storage:
• The amount of energy
released in cell
respiration per gram of
lipids is double that for
carbohydrates (and
protein)
• Lipids add 1/6 as much
to body mass as
carbohydrates: fats are
stored as pure droplets
whereas when 1g
glycogen is stored it is
associated with 2g of
water. This is especially
critical for active
animals as energy
stores have to be
carried.
https://c2.staticflickr.com/8/7135/13984940743_0b58acc475_b.jpg
2.3 A.4 Evaluation of evidence and the methods used to obtain the
evidence for health claims made about lipids.
http://www.badscience.net/2009/08/health-warning-exercise-makes-you-fat/
http://www.foxnews.com/health/2013/02/18/raspberry-ketone-be-wary-this-diet-trend/
http://www.forbes.com/2004/04/21/cz_af_0421feat.html
Which health claims
are valid?
Evaluation = Make an appraisal by weighing
up the strengths and limitations
Key questions to consider for the strengths are:
• Is there a (negative or positive) correlation
between intake of the lipid being
investigated and rate of the disease or the
health benefit?
• If instead mean values are being compared
how different are they? Has this difference
been assessed statistically?
• How widely spread is the data? This can be
assessed by the spread of data points or
the relative size of error bars. The more
widely spread the data the smaller the
significance can be placed on the
correlation and/or the conclusion.
.
Evidence for health claims comes from research. Some of this research is more
scientifically valid than others.
Key questions to consider for the limitations are:
• Was the measure of the health a valid one? e.g. cholesterol
levels in blood are more informative than body mass index
• How large was the sample size? Larger samples are more
reliable.
• Does the sample reflect the population as a whole or just a
particular sex, age, state of health, lifestyle or ethnic
background?
• Was the data gathered from human or animal trials? If only
done of animals how applicable are the findings?
• Were all the important control variables, e.g. level of
activity, effectively controlled?
• Were the levels and frequency of the lipids (or substance
studied) intake realistic?
• How rigorous were the methods used to gather data? e.g. If
only a survey was used how truthful were the respondents?
2.3 A.4 Evaluation of evidence and the methods used to obtain the
evidence for health claims made about lipids.
2.3 A.2 Scientific evidence for health risks of trans fats and saturated
fatty acids.
There have been many claims about the effects of different types of fat on human health. The main
concern is coronary heart disease (CHD). In this disease the coronary arteries become partially blocked
by fatty deposits, leading to blood clot formation and heart attacks.
• A positive correlation has been found between saturated fatty acid intake and rates of CHD in many
studies.
• Correlation ≠ causation. Another factor, e.g. dietary fiber could be responsible.
• There are populations that do not fit the correlation such as the Maasai of Kenya. They have a diet
that is rich in meat, fat, blood and milk. They therefore have a high consumption of saturated fats,
yet CHD is almost unknown among the Maasai.
• Diets rich in olive oil, which contains cis-monounsaturated fatty acids, are traditionally eaten in
countries around the Mediterranean. The populations of these countries typically have low rates of
CHD and it has been claimed that this is due to the intake of cis-monounsaturated fatty acids.
• Genetic factors in these populations could be responsible.
• Other aspects of the diet could explain the CHD rates.
• There is also a positive correlation between amounts of trans-fat consumed and rates of CHD.
• Other risk factors have been tested, to see if they can account for the correlation, but none did.
Trans-fats therefore probably do cause CHD.
• In patients who had died from CHD, fatty deposits in the diseased arteries have been found to
contain high concentrations of trans-fats, which gives more evidence of a causal link.
http://oliveoilsindia.com/green-olives/green-olives.jpg
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
Body Mass Index (BMI) is used as a
screening tool to identify possible
weight problems, however, BMI is not
a diagnostic tool. To determine if
excess weight is a health risk further
assessments are needed such as:
• skinfold thickness measurements
• evaluations of diet
• physical activity
• and family history
The table below can be used to assess
an adult’s status
BMI Status
Below 18.5 Underweight
18.5 – 24.9 Normal
25.0 – 29.9 Overweight
30.0 and Above Obese
In some parts of the world food supplies are
insufficient or are unevenly distributed and
many people as a result are underweight.
In other parts of the world a likelier cause of
being underweight is anorexia nervosa. This is
a psychological condition that involves
voluntary starvation and loss of body mass.
Obesity is an increasing problem
in some countries. Obesity increases the risk of
conditions such as coronary heart disease and
type II diabetes. It reduces life expectancy
significantly and is increasing the overall costs
of health care in countries where rates of
obesity are rising.
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
Charts such as the one to the right can
also be used to assess BMI.
BMI is calculated the same way for both
adults and children. The calculation is
based on the following formula:
BMI = mass in kilograms
(height in meters)2
n.b. units for BMI are kg m-2
Example:
Mass = 68 kg, Height = 165 cm (1.65
m)
BMI = 68 ÷ (1.65)2 = 24.98 kg m-2
In this example the adult would be
(borderline) overweight - see the
table on the previous slide
2.3.S2 Determination of body mass index by calculation or use of a
nomogram.
An alternative to calculating the
BMI is a nomogram. Simply use a
ruler to draw a line from the body
mass (weight) to the height of a
person. Where it intersects the
W/H2 line the person’s BMI can be
determined. Now use the table to
assess their BMI status.
http://helid.digicollection.org/documents/h0211e/p434.gif
BMI Status
Below 18.5 Underweight
18.5 – 24.9 Normal
25.0 – 29.9 Overweight
30.0 and
Above
Obese
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
1. A man has a mass of 75 kg and a
height of 1.45 meters.
a. Calculate his body mass index.
(1)
b. Deduce the body mass status of
this man using the table. (1)
c. Outline the relationship
between height and BMI for a
fixed body mass. (1)
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
1. A man has a mass of 75 kg and a
height of 1.45 meters.
a. Calculate his body mass index.
(1)
b. Deduce the body mass status of
this man using the table. (1)
c. Outline the relationship
between height and BMI for a
fixed body mass. (1)
BMI = mass in kilograms ÷ (height in meters)2
= 75 kg ÷ (1.45 m)2
= 75 kg ÷ 2.10 m2
= 35.7 kg m-2
35.7 kg m-2 is above 30.0 (see table below)
therefore the person would be classified obese.
BMI Status
Below 18.5 Underweight
18.5 – 24.9 Normal
25.0 – 29.9 Overweight
30.0 and Above Obese
The taller a person the smaller the
BMI;
(negative correlation, but not a
linear relationship)
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
2. A woman has a height of 150 cm and
a BMI of 40.
a. Calculate the minimum amount
of body mass she must lose to
reach normal body mass status.
Show all of your working. (3)
b. Suggest two ways in which the
woman could reduce her body
mass. (2)
2.3 S.2 Determination of body mass index by calculation or use of a
nomogram.
4. A woman has a height of 150 cm and
a BMI of 40.
a. Calculate the minimum amount
of body mass she must lose to
reach normal body mass status.
Show all of your working. (3)
b. Suggest two ways in which the
woman could reduce her body
mass. (2)
BMI = mass in kilograms ÷ (height in meters)2
therefore
mass in kilograms = BMI ÷ (height in meters)2
Actual body mass = BMI ÷ (height in meters)2
= 40 kg m-2 x (1.50 m)2
= 90 kg
Normal BMI is a maximum of 24.9 kg m-2
Normal body mass = 24.9 kg m-2 x (1.5 m)2
= 56 kg
To reach normal status the woman needs to lose
90 kg – 56 kg = 34 kg
Reduce her nutritional intake /
diet / reduce the intake of lipids;
Exercise / increase activity levels;
Bibliography / Acknowledgments
Jason de Nys

Contenu connexe

Tendances

IB Biology 2.9 Slides: Photosynthesis
IB Biology 2.9 Slides: PhotosynthesisIB Biology 2.9 Slides: Photosynthesis
IB Biology 2.9 Slides: PhotosynthesisJacob Cedarbaum
 
IB Biology 3.5 Slides: Genetic Modification & Biotechnology
IB Biology 3.5 Slides: Genetic Modification & BiotechnologyIB Biology 3.5 Slides: Genetic Modification & Biotechnology
IB Biology 3.5 Slides: Genetic Modification & BiotechnologyJacob Cedarbaum
 
8.3 photosynthesis
8.3 photosynthesis8.3 photosynthesis
8.3 photosynthesisBob Smullen
 
IB Biology 3.4 inheritance
IB Biology 3.4 inheritanceIB Biology 3.4 inheritance
IB Biology 3.4 inheritanceBob Smullen
 
IB Biology 3.3 Slides: Meiosis
IB Biology 3.3 Slides: MeiosisIB Biology 3.3 Slides: Meiosis
IB Biology 3.3 Slides: MeiosisJacob Cedarbaum
 
IB Biology cellular respiration 2015.ppt
IB Biology cellular respiration 2015.pptIB Biology cellular respiration 2015.ppt
IB Biology cellular respiration 2015.pptBob Smullen
 
8.2 Cell Respiration
8.2 Cell Respiration8.2 Cell Respiration
8.2 Cell Respirationdabagus
 
6.2 Blood System (Chris Paine)
6.2 Blood System (Chris Paine)6.2 Blood System (Chris Paine)
6.2 Blood System (Chris Paine)cartlidge
 
8.2 cellular respiration
8.2 cellular respiration8.2 cellular respiration
8.2 cellular respirationBob Smullen
 
1.3 membrane structure
1.3 membrane structure1.3 membrane structure
1.3 membrane structureBob Smullen
 
IB Biology Photosynthesis 2015
IB Biology Photosynthesis 2015IB Biology Photosynthesis 2015
IB Biology Photosynthesis 2015Bob Smullen
 
IB Biology 3.1 genes
IB Biology 3.1 genesIB Biology 3.1 genes
IB Biology 3.1 genesBob Smullen
 
Biomolecules and water
Biomolecules and waterBiomolecules and water
Biomolecules and waterAkaya Emerk
 
1.4 membrane transport
1.4 membrane transport1.4 membrane transport
1.4 membrane transportBob Smullen
 
IB Biology 3.3 meiosis
IB Biology 3.3 meiosisIB Biology 3.3 meiosis
IB Biology 3.3 meiosisBob Smullen
 
2.8 cellular respiration
2.8 cellular respiration 2.8 cellular respiration
2.8 cellular respiration Bob Smullen
 
4.3 carbon cycle
4.3 carbon cycle4.3 carbon cycle
4.3 carbon cycleBob Smullen
 

Tendances (20)

IB Biology 2.9 Slides: Photosynthesis
IB Biology 2.9 Slides: PhotosynthesisIB Biology 2.9 Slides: Photosynthesis
IB Biology 2.9 Slides: Photosynthesis
 
IB Biology 3.5 Slides: Genetic Modification & Biotechnology
IB Biology 3.5 Slides: Genetic Modification & BiotechnologyIB Biology 3.5 Slides: Genetic Modification & Biotechnology
IB Biology 3.5 Slides: Genetic Modification & Biotechnology
 
8.3 photosynthesis
8.3 photosynthesis8.3 photosynthesis
8.3 photosynthesis
 
IB Biology 3.4 inheritance
IB Biology 3.4 inheritanceIB Biology 3.4 inheritance
IB Biology 3.4 inheritance
 
IB Biology 3.3 Slides: Meiosis
IB Biology 3.3 Slides: MeiosisIB Biology 3.3 Slides: Meiosis
IB Biology 3.3 Slides: Meiosis
 
IB Biology cellular respiration 2015.ppt
IB Biology cellular respiration 2015.pptIB Biology cellular respiration 2015.ppt
IB Biology cellular respiration 2015.ppt
 
8.2 Cell Respiration
8.2 Cell Respiration8.2 Cell Respiration
8.2 Cell Respiration
 
6.2 Blood System (Chris Paine)
6.2 Blood System (Chris Paine)6.2 Blood System (Chris Paine)
6.2 Blood System (Chris Paine)
 
8.2 cellular respiration
8.2 cellular respiration8.2 cellular respiration
8.2 cellular respiration
 
3.4 slides inheritance
3.4 slides   inheritance3.4 slides   inheritance
3.4 slides inheritance
 
8.1 metabolism
8.1 metabolism8.1 metabolism
8.1 metabolism
 
1.3 membrane structure
1.3 membrane structure1.3 membrane structure
1.3 membrane structure
 
IB Biology Photosynthesis 2015
IB Biology Photosynthesis 2015IB Biology Photosynthesis 2015
IB Biology Photosynthesis 2015
 
IB Biology 3.1 genes
IB Biology 3.1 genesIB Biology 3.1 genes
IB Biology 3.1 genes
 
Biomolecules and water
Biomolecules and waterBiomolecules and water
Biomolecules and water
 
1.4 membrane transport
1.4 membrane transport1.4 membrane transport
1.4 membrane transport
 
Lipids
LipidsLipids
Lipids
 
IB Biology 3.3 meiosis
IB Biology 3.3 meiosisIB Biology 3.3 meiosis
IB Biology 3.3 meiosis
 
2.8 cellular respiration
2.8 cellular respiration 2.8 cellular respiration
2.8 cellular respiration
 
4.3 carbon cycle
4.3 carbon cycle4.3 carbon cycle
4.3 carbon cycle
 

Similaire à 2.3 carbohydrates and lipids

Unit 2 Biological Molecule
Unit 2 Biological MoleculeUnit 2 Biological Molecule
Unit 2 Biological MoleculeAlemu Chemeda
 
2--Cellulose---Starch.ppt
2--Cellulose---Starch.ppt2--Cellulose---Starch.ppt
2--Cellulose---Starch.pptimranmushtaq22
 
Bio Chapter 5: Macromolecules
Bio Chapter 5: MacromoleculesBio Chapter 5: Macromolecules
Bio Chapter 5: MacromoleculesAngel Vega
 
Biochapter5 macromolecules-151125141437-lva1-app6892
Biochapter5 macromolecules-151125141437-lva1-app6892Biochapter5 macromolecules-151125141437-lva1-app6892
Biochapter5 macromolecules-151125141437-lva1-app6892Cleophas Rwemera
 
BIOCHEM-REPORTCARBOHYDRATES.pptx
BIOCHEM-REPORTCARBOHYDRATES.pptxBIOCHEM-REPORTCARBOHYDRATES.pptx
BIOCHEM-REPORTCARBOHYDRATES.pptxChyeOdchigue
 
B2 Chemistry Presentation
B2 Chemistry PresentationB2 Chemistry Presentation
B2 Chemistry PresentationSam Richard
 
Lec 5 level 3-de(chemistry of carbohydrates)
Lec 5  level 3-de(chemistry of carbohydrates)Lec 5  level 3-de(chemistry of carbohydrates)
Lec 5 level 3-de(chemistry of carbohydrates)dream10f
 
Oligo and polysaccharides
Oligo and polysaccharidesOligo and polysaccharides
Oligo and polysaccharidesFabiha Sana
 
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01Cleophas Rwemera
 
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...Jorge Pinto
 
Macro mols - carbohydrates lesson
Macro mols - carbohydrates lessonMacro mols - carbohydrates lesson
Macro mols - carbohydrates lessonmrglosterscience
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates Rabfara
 
Science 10 _ Biomolecules.pdf
Science 10 _ Biomolecules.pdfScience 10 _ Biomolecules.pdf
Science 10 _ Biomolecules.pdfShandrew Ejap
 
Chemistry of Natural Product Type.pptx
Chemistry of  Natural Product Type.pptxChemistry of  Natural Product Type.pptx
Chemistry of Natural Product Type.pptxJACOB THON BIOR
 

Similaire à 2.3 carbohydrates and lipids (20)

Unit 2 Biological Molecule
Unit 2 Biological MoleculeUnit 2 Biological Molecule
Unit 2 Biological Molecule
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Carbohydrates.ppt
Carbohydrates.pptCarbohydrates.ppt
Carbohydrates.ppt
 
2--Cellulose---Starch.ppt
2--Cellulose---Starch.ppt2--Cellulose---Starch.ppt
2--Cellulose---Starch.ppt
 
Bio Chapter 5: Macromolecules
Bio Chapter 5: MacromoleculesBio Chapter 5: Macromolecules
Bio Chapter 5: Macromolecules
 
Biochapter5 macromolecules-151125141437-lva1-app6892
Biochapter5 macromolecules-151125141437-lva1-app6892Biochapter5 macromolecules-151125141437-lva1-app6892
Biochapter5 macromolecules-151125141437-lva1-app6892
 
BIOCHEM-REPORTCARBOHYDRATES.pptx
BIOCHEM-REPORTCARBOHYDRATES.pptxBIOCHEM-REPORTCARBOHYDRATES.pptx
BIOCHEM-REPORTCARBOHYDRATES.pptx
 
B2 Chemistry Presentation
B2 Chemistry PresentationB2 Chemistry Presentation
B2 Chemistry Presentation
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Lec 5 level 3-de(chemistry of carbohydrates)
Lec 5  level 3-de(chemistry of carbohydrates)Lec 5  level 3-de(chemistry of carbohydrates)
Lec 5 level 3-de(chemistry of carbohydrates)
 
Oligo and polysaccharides
Oligo and polysaccharidesOligo and polysaccharides
Oligo and polysaccharides
 
Carbohydrate
Carbohydrate Carbohydrate
Carbohydrate
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01
Lec5 level3-dechemistryofcarbohydrates-130202043028-phpapp01
 
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...
Biological molecules (Carbohydrates and Lipids) water and Proteins Recap-AS B...
 
Macro mols - carbohydrates lesson
Macro mols - carbohydrates lessonMacro mols - carbohydrates lesson
Macro mols - carbohydrates lesson
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
Science 10 _ Biomolecules.pdf
Science 10 _ Biomolecules.pdfScience 10 _ Biomolecules.pdf
Science 10 _ Biomolecules.pdf
 
Carbohydrates.pptx
Carbohydrates.pptxCarbohydrates.pptx
Carbohydrates.pptx
 
Chemistry of Natural Product Type.pptx
Chemistry of  Natural Product Type.pptxChemistry of  Natural Product Type.pptx
Chemistry of Natural Product Type.pptx
 

Plus de Bob Smullen

1. complete stats notes
1. complete stats notes1. complete stats notes
1. complete stats notesBob Smullen
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine SystemBob Smullen
 
IB Biology Human Reproduction
IB Biology Human Reproduction IB Biology Human Reproduction
IB Biology Human Reproduction Bob Smullen
 
Topic 8: Ecology Option C Part 2
Topic 8: Ecology Option C Part 2Topic 8: Ecology Option C Part 2
Topic 8: Ecology Option C Part 2Bob Smullen
 
Topic 8: Ecology Option C Part 1
Topic 8: Ecology Option C Part 1Topic 8: Ecology Option C Part 1
Topic 8: Ecology Option C Part 1Bob Smullen
 
Topic 7: Plant Science
Topic 7: Plant ScienceTopic 7: Plant Science
Topic 7: Plant ScienceBob Smullen
 
Topic 6: Evolution
Topic 6: Evolution Topic 6: Evolution
Topic 6: Evolution Bob Smullen
 
Topic Five: Genetics
Topic Five: GeneticsTopic Five: Genetics
Topic Five: GeneticsBob Smullen
 
Topic 3: Nucleic Acid
Topic 3: Nucleic AcidTopic 3: Nucleic Acid
Topic 3: Nucleic AcidBob Smullen
 
Topic 2: Biochemistry
Topic 2: Biochemistry Topic 2: Biochemistry
Topic 2: Biochemistry Bob Smullen
 
6.5 neurons and synapses
6.5 neurons and synapses 6.5 neurons and synapses
6.5 neurons and synapses Bob Smullen
 
Immune system hl
Immune system hlImmune system hl
Immune system hlBob Smullen
 
6.2 and 6.4 transport and respiration
6.2 and 6.4  transport and respiration6.2 and 6.4  transport and respiration
6.2 and 6.4 transport and respirationBob Smullen
 
6.1 digestion HL Year One
6.1 digestion HL Year One6.1 digestion HL Year One
6.1 digestion HL Year OneBob Smullen
 
Ecology Optional Topic Student Notes
Ecology Optional Topic Student NotesEcology Optional Topic Student Notes
Ecology Optional Topic Student NotesBob Smullen
 
C.6 nitrogen cycle .pptx
C.6 nitrogen cycle .pptxC.6 nitrogen cycle .pptx
C.6 nitrogen cycle .pptxBob Smullen
 

Plus de Bob Smullen (20)

1. complete stats notes
1. complete stats notes1. complete stats notes
1. complete stats notes
 
Topic One: Cell
Topic One: CellTopic One: Cell
Topic One: Cell
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine System
 
IB Biology Human Reproduction
IB Biology Human Reproduction IB Biology Human Reproduction
IB Biology Human Reproduction
 
Topic 8: Ecology Option C Part 2
Topic 8: Ecology Option C Part 2Topic 8: Ecology Option C Part 2
Topic 8: Ecology Option C Part 2
 
Topic 8: Ecology Option C Part 1
Topic 8: Ecology Option C Part 1Topic 8: Ecology Option C Part 1
Topic 8: Ecology Option C Part 1
 
Topic 7: Plant Science
Topic 7: Plant ScienceTopic 7: Plant Science
Topic 7: Plant Science
 
Topic 6: Evolution
Topic 6: Evolution Topic 6: Evolution
Topic 6: Evolution
 
Topic Five: Genetics
Topic Five: GeneticsTopic Five: Genetics
Topic Five: Genetics
 
Topic 3: Nucleic Acid
Topic 3: Nucleic AcidTopic 3: Nucleic Acid
Topic 3: Nucleic Acid
 
Topic 2: Biochemistry
Topic 2: Biochemistry Topic 2: Biochemistry
Topic 2: Biochemistry
 
11.3 kidney
11.3 kidney11.3 kidney
11.3 kidney
 
11.2 Movement
11.2 Movement 11.2 Movement
11.2 Movement
 
6.5 neurons and synapses
6.5 neurons and synapses 6.5 neurons and synapses
6.5 neurons and synapses
 
Immune system hl
Immune system hlImmune system hl
Immune system hl
 
Ia headings
Ia headingsIa headings
Ia headings
 
6.2 and 6.4 transport and respiration
6.2 and 6.4  transport and respiration6.2 and 6.4  transport and respiration
6.2 and 6.4 transport and respiration
 
6.1 digestion HL Year One
6.1 digestion HL Year One6.1 digestion HL Year One
6.1 digestion HL Year One
 
Ecology Optional Topic Student Notes
Ecology Optional Topic Student NotesEcology Optional Topic Student Notes
Ecology Optional Topic Student Notes
 
C.6 nitrogen cycle .pptx
C.6 nitrogen cycle .pptxC.6 nitrogen cycle .pptx
C.6 nitrogen cycle .pptx
 

Dernier

Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑Damini Dixit
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 

Dernier (20)

Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 

2.3 carbohydrates and lipids

  • 1. 2.3 Carbohydrates and lipids Essential idea: Compounds of carbon, hydrogen and oxygen are used to supply and store energy.
  • 2. Understandings, Applications and Skills Statement Guidance 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers. Sucrose, lactose and maltose should be included as examples of disaccharides produced by combining monosaccharides. The structure of starch should include amylose and amylopectin. 2.3 U.2 Fatty acids can be saturated, monounsaturated or polyunsaturated. Named examples of fatty acids are not required. 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers. 2.3 U.4 Triglycerides are formed by condensation from three fatty acids and one glycerol. 2.3 A.1 Structure and function of cellulose and starch in plants and glycogen in humans. 2.3 A.2 Scientific evidence for health risks of trans fats and saturated fatty acids. 2.3 A.3 Lipids are more suitable for long-term energy storage in humans than carbohydrates. 2.3 A.4 Evaluation of evidence and the methods used to obtain the evidence for health claims made about lipids. 2.3 S.1 Use of molecular visualization software to compare cellulose, starch and glycogen. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram.
  • 3. Carbohydrates Are organic compounds made of sugars and their monomers. 1. Monosaccharide Single units called monomers. 2. Disaccharides 2 monomers joined. 3. Polysaccharides long chains of repeating units 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers. http://www.cookrepublic.com/images/blog/archive/almondrose_bread4.jpg
  • 4. 1. Monosaccharide A. Glucose • has the formula C6H12O6. It forms a hexagonal ring (hexose) • Glucose is the form of sugar that fuels respiration • Glucose forms the base unit for many polymers • 5 of the carbons form corners on the ring with the 6th corner taken by oxygen 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers.
  • 5. B. Galactose • Sugar which is less sweet than glucose. • It is found in dairy products, in sugar beets and gums. When combined with glucose, through a dehydration reaction, the result is the disaccharide lactose found in most milks.
  • 7. C. Monosaccharide Fructose • Fructose is another pentose sugar • Commonly found in fruits and honey • It is the sweetest naturally occurring carbohydrate https://www.drfuhrman.com/images/Misc/Pomegranate_Image.png
  • 8. •C5H10O5 •Carbon 1 is attached to Carbon 4 •Each Carbon has a -H group (C5 has 2) •Each Carbon has a -OH group Properties of Ribose • Ribose is a pentose sugar, it has a pentagonal ring • It forms the backbone of RNA • Deoxyribose differs as shown in the diagram, and forms the backbone of DNA • Soluble D. Monosaccharide Ribose
  • 9. 2. Disaccharides • Are double sugars that contain two monosaccharides. • Are formed through the process of condensation synthesis. Monosaccharide + monosaccharide  Disaccharide Principle: Monomer + Monomer = Polymers Condensation and Hydrolysis Reactions Water is removed Glycosidic bond is formed 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers.
  • 10. A. Disaccharide Maltose The basket contains Sweet Potatoes which have some of the highest contents of Maltose ((C12H22O11) is a dimer of glucose) of any food was α glucose was α glucose https://ugandapeopleandculture.files.wordpress.com/2013/03/sweet-potato-in-basket-lo-r.jpg
  • 11. Disaccharide #2 (Literally “two sugars”) Lactose (C12H22O11) is most commonly found in milk http://commons.wikimedia.org/wiki/File:Alpha-lactose-from-xtal-3D-balls.png The two subunits that make up lactose are glucose and galactose, our friends from a couple of slides ago. was galactose was α glucose
  • 12. Sucrose (C12H22O11) Disaccharide The two subunits that make up sucrose are glucose and fructose. • Sucrose (C12H22O11) is also known as table sugar • The two monosaccharides that make it up are glucose and fructose was fructose was α glucose
  • 13. 3. Polysaccharides • Macromolecules that are polymers of a few hundred or thousand monosaccharide. Important in: Energy Storage Structural support Examples Starch (energy) Glycogen (energy) Cellulose (structure) 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers.
  • 14. 2.3 U.1 Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers.
  • 15. Cellulose Polysaccharide #1 http://en.wikipedia.org/wiki/File:Cellulose_spacefilling_model.jpg 2.3 A.1 Structure and function of cellulose and starch in plants and glycogen in humans. • Cellulose molecules are unbranched chains of β-glucose linking carbon atom 1 to carbon atom 4 on the next β-glucose. • Hydrogen bonds link the the molecules together. • The glucose subunits in the chain are oriented alternately upwards and downwards. • The consequence of this is that the cellulose molecule is a straight chain, rather than curved. • The linked molecules form bundles called cellulose microfibrils. • They have very high tensile strength (the basis of cell walls).
  • 16. Polysaccharide #2 http://commons.wikimedia.org/wiki/File:Amylose3.svg Amylose and Amylopectin are both forms of starch and made from repeating glucose units http://www.flickr.com/photos/caroslines/5534432762/ • Starch is made by linking together α-glucose molecules • Condensation reactions link carbon atom 1 to carbon atom 4 on the next α- glucose • all the glucose molecules in starch can be orientated in the same way • The consequence of this is that the starch molecule is curved, rather than straight. • Size of the molecule is not fixed
  • 17. Polysaccharide #2 http://www.flickr.com/photos/caroslines/5534432762/ • In amylopectin the chain is branched, so has a more globular shape. • Due it’s branched nature amylopectin can be much larger consisting of 2,000-200,000 units • Starch is only made by plant cells. • Molecules of both types of starch are hydrophilic but are too large to be soluble in water. • Starch does not affect the osmotic balance of cells, i.e. cause too much water to enter them • It is easy to add or remove extra glucose molecules to starch • Therefore starch is useful in cells for glucose, and consequently energy, storage. • In seeds and storage organs such as potato cells glucose held as starch. • Starch is made as a temporary store in leaf cells when glucose is being made faster by photosynthesis than it can be exported to other parts of the plant. • In amylose the chain of α-glucose molecules is un-branched and forms a helix. • Typically amylose is made up of 300-3,000 glucose units
  • 18. Polysaccharide #3 Glycogen • Glycogen (C6H10O5)n is a polymer made from repeating glucose subunits • Condensation reactions link carbon atom 1 - 4 on the next α-glucose. Branches occur where a condensation reaction instead links carbon atom 1 – 6. As a result the molecule is compact • Glycogen is made by animals and also some fungi. • It is stored in the liver and some muscles in humans. • It is used in cells where large stores of dissolved glucose would cause osmotic problems. http://en.wikipedia.org/wiki/File:Glycogen_spacefilling_model.jpg
  • 19. Monosaccharides glucose Energy molecule used in aerobic respiration galactose Nutritive sweetener in foods fructose Fruit sugar Ribose Disaccharides maltose Malt sugar found in barley, consists of 2 glucose molecules lactose Sugar found in milk sucrose Transport sugar found in plants because of its solubility Polysaccharides starch (amylose) Storage carbohydrate in plants (more linear shape) glycogen Storage carbohydrate in animals cellulose Main component in plant cell walls starch (amylopectin) Storage carbohydrate in plants (more globular shape)
  • 20.
  • 21. 2.3 S.1 Use of molecular visualization software to compare cellulose, starch and glycogen. The easiest way to use jmol is to use the ready-made models from on the biotopics website • Click on the models or the logo below to access them • Play with the models, move them, zoom in and out • Test yourself by answering the questions below: 1. Select the the glucose molecule and identify the colors used to represent carbon, hydrogen and oxygen atoms 2. Using the models identify and describe the differences between glucose, sucrose and fructose (hint: descriptions will be clearest if you refer to the numbered carbon atoms, see 2.3.U1) 3. Look at the amylose model and zoom out from it. Describe the overall shape of the molecule. http://www.biotopics.co.uk/jsmol/glucose.html
  • 22. 2.3 S.1 Use of molecular visualization software to compare cellulose, starch and glycogen. 4. Zoom in on the amylose molecule. Each glucose sub-unit is bonded to how many other sub-units? Which carbons atoms used to form the glycosidic bonds? Are there any exceptions to these rules? 5. Select the amylopectin model and zoom in on the branch point. This glucose sub-unit is bonded how many others and which carbon atoms are used for bonded compared with the un-branched amylose molecule? 6. Using a similar approach to that above investigate the structure of glycogen and find the similarities and differences between it and both amylose and amylopectin.
  • 23. 2. Lipids • Diverse group of molecules that are non-polar. • Constructed from a glycerol attached to 3 fatty acid chains. • Glycerol is a 3-C alcohol. • Fatty acids are hydrocarbons with a carboxyl group at one end. Sometimes they are called carboxylic acids. • Hydrocarbon tail is extremely hydrophobic. They can contain multiple double bonds (polyunsaturated), one double bond (monounsaturated) or no double bonds (saturated). 2.1 S.2 Identification of biochemicals such as sugars, lipids or amino acids from molecular diagrams.
  • 24. Lipid Molecule Structure Glycerol • 3 carbons • each has a -OH group • Each carbon has single bonds with another carbon or a hydrogen to fill its four bond sites. Fatty Acid • This is a long chain of CH2 with an carboxyl group (COOH) at the end . The other end is methyl group CH3 2.1 S.2 Identification of biochemicals such as sugars, lipids or amino acids from molecular diagrams.
  • 25.
  • 26. 2.3 U.2 Fatty acids can be saturated, monounsaturated or polyunsaturated. Saturated, monounsaturated or polyunsaturated? Q1 Oleic Acid Q2 Caproic Acid Q3 α-Linolenic Acid
  • 27. Saturated, monounsaturated or polyunsaturated? Q1 Oleic Acid 1 double bond therefore monounsaturated Q2 Caproic Acid no double bonds therefore saturated Q3 α-Linolenic Acid 3 double bonds therefore polyunsaturated n.b. the term saturated refers to whether more hydrogen can be added to the fatty acid. A double bond can be replaced if two hydrogen atoms are added. If there are no double bonds a fatty acid is said to be saturated as no more hydrogen atoms can be added. https://commons.wikimedia.org/wiki/Fatty_acids#Polyunsaturated_fatty_acids_2 2.3 U.2 Fatty acids can be saturated, monounsaturated or polyunsaturated.
  • 28. 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers. Cis-isomers Trans-isomers Very common in nature Rare in nature – usually artificially produced to produce solid fats, e.g. margarine from vegetable oils. the hydrogen atoms are on the same side of the two carbon atoms the hydrogen atoms are on the same side of the two carbon atoms The double bond causes a bend in the fatty acid chain The double bond does not causes a bend in the fatty acid chain Therefore cis-isomers are only loosely packed Trans-isomers can be closely packed Triglycerides formed from cis-isomers have low melting points – they usually liquid at room temperature Triglycerides formed from trans-isomers have high melting points – they usually solid at room temperature
  • 29. Q1 trans or cis isomers? ??? ??? 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
  • 30. Q1 trans or cis isomers? 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
  • 31. Q2 trans or cis isomer of α-Linolenic Acid? 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
  • 32. Q2 trans or cis isomer of α-Linolenic Acid? All 3 double bonds are cis, each one causes a bend in the fatty acid chain. 2.3 U.3 Unsaturated fatty acids can be cis or trans isomers.
  • 33. Functions of lipids • Energy storage • Insulation • Protection (of internal organs) • Buoyancy • Component of cell membranes • Electrical insulation by myelin sheath • Hormones • Cell receptors http://sciblogs.co.nz/fieldwork/files/2013/03/Seal-4_sm.jpg 2.3 A.3 Lipids are more suitable for long-term energy storage in humans than carbohydrates.
  • 34. Glycogen is the medium-term energy storage molecule in animals. It is stored in the liver and muscles. The energy stored in glycogen is more readily available than the energy stored in fat. Glucose in the bloodstream is for immediate use and will either be used in respiration to yield ATP or converted to glycogen or fat An analogy: You are paid in cash Wallet Bank Spend it! (Glycogen) (Fat) (Glucose) (Respiration) easy to get to, would be too big if you put in all your money Can put lots of money here, more of a hassle to get it back out 2.3 A.3 Lipids are more suitable for long-term energy storage in humans than carbohydrates.
  • 35. 2.3 A.3 Lipids are more suitable for long-term energy storage in humans than carbohydrates. Why is glycogen needed at all? • Glycogen can be broken down to glucose rapidly • and then transported easily by the blood to where it is needed • Fats cannot be mobilized as rapidly • Glucose can be used either in anaerobic or aerobic cell respiration whereas fats and fatty acids can only be used in aerobic respiration
  • 36. 2.3 A.3 Lipids are more suitable for long-term energy storage in humans than carbohydrates. Reasons for using lipids for long-term energy storage: • The amount of energy released in cell respiration per gram of lipids is double that for carbohydrates (and protein) • Lipids add 1/6 as much to body mass as carbohydrates: fats are stored as pure droplets whereas when 1g glycogen is stored it is associated with 2g of water. This is especially critical for active animals as energy stores have to be carried. https://c2.staticflickr.com/8/7135/13984940743_0b58acc475_b.jpg
  • 37. 2.3 A.4 Evaluation of evidence and the methods used to obtain the evidence for health claims made about lipids. http://www.badscience.net/2009/08/health-warning-exercise-makes-you-fat/ http://www.foxnews.com/health/2013/02/18/raspberry-ketone-be-wary-this-diet-trend/ http://www.forbes.com/2004/04/21/cz_af_0421feat.html Which health claims are valid?
  • 38. Evaluation = Make an appraisal by weighing up the strengths and limitations Key questions to consider for the strengths are: • Is there a (negative or positive) correlation between intake of the lipid being investigated and rate of the disease or the health benefit? • If instead mean values are being compared how different are they? Has this difference been assessed statistically? • How widely spread is the data? This can be assessed by the spread of data points or the relative size of error bars. The more widely spread the data the smaller the significance can be placed on the correlation and/or the conclusion. . Evidence for health claims comes from research. Some of this research is more scientifically valid than others. Key questions to consider for the limitations are: • Was the measure of the health a valid one? e.g. cholesterol levels in blood are more informative than body mass index • How large was the sample size? Larger samples are more reliable. • Does the sample reflect the population as a whole or just a particular sex, age, state of health, lifestyle or ethnic background? • Was the data gathered from human or animal trials? If only done of animals how applicable are the findings? • Were all the important control variables, e.g. level of activity, effectively controlled? • Were the levels and frequency of the lipids (or substance studied) intake realistic? • How rigorous were the methods used to gather data? e.g. If only a survey was used how truthful were the respondents? 2.3 A.4 Evaluation of evidence and the methods used to obtain the evidence for health claims made about lipids.
  • 39. 2.3 A.2 Scientific evidence for health risks of trans fats and saturated fatty acids. There have been many claims about the effects of different types of fat on human health. The main concern is coronary heart disease (CHD). In this disease the coronary arteries become partially blocked by fatty deposits, leading to blood clot formation and heart attacks. • A positive correlation has been found between saturated fatty acid intake and rates of CHD in many studies. • Correlation ≠ causation. Another factor, e.g. dietary fiber could be responsible. • There are populations that do not fit the correlation such as the Maasai of Kenya. They have a diet that is rich in meat, fat, blood and milk. They therefore have a high consumption of saturated fats, yet CHD is almost unknown among the Maasai. • Diets rich in olive oil, which contains cis-monounsaturated fatty acids, are traditionally eaten in countries around the Mediterranean. The populations of these countries typically have low rates of CHD and it has been claimed that this is due to the intake of cis-monounsaturated fatty acids. • Genetic factors in these populations could be responsible. • Other aspects of the diet could explain the CHD rates. • There is also a positive correlation between amounts of trans-fat consumed and rates of CHD. • Other risk factors have been tested, to see if they can account for the correlation, but none did. Trans-fats therefore probably do cause CHD. • In patients who had died from CHD, fatty deposits in the diseased arteries have been found to contain high concentrations of trans-fats, which gives more evidence of a causal link. http://oliveoilsindia.com/green-olives/green-olives.jpg
  • 40. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. Body Mass Index (BMI) is used as a screening tool to identify possible weight problems, however, BMI is not a diagnostic tool. To determine if excess weight is a health risk further assessments are needed such as: • skinfold thickness measurements • evaluations of diet • physical activity • and family history The table below can be used to assess an adult’s status BMI Status Below 18.5 Underweight 18.5 – 24.9 Normal 25.0 – 29.9 Overweight 30.0 and Above Obese In some parts of the world food supplies are insufficient or are unevenly distributed and many people as a result are underweight. In other parts of the world a likelier cause of being underweight is anorexia nervosa. This is a psychological condition that involves voluntary starvation and loss of body mass. Obesity is an increasing problem in some countries. Obesity increases the risk of conditions such as coronary heart disease and type II diabetes. It reduces life expectancy significantly and is increasing the overall costs of health care in countries where rates of obesity are rising.
  • 41. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. Charts such as the one to the right can also be used to assess BMI. BMI is calculated the same way for both adults and children. The calculation is based on the following formula: BMI = mass in kilograms (height in meters)2 n.b. units for BMI are kg m-2 Example: Mass = 68 kg, Height = 165 cm (1.65 m) BMI = 68 ÷ (1.65)2 = 24.98 kg m-2 In this example the adult would be (borderline) overweight - see the table on the previous slide
  • 42. 2.3.S2 Determination of body mass index by calculation or use of a nomogram. An alternative to calculating the BMI is a nomogram. Simply use a ruler to draw a line from the body mass (weight) to the height of a person. Where it intersects the W/H2 line the person’s BMI can be determined. Now use the table to assess their BMI status. http://helid.digicollection.org/documents/h0211e/p434.gif BMI Status Below 18.5 Underweight 18.5 – 24.9 Normal 25.0 – 29.9 Overweight 30.0 and Above Obese
  • 43. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. 1. A man has a mass of 75 kg and a height of 1.45 meters. a. Calculate his body mass index. (1) b. Deduce the body mass status of this man using the table. (1) c. Outline the relationship between height and BMI for a fixed body mass. (1)
  • 44. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. 1. A man has a mass of 75 kg and a height of 1.45 meters. a. Calculate his body mass index. (1) b. Deduce the body mass status of this man using the table. (1) c. Outline the relationship between height and BMI for a fixed body mass. (1) BMI = mass in kilograms ÷ (height in meters)2 = 75 kg ÷ (1.45 m)2 = 75 kg ÷ 2.10 m2 = 35.7 kg m-2 35.7 kg m-2 is above 30.0 (see table below) therefore the person would be classified obese. BMI Status Below 18.5 Underweight 18.5 – 24.9 Normal 25.0 – 29.9 Overweight 30.0 and Above Obese The taller a person the smaller the BMI; (negative correlation, but not a linear relationship)
  • 45. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. 2. A woman has a height of 150 cm and a BMI of 40. a. Calculate the minimum amount of body mass she must lose to reach normal body mass status. Show all of your working. (3) b. Suggest two ways in which the woman could reduce her body mass. (2)
  • 46. 2.3 S.2 Determination of body mass index by calculation or use of a nomogram. 4. A woman has a height of 150 cm and a BMI of 40. a. Calculate the minimum amount of body mass she must lose to reach normal body mass status. Show all of your working. (3) b. Suggest two ways in which the woman could reduce her body mass. (2) BMI = mass in kilograms ÷ (height in meters)2 therefore mass in kilograms = BMI ÷ (height in meters)2 Actual body mass = BMI ÷ (height in meters)2 = 40 kg m-2 x (1.50 m)2 = 90 kg Normal BMI is a maximum of 24.9 kg m-2 Normal body mass = 24.9 kg m-2 x (1.5 m)2 = 56 kg To reach normal status the woman needs to lose 90 kg – 56 kg = 34 kg Reduce her nutritional intake / diet / reduce the intake of lipids; Exercise / increase activity levels;