SlideShare une entreprise Scribd logo
1  sur  14
AGR606 – Plantation
Integration
Presented by
Cik Solehah Binti Saedon
2011152061
Faculty of Plantation & Agrotechnology
UiTM Perlis
INTRODUCTION
Agroforestry systems have the potential to
make use of marginal and degraded lands
through the soil improving effects of trees.
Underlying all aspects of the role of
agroforestry in maintenance of soil fertility
is
the fundamental proposition that trees
improve soils. It would be useful to have
guidelines on which properties of a tree or
shrub species make it desirable for the
point
of view of soil fertility.
How Do We Know That Trees
Improve Soils
1. The soil that develops under natural forest and woodland is
fertile. It is well structured, has a good water-holding capacity
and has a store of nutrients bound up in the organic matter.
Farmers know they will get a good crop by planting on cleared
natural forest.
2. The cycles of carbon and nutrients under natural forest
ecosystems are relatively closed, with much recycling and low
inputs and outputs.
3. The practice of shifting cultivation demonstrated the power of
trees to restore fertility lost during cropping.
4. Experience of reclamation forestry has demonstrated the
power of trees to build up fertility on degraded land.
Case Studies
In Brazil there have apply the nitrogen-fixing legume tree species for
the reclamation of severely degraded lands (Chaer et. al, 2011).

The main challenges faced in the reclamation of severely degraded
lands are in the management of the systems and finding plant species
that will grow under the harsh conditions common in degraded soils.
This is especially important in extremely adverse situations found in
some substrates from mining activities or soils that have lost their
upper horizons.
Under these conditions, recolonization of the area by native vegetation
through natural succession processes may be extremely limited. Once the
main
physical and chemical factors restrictive to plant growth are corrected or
attenuated, the introduction of leguminous trees able to form symbioses
with
nodulating N2-fixing bacteria and arbuscular mycorrhizal fungi constitutes
an
efficient strategy to accelerate soil reclamation and initiate natural
succession.
Continue…
These symbioses give the legume species a
superior capacity to grow quickly in poor
substrates and to withstand the harsh
conditions presented in degraded soils. In the
article it was describe several successful
results in
Brazil using N2-fixing legume tree species for
reclamation of areas degraded by soil erosion,
construction and mining activities, emphasizing
the
potential of the technique to recover soil
organic
matter levels and restore ecosystem
biodiversity
Continue…
Research on legume tree nodulation
started in
the mid- 1960s (Döbereiner 1967) with
strain
selection and field response of Mimosa
caesalpiniifolia, a native species from the
Brazilian Caatinga (dry forest biome). This
species is certainly one of the most
frequently
planted legume tree species in Brazil
today,
Production of legume
seedlings for land reclamation
Production of legume tree seedlings
consists
of several steps, which start with the
harvest
of seeds from selected mother plants.
Selection of mother plants is important to
ensure that seeds originate from healthy
plants
containing superior phenotypic
characteristics,
and maximum genetic variability, so they
should be collected from a range of
individual


According to a study by local watershed committees, this
form of erosion is the principal cause of the accelerated
silting up of the Paraíba do Sul River, which is the main
source of water to nine million people living in the
metropolitan area of the city of Rio de Janeiro. In this case
study we report the use of FGLTs to recover a gulley in a rural
site in Pinheiral, south of the State of Rio de Janeiro (Figure
1). The gulley had an area of ~1000 m2, 10 m depth and a
volume of approximately ~10,000 m3 (equivalent to 2000
truckloads of sediment). (Chaer et. al, 2011)
Figure 1. Location of case study areas. (A) Revegetation of
erosion gullies, Pinheiral, Rio de Janeiro State (22°31’27”S,
43°59’08”W, average height of 420 m asl). (B) Revegetation of
iron mining overburden, Mariana-Ouro Preto districts, Minas
Gerais State (20°15′28′′S, 43°30′35′′W, average height 1000 m
asl). (C) Revegetation of areas degraded by piçarra extraction,
Rio Grande do Norte State (average height 50 m asl). (D)
Carbon accumulation in soils reclaimed with legume trees,
Angra dos Reis, Rio de Janeiro State (23°02′30′′S, 44°11′30′′W,
100–200 m asl).
Continue…


The intervention was started in 2000 with the
construction of terraces at the upper and lower ends of the
gulley, and walls of bamboo and tires were positioned in the
inner part to trap sediments. Seedlings of several legume
trees, inoculated with selected rhizobia and AMF, were
planted along the gulley into holes cut into the walls with 2 m
× 2 m spacing. The success of the intervention was
measured by the growth of the trees and by the amount of
sediments collected in sediment tanks.



The species A. mangium, Mimosa artemisiana, M.
caesalpiniifolia and Pseudosamanea guachapele showed the
best survival and development after 170 days. The species A.
auriculiformes, Acacia angustissima, Albizia
lebbek, Enterolobium contortisiliquum and Samanea saman
showed low indices of survival, sometimes because of their
lower resistance to drought, or their position in the gulley
where water was not retained, or because they suffered from
attack by leaf-cutting ants.
Land reclamation and the
process of plant succession
The primary objective of reclaiming severely degraded
areas is to promote fast plant colonization of the area in
order to protect the soil against erosion, and to input
new biomass/carbon to the system.
The planting of FGLTs inoculated with selected rhizobium
strains and AMF is a strategy that has proved to be very
efficient in achieving these objectives. These species can
add
large quantities of organic matter and N to the soil through
litterfall in a relatively short time, improving nutrient cycling
and
the rehabilitation process.


Increasing SOM is very important in degraded land rehabilitation
projects, since, according to Francis and Read (1994), it enhances the
capacity of the system to support a more complex community. Macedo
et al. (2008) also showed that the N increase derived from BNF was
directly related to C incorporation, as indicated by the strong
correlation of soil C and N in all areas in this study (r = 0.78, P <
0.0001, n = 50). Owing to their ability to fix nitrogen, legume species
have been used as an N source in several tropical agroecosystems,
including pastures (Fisher et al. 1994, Tarré et al. 2001), no-till fields
(Sisti et al. 2004, Boddey et al. 2010), tree plantations (Resh et al.
2002, Balieiro et al. 2008) and agroforestry (Handayanto et al. 1995).



In these diverse systems, soil N content and SOM stocks were
found to increase. Organic matter is very important in tropical soils
since it plays a crucial role in the formation and maintenance of soil
structure, fertility, and nutrient and water availability (Bayer et al. 2001,
Craswell and Lefroy 2001, Six et al. 2002). It seems that in pasture,
forest or arable systems under no-till, where soil is not regularly
disturbed by ploughing, etc., N2-fixing legumes can play a very
important role in increasing soil carbon (i.e., sequestering atmospheric
CO2), especially in degraded areas where C stocks start at a very low
level (Boddey et al. 2009).
Conclusion
In conclusion, the tree-cropping system for reclamation of
problem soil is the system that often practiced to keep maintains
the good condition of soil in the long term. It reclaiming severely
degraded areas and to promote fast plant colonization of the area
in order to protect the soil against erosion, and to input new
biomass to the system.
Since the nitrogen is one of the main sources for
fertilizer requirement, the leguminous crop as beneficial plant
which bacteria Rhizobium do nitrogen fixation in the plant are
required to help in establishment of tree-copping system to
reclaims the soil problem especially for the problem of soil
erosion that often occur when rainy season by colonization of the
leguminous crop on the problems area.
REFERENCES














Döbereiner, J. 1967. Efeito da inoculação de sementeiras de sabiá (Mimosa caesalpiniifolia) no
estabelecimento e desenvovimento das mudas no campo. Pesqui. Agropecu. Bras. 2:301–305.
Francis, R. and Read, D.J. 1994. The contributions of mycorrhizal fungi to the determination of plant
community structure. Plant Soil 159:11–25.
Macedo, M.O., Resende A.S., Garcia, P.C. Boddey, R.M. Jantalia, C.P. Urquiaga, S. Campello E.F.C. and
Franco, A.A.. 2008. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of
degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manage. 255:1516–1524.
Fisher, M.J., Rao, I.M. Ayarza, M.A. Lascano, C.E. Sanz, J.I. Thomas R.J. and Vera, R.R. 1994. Carbon
storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238.
Tarré, R.M., Macedo, R. Cantarutti, R.B. Resende, C.P. Pereira, J.M. Ferreira, E. Alves, B.J.R.Urquiaga S.
and Boddey, R.M. 2001. The effect of the presence of a forage legume on nitrogen and carbon levels in
soils under Brachiaria pastures in the Atlantic Forest region
of the South of Bahia, Brazil. Plant
Soil 234:15–26.
Sisti, C.P.J., Santos, H.P. Kohhann, R.A. Alves, B.J.R. Urquiaga S. and Boddey, R.M. 2004. Change in
carbon and nitrogen stocks in soil under 13 years of conventional or zero
tillage in southern
Brazil. Soil Till. Res. 76:39–58.
Resh, S.C., Binkley D. and Parrotta, J.A. 2002. Greater soil carbon sequestration under nitrogen-fixing
trees compared with Eucalyptus species. Ecosystems 5:217–231.
Handayanto, E., Cadisch, G. and Giller, K.E. 1995. Manipulation of quality and mineralization of tropical
legume tree prunings by varying nitrogen supply. Plant Soil 176:149–160.
Bayer, C., Martin-Neto, L. Mielniczuk, J. Pillon C.N. and Sangoi. L. 2001. Changes in soil organic matter
fractions under subtropical no-till cropping systems. Soil Sci. Soc. Am. J. 65:1473–1478.
Boddey, R.M., Alves, B.J.R. Soares, L.H.D.B. Jantalia C. and Urquiaga, S. 2009. Biological nitrogen
fixation and the mitigation of greenhouse gas emissions. In Nitrogen Fixation in Crop Production. Eds.
D.W. merich and H.B. Krishnan. ASA-CSSA-SSSA, Madison, WI, pp 387 413.
Thank You =)

Contenu connexe

Tendances

Tendances (20)

Doug Peterson - Soil Health Initiative
Doug Peterson - Soil Health InitiativeDoug Peterson - Soil Health Initiative
Doug Peterson - Soil Health Initiative
 
Management of degraded forests eco-restoration through redd
Management of degraded forests   eco-restoration through reddManagement of degraded forests   eco-restoration through redd
Management of degraded forests eco-restoration through redd
 
Wastelands
WastelandsWastelands
Wastelands
 
Agroforestry
AgroforestryAgroforestry
Agroforestry
 
Soil health an overview
Soil health an overviewSoil health an overview
Soil health an overview
 
The waste land reclamation
The waste land reclamationThe waste land reclamation
The waste land reclamation
 
Restoring wastelands case studies
Restoring wastelands   case studiesRestoring wastelands   case studies
Restoring wastelands case studies
 
ASSESSING THE ECO SYSTEM SERVICES AND ECONOMIC BENEFITS OF BAMBOO RESTORATI...
ASSESSING THE ECO SYSTEM SERVICES  AND ECONOMIC BENEFITS OF BAMBOO  RESTORATI...ASSESSING THE ECO SYSTEM SERVICES  AND ECONOMIC BENEFITS OF BAMBOO  RESTORATI...
ASSESSING THE ECO SYSTEM SERVICES AND ECONOMIC BENEFITS OF BAMBOO RESTORATI...
 
Management of wasteland
Management of wastelandManagement of wasteland
Management of wasteland
 
Managing Organic Matter for Soil Health and Fertility
Managing Organic Matter for Soil Health and FertilityManaging Organic Matter for Soil Health and Fertility
Managing Organic Matter for Soil Health and Fertility
 
Soil quality attributes for a Sustainable Agriculture: A Review
Soil quality attributes for a Sustainable Agriculture: A Review  Soil quality attributes for a Sustainable Agriculture: A Review
Soil quality attributes for a Sustainable Agriculture: A Review
 
VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...
 
Soil health overview
Soil health overviewSoil health overview
Soil health overview
 
An Overview of Soil Health-Presented at Westerin IOWA No-Till Field Day-Shelb...
An Overview of Soil Health-Presented at Westerin IOWA No-Till Field Day-Shelb...An Overview of Soil Health-Presented at Westerin IOWA No-Till Field Day-Shelb...
An Overview of Soil Health-Presented at Westerin IOWA No-Till Field Day-Shelb...
 
Sustainable soil management
Sustainable soil managementSustainable soil management
Sustainable soil management
 
Soil health for organic production
Soil health for organic productionSoil health for organic production
Soil health for organic production
 
Soil health
Soil healthSoil health
Soil health
 
Growing Natural Capital to Develop Resilient Dryland Farm Landscapes - New Ze...
Growing Natural Capital to Develop Resilient Dryland Farm Landscapes - New Ze...Growing Natural Capital to Develop Resilient Dryland Farm Landscapes - New Ze...
Growing Natural Capital to Develop Resilient Dryland Farm Landscapes - New Ze...
 
Green chm-ch10
Green chm-ch10Green chm-ch10
Green chm-ch10
 
Turf Culture 1
Turf Culture 1Turf Culture 1
Turf Culture 1
 

En vedette

Stabilization of Soil Through Chemical Alteration
Stabilization of Soil Through Chemical AlterationStabilization of Soil Through Chemical Alteration
Stabilization of Soil Through Chemical Alteration
joliverreu
 
Plantation in nepal and in the tropics prakash thapa
Plantation in nepal and in the tropics  prakash thapaPlantation in nepal and in the tropics  prakash thapa
Plantation in nepal and in the tropics prakash thapa
sahl_2fast
 

En vedette (13)

Stabilization of Soil Through Chemical Alteration
Stabilization of Soil Through Chemical AlterationStabilization of Soil Through Chemical Alteration
Stabilization of Soil Through Chemical Alteration
 
Interview presentation1
Interview presentation1Interview presentation1
Interview presentation1
 
The impact of climate change and sustainable land management based adaptation...
The impact of climate change and sustainable land management based adaptation...The impact of climate change and sustainable land management based adaptation...
The impact of climate change and sustainable land management based adaptation...
 
Plantation in nepal and in the tropics prakash thapa
Plantation in nepal and in the tropics  prakash thapaPlantation in nepal and in the tropics  prakash thapa
Plantation in nepal and in the tropics prakash thapa
 
Soil stabilization methods_and_materials
Soil stabilization methods_and_materialsSoil stabilization methods_and_materials
Soil stabilization methods_and_materials
 
Soil cement
Soil cementSoil cement
Soil cement
 
Soil cement
Soil cementSoil cement
Soil cement
 
SOIL STABILIZATION USING LIME AND CEMENT
SOIL STABILIZATION USING LIME AND CEMENTSOIL STABILIZATION USING LIME AND CEMENT
SOIL STABILIZATION USING LIME AND CEMENT
 
Tree plantation
Tree plantationTree plantation
Tree plantation
 
Soil stabilisation (1)
Soil stabilisation (1)Soil stabilisation (1)
Soil stabilisation (1)
 
Tree plantation
Tree plantationTree plantation
Tree plantation
 
The Outcome Economy
The Outcome EconomyThe Outcome Economy
The Outcome Economy
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similaire à Tree cropping system for reclamation of problem soil

The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
The role of Agroforestry in conserving soil and soil moisture in Nepalese con...The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
Amit Chaudhary
 
Tree cropping system for reclaimation of problem soils
Tree cropping system for reclaimation of problem soilsTree cropping system for reclaimation of problem soils
Tree cropping system for reclaimation of problem soils
Soleh Saedon
 
Ameliorative potential of rice hull and straw in the ecological restoration o...
Ameliorative potential of rice hull and straw in the ecological restoration o...Ameliorative potential of rice hull and straw in the ecological restoration o...
Ameliorative potential of rice hull and straw in the ecological restoration o...
Open Access Research Paper
 
Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...
Innspub Net
 
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
Agriculture Journal IJOEAR
 
2008 kholer et al. dom from alperujo medicago sativa
2008 kholer et al. dom from alperujo medicago sativa2008 kholer et al. dom from alperujo medicago sativa
2008 kholer et al. dom from alperujo medicago sativa
Germán Tortosa
 

Similaire à Tree cropping system for reclamation of problem soil (20)

The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
The role of Agroforestry in conserving soil and soil moisture in Nepalese con...The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
The role of Agroforestry in conserving soil and soil moisture in Nepalese con...
 
Pk nair icraf may 2011
Pk nair   icraf may 2011Pk nair   icraf may 2011
Pk nair icraf may 2011
 
Tree cropping system for reclaimation of problem soils
Tree cropping system for reclaimation of problem soilsTree cropping system for reclaimation of problem soils
Tree cropping system for reclaimation of problem soils
 
Development of wasteland under social forestry programme
Development of wasteland under social forestry programmeDevelopment of wasteland under social forestry programme
Development of wasteland under social forestry programme
 
Pulses and biodiversity
Pulses and biodiversityPulses and biodiversity
Pulses and biodiversity
 
Ameliorative potential of rice hull and straw in the ecological restoration o...
Ameliorative potential of rice hull and straw in the ecological restoration o...Ameliorative potential of rice hull and straw in the ecological restoration o...
Ameliorative potential of rice hull and straw in the ecological restoration o...
 
SoilBioHedge
SoilBioHedgeSoilBioHedge
SoilBioHedge
 
Suelos 2
Suelos 2Suelos 2
Suelos 2
 
RAlepa
RAlepaRAlepa
RAlepa
 
Hawai‘i Low Land Mesic Forest Restoration Manual (May 2015)
Hawai‘i Low Land Mesic Forest Restoration Manual (May 2015)Hawai‘i Low Land Mesic Forest Restoration Manual (May 2015)
Hawai‘i Low Land Mesic Forest Restoration Manual (May 2015)
 
Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...
 
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
Inoculation of (Prosopis Laevigata) by Arbuscular Mycorrhizal Fungi in Differ...
 
Title-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptxTitle-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptx
 
July 29-330-Andrew Kilduff
July 29-330-Andrew KilduffJuly 29-330-Andrew Kilduff
July 29-330-Andrew Kilduff
 
Agroforestry to Soil and Water Conservation
Agroforestry to Soil and Water ConservationAgroforestry to Soil and Water Conservation
Agroforestry to Soil and Water Conservation
 
2008 kholer et al. dom from alperujo medicago sativa
2008 kholer et al. dom from alperujo medicago sativa2008 kholer et al. dom from alperujo medicago sativa
2008 kholer et al. dom from alperujo medicago sativa
 
A closer look at wasteland and their reclamation
A closer look at wasteland and their reclamationA closer look at wasteland and their reclamation
A closer look at wasteland and their reclamation
 
Soil health revolution in am ag pearlstone weil
Soil health revolution in am ag pearlstone weilSoil health revolution in am ag pearlstone weil
Soil health revolution in am ag pearlstone weil
 
0739 nurtjahya-indonesia
0739 nurtjahya-indonesia0739 nurtjahya-indonesia
0739 nurtjahya-indonesia
 
SUSTAINABLE SOIL FERTILITY MANAGEMENT IN BENIN: LEARNING FROM FARMERS
SUSTAINABLE SOIL FERTILITY MANAGEMENT IN BENIN: LEARNING FROM FARMERSSUSTAINABLE SOIL FERTILITY MANAGEMENT IN BENIN: LEARNING FROM FARMERS
SUSTAINABLE SOIL FERTILITY MANAGEMENT IN BENIN: LEARNING FROM FARMERS
 

Dernier

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Dernier (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Tree cropping system for reclamation of problem soil

  • 1. AGR606 – Plantation Integration Presented by Cik Solehah Binti Saedon 2011152061 Faculty of Plantation & Agrotechnology UiTM Perlis
  • 2. INTRODUCTION Agroforestry systems have the potential to make use of marginal and degraded lands through the soil improving effects of trees. Underlying all aspects of the role of agroforestry in maintenance of soil fertility is the fundamental proposition that trees improve soils. It would be useful to have guidelines on which properties of a tree or shrub species make it desirable for the point of view of soil fertility.
  • 3. How Do We Know That Trees Improve Soils 1. The soil that develops under natural forest and woodland is fertile. It is well structured, has a good water-holding capacity and has a store of nutrients bound up in the organic matter. Farmers know they will get a good crop by planting on cleared natural forest. 2. The cycles of carbon and nutrients under natural forest ecosystems are relatively closed, with much recycling and low inputs and outputs. 3. The practice of shifting cultivation demonstrated the power of trees to restore fertility lost during cropping. 4. Experience of reclamation forestry has demonstrated the power of trees to build up fertility on degraded land.
  • 4. Case Studies In Brazil there have apply the nitrogen-fixing legume tree species for the reclamation of severely degraded lands (Chaer et. al, 2011). The main challenges faced in the reclamation of severely degraded lands are in the management of the systems and finding plant species that will grow under the harsh conditions common in degraded soils. This is especially important in extremely adverse situations found in some substrates from mining activities or soils that have lost their upper horizons. Under these conditions, recolonization of the area by native vegetation through natural succession processes may be extremely limited. Once the main physical and chemical factors restrictive to plant growth are corrected or attenuated, the introduction of leguminous trees able to form symbioses with nodulating N2-fixing bacteria and arbuscular mycorrhizal fungi constitutes an efficient strategy to accelerate soil reclamation and initiate natural succession.
  • 5. Continue… These symbioses give the legume species a superior capacity to grow quickly in poor substrates and to withstand the harsh conditions presented in degraded soils. In the article it was describe several successful results in Brazil using N2-fixing legume tree species for reclamation of areas degraded by soil erosion, construction and mining activities, emphasizing the potential of the technique to recover soil organic matter levels and restore ecosystem biodiversity
  • 6. Continue… Research on legume tree nodulation started in the mid- 1960s (Döbereiner 1967) with strain selection and field response of Mimosa caesalpiniifolia, a native species from the Brazilian Caatinga (dry forest biome). This species is certainly one of the most frequently planted legume tree species in Brazil today,
  • 7. Production of legume seedlings for land reclamation Production of legume tree seedlings consists of several steps, which start with the harvest of seeds from selected mother plants. Selection of mother plants is important to ensure that seeds originate from healthy plants containing superior phenotypic characteristics, and maximum genetic variability, so they should be collected from a range of individual
  • 8.  According to a study by local watershed committees, this form of erosion is the principal cause of the accelerated silting up of the Paraíba do Sul River, which is the main source of water to nine million people living in the metropolitan area of the city of Rio de Janeiro. In this case study we report the use of FGLTs to recover a gulley in a rural site in Pinheiral, south of the State of Rio de Janeiro (Figure 1). The gulley had an area of ~1000 m2, 10 m depth and a volume of approximately ~10,000 m3 (equivalent to 2000 truckloads of sediment). (Chaer et. al, 2011) Figure 1. Location of case study areas. (A) Revegetation of erosion gullies, Pinheiral, Rio de Janeiro State (22°31’27”S, 43°59’08”W, average height of 420 m asl). (B) Revegetation of iron mining overburden, Mariana-Ouro Preto districts, Minas Gerais State (20°15′28′′S, 43°30′35′′W, average height 1000 m asl). (C) Revegetation of areas degraded by piçarra extraction, Rio Grande do Norte State (average height 50 m asl). (D) Carbon accumulation in soils reclaimed with legume trees, Angra dos Reis, Rio de Janeiro State (23°02′30′′S, 44°11′30′′W, 100–200 m asl).
  • 9. Continue…  The intervention was started in 2000 with the construction of terraces at the upper and lower ends of the gulley, and walls of bamboo and tires were positioned in the inner part to trap sediments. Seedlings of several legume trees, inoculated with selected rhizobia and AMF, were planted along the gulley into holes cut into the walls with 2 m × 2 m spacing. The success of the intervention was measured by the growth of the trees and by the amount of sediments collected in sediment tanks.  The species A. mangium, Mimosa artemisiana, M. caesalpiniifolia and Pseudosamanea guachapele showed the best survival and development after 170 days. The species A. auriculiformes, Acacia angustissima, Albizia lebbek, Enterolobium contortisiliquum and Samanea saman showed low indices of survival, sometimes because of their lower resistance to drought, or their position in the gulley where water was not retained, or because they suffered from attack by leaf-cutting ants.
  • 10. Land reclamation and the process of plant succession The primary objective of reclaiming severely degraded areas is to promote fast plant colonization of the area in order to protect the soil against erosion, and to input new biomass/carbon to the system. The planting of FGLTs inoculated with selected rhizobium strains and AMF is a strategy that has proved to be very efficient in achieving these objectives. These species can add large quantities of organic matter and N to the soil through litterfall in a relatively short time, improving nutrient cycling and the rehabilitation process.
  • 11.  Increasing SOM is very important in degraded land rehabilitation projects, since, according to Francis and Read (1994), it enhances the capacity of the system to support a more complex community. Macedo et al. (2008) also showed that the N increase derived from BNF was directly related to C incorporation, as indicated by the strong correlation of soil C and N in all areas in this study (r = 0.78, P < 0.0001, n = 50). Owing to their ability to fix nitrogen, legume species have been used as an N source in several tropical agroecosystems, including pastures (Fisher et al. 1994, Tarré et al. 2001), no-till fields (Sisti et al. 2004, Boddey et al. 2010), tree plantations (Resh et al. 2002, Balieiro et al. 2008) and agroforestry (Handayanto et al. 1995).  In these diverse systems, soil N content and SOM stocks were found to increase. Organic matter is very important in tropical soils since it plays a crucial role in the formation and maintenance of soil structure, fertility, and nutrient and water availability (Bayer et al. 2001, Craswell and Lefroy 2001, Six et al. 2002). It seems that in pasture, forest or arable systems under no-till, where soil is not regularly disturbed by ploughing, etc., N2-fixing legumes can play a very important role in increasing soil carbon (i.e., sequestering atmospheric CO2), especially in degraded areas where C stocks start at a very low level (Boddey et al. 2009).
  • 12. Conclusion In conclusion, the tree-cropping system for reclamation of problem soil is the system that often practiced to keep maintains the good condition of soil in the long term. It reclaiming severely degraded areas and to promote fast plant colonization of the area in order to protect the soil against erosion, and to input new biomass to the system. Since the nitrogen is one of the main sources for fertilizer requirement, the leguminous crop as beneficial plant which bacteria Rhizobium do nitrogen fixation in the plant are required to help in establishment of tree-copping system to reclaims the soil problem especially for the problem of soil erosion that often occur when rainy season by colonization of the leguminous crop on the problems area.
  • 13. REFERENCES           Döbereiner, J. 1967. Efeito da inoculação de sementeiras de sabiá (Mimosa caesalpiniifolia) no estabelecimento e desenvovimento das mudas no campo. Pesqui. Agropecu. Bras. 2:301–305. Francis, R. and Read, D.J. 1994. The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25. Macedo, M.O., Resende A.S., Garcia, P.C. Boddey, R.M. Jantalia, C.P. Urquiaga, S. Campello E.F.C. and Franco, A.A.. 2008. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manage. 255:1516–1524. Fisher, M.J., Rao, I.M. Ayarza, M.A. Lascano, C.E. Sanz, J.I. Thomas R.J. and Vera, R.R. 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238. Tarré, R.M., Macedo, R. Cantarutti, R.B. Resende, C.P. Pereira, J.M. Ferreira, E. Alves, B.J.R.Urquiaga S. and Boddey, R.M. 2001. The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic Forest region of the South of Bahia, Brazil. Plant Soil 234:15–26. Sisti, C.P.J., Santos, H.P. Kohhann, R.A. Alves, B.J.R. Urquiaga S. and Boddey, R.M. 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till. Res. 76:39–58. Resh, S.C., Binkley D. and Parrotta, J.A. 2002. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231. Handayanto, E., Cadisch, G. and Giller, K.E. 1995. Manipulation of quality and mineralization of tropical legume tree prunings by varying nitrogen supply. Plant Soil 176:149–160. Bayer, C., Martin-Neto, L. Mielniczuk, J. Pillon C.N. and Sangoi. L. 2001. Changes in soil organic matter fractions under subtropical no-till cropping systems. Soil Sci. Soc. Am. J. 65:1473–1478. Boddey, R.M., Alves, B.J.R. Soares, L.H.D.B. Jantalia C. and Urquiaga, S. 2009. Biological nitrogen fixation and the mitigation of greenhouse gas emissions. In Nitrogen Fixation in Crop Production. Eds. D.W. merich and H.B. Krishnan. ASA-CSSA-SSSA, Madison, WI, pp 387 413.