SlideShare une entreprise Scribd logo
1  sur  83
Earth Gravitation
SOLO HERMELIN
Updated: 17.01.13
16.12.14
1
http://www.solohermelin.com
Table of Content
SOLO
2
Earth Gravitation
Introduction to Gravitation
Gravitation of a Point Mass M (Netwon Gravitation Law)
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
Gravitation of a Uniform Distribution of Mass
in a Spherical Volume
( )( ).ConstrS =

ρ
Physical Meaning of the Low Degree and Order SHCs
Reference Earth Model
Clairaut's theorem
Mac Cullagh’s Approximation
World Geodetic System (WGS 84)
Reference Ellipsoid
Air Vehicle in Ellipsoidal Earth Atmosphere
References
Gravity
Nicolaus Copernicus (1473 – 1543)
“De Revolutionibus Orbium Coelestium”
(On the Revolutions of the Heavenly Spheres”,
Nuremberg 1543)
SOLO
Gravity
Kepler’s Laws of Planetary Motion
From 1601 to 1606 Kepler tried to fit various
Geometric Curves to Tycho Brache’s Data on
Mars Orbit. The result is
“Kepler’s Law of Planetary Motion”
Tycho Brahe
(1546-1601)
Johaness Kepler
(1571-1630)
SOLO
KEPLER’S LAWS OF PLANETARY MOTION 1609-1619
•FIRST LAW
THE ORBIT OF EACH PLANET IS
AN ELLIPSE, WITH THE SUN AT
A FOCUS.
b
a
•SECOND LAW
THE LINE JOINING THE PLANET
TO THE SUN SWEEPS OUT
EQUAL AREAS IN EQUAL TIME.
a dA
h
dt
2
=
b
•THIRD LAW
THE SQUARE OF THE PERIOD OF
A PLANET IS PROPORTIONAL TO
THE CUBE OF ITS MEAN DISTANCE
FROM THE SUN.
a 2/322
a
GMGM
ab
TP
ππ
==
b
Gravity
SOLO
GALILEO GALILEI (1564-1642(
“DISCOURSESANDMATHEMATICALDEMONSTRATIONS
CONCERNINGTWONEWSCIENCES” 1636
THE FIRST TWO CHAPTERS DEAL WITH
STRENGTHOFMATERIALS.
THIS IS ESSENTIALLY THE FIRST NEW SCIENCE.
THE THIRD AND FOURTH SUBJECT IS :
• UNIFORMMOTION WITHCONSTANTACCELERATION
ANDMOTION OFPROJECTILES
•THE LAWOFINERTIA
•THE COMPOSITION OFMOTIONSACCORDINGTO
VECTORADDITION (“GALILEAN TRANSFORMATION”)
AND
•THE STUDY OFUNIFORMLYACCELERATEDMOTION
Gravity
SOLO
NEWTON’SLAWSOFMOTION
“THE MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY”1687
• FIRSTLAW
EVERY BODY CONTINUES IN ITS STATE OF REST OR OF UNIFORM MOTION IN
A STRAIGHT LINE UNLESS IT IS COMPELLED TO CHANGE THAT STATE BY
FORCES IMPRESSED UPON IT.
• SECONDLAW
THE RATE OF CHANGE OF MOMENTUM IS PROPORTIONAL
TO
THE FORCE IMPRESSED AND IS IN THE SAME DIRECTION AS
THAT FORCE.
• THIRDLAW
TO EVERY ACTION THERE IS ALWAYS OPPOSED AN EQUAL REACTION.
Gravity
SOLO
NEWTON’S LAW OF UNIVERSAL GRAVITATION
ANY TWO BODY ATTRACT ONE ONOTHER WITH A FORCE
PROPORTIONAL TO THE PRODUCT OF THE MASSES AND INVERSLY
PROPORTIONAL TO THE SQUARE OF THE DISTANCE BETWEEN THEM.
THE UNIVERSAL GRAVITATIONAL CONSTANT
INSTANTANEUS PROPAGATION OF THE FORCE ALONG THE DIRECTION BETWEEN THE
MASES (“ACTION AT A DISTANCE”).
M m
Gravity
SOLO
THE LAGEOS SATELLITE MONITORS
ITS POSITION RELATIVE TO THE EARTH
USING REFLECTED LIGHT.
THE TORSION BALANCE EXPERIMENTS:
* HENRY CAVENDISH 1797 * RESEARCH GROUP OF UNIVERSITY OF
WASHINGTON, SEATTLE (EOTWASH)
CAVENDISH EXPERIMENTS HAVE NOT BEEN ABLE TO TEST THE GRAVITATIONAL FORCE AT SEPARATIONS
SMALLER THAN A MILLIMETER.
IF THERE ARE n EXTRA DIMENSIONS (TO THE 3 SPACE + 1 TIME) CURLED UP WITH DIAMETERS R, AT SCALES
SMALLER THAN R THE GENERALIZED NEWTON POTENTIAL WILL BE: Rr
r
M
GrV nn <<=+1
)(
Gravity
Henry Cavendish
(1731 – 1810)
Return to Table of Content
SOLO
10
SOLO
Earth Gravitation
Gravitation of a Point Mass M (Netwon Gravitation Law)
SF
SF
SF
SF
SF
FM rrr
rr
rr
rr
Mm
GgmF





−=







−
−
−
−== :2
According to Newton the Gravitation Force of
Point Mass M on the Point mass mF is given by
MF

The acceleration of Mass m due to Gravity is
( ) ( )rrf
r
r
r
M
Grg



=





−= 2
( ) ( ) ( )
r
r
r
rf
r
r
rf
rf

∂
∂
=∇
∂
∂
=∇
Any function of the form has the property that( )rrf

Because of this
1.we can write
2.we have
( ) ( )rUrg

−∇=
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )[ ]1
1111
rUrUmrUdmrdrUmrdrgmrdrF F
rB
rA
F
rB
rA
rB
rA
rB
rA









−=−=⋅∇−=⋅=⋅ ∫∫∫∫
The Work necessary to move the Mass mF in the Gravity Field of Point Mass M,
from point to point , is not a function of the trajectory chosen but on
the values of the scalar function U (called Potential) at those two points.
( )rA

( )1rB

SOLO
11
Earth Gravitation
Gravitation of a Point Mass M (Netwon Gravitation Law)
( ) ( ) ( )
( )
( )
( )
( )
( )
( )
r
M
G
r
M
Grd
r
M
Grd
r
r
r
M
GrdrgrUrU
f
rB
rA
rB
rA
rB
rA
f
fff










−=−=⋅





−=⋅=− ∫∫∫ 22
The Gravitation Potential U of a Point Mass M is given by
The Gravitation Equi-Potential Surface of a Point Mass M
is Spherical Surface centered at M location.
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
The Gravitation Potential of the Distribution is obtaining by
Integrating the Gravitation Potentials of the Point Masses dm
over the Volume V
( ) ( ) ( )
∫∫ −
−=
−
−=
V
S
S
S
M S
S
Vd
rr
r
G
rr
rmd
GrU 



 ρ
If we take the reference rf → ∞ we get 0. ==
fr
M
GConst 
( )
r
M
GrU 

−=
( ) .Const
r
M
GrU +−= 

Return to Table of Content
SOLO
12
Earth Gravitation
( ) S
SS
S
rrMd
r
r
r
rr
G
rr
Md
GrUd >






+





−
−=
−
−=
2
cos21
1
γ


( ) ( ) SSSSSSSS
onDistributi
Density
SSS ddrdrrVdrMd ϕθθθϕρθϕρ sin,,,,
2
==

( ) ( )
S
r
SS
SSSSSSSS
rr
r
r
r
r
ddrdrr
r
G
rU
S S S
>






+





−
−= ∫ ∫∫ϕ θ
γ
ϕθθθϕρ
2
2
cos21
sin,,
( ) S
n
n
n
SSS
rrP
r
r
r
r
r
r
>





=














+





− ∑
∞
=
−
0
2/12
coscos21 γγ
Pn (u) are Lagrange Polynomials, of order n, given explicitly by Rodrigues’ Formula:
( ) ( )
n
nn
kn
ud
ud
n
uP
1
!2
1 2
−
=
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
( ) ( ) ( ) ( ) 2/13&,1 2
210 −=== uuPuuPuPExamples:
Using Spherical Coordinates (rS, φS, θS)
The Potential Differential of any distribution of mass is given by:
SOLO
13
Earth Gravitation
( ) ( ) ( ) S
r Md
SSSSSSSS
n
n
n
S
rrddrdrrP
r
r
r
G
rU
S S S
>





−= ∫ ∫ ∫ ∑
∞
=ϕ θ
ϕθθθϕργ
  

sin,,cos
2
0
From Spherical Trigonometry:
( )SSS ϕϕθθθθγ −+= cossinsincoscoscos
According to Addition Theorem for Spherical Harmonics:
( ) ( ) ( ) ( )
( )
( )[ ] ( ) ( )∑=
−
+
−
+=
n
m
S
m
n
m
nSSnnn PPm
mn
mn
PPP
1
coscoscos
!
!
2coscoscos θθϕϕθθγ
( ) ( ) ( )uP
ud
d
uuP nm
m
mm
n
2/2
1: −=
Where Pn
m
(u) is the Associated Lagrange Function of the First Kind of Degree n
and Order m, given by:
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
( ) ( )uPuP nn =
0
( ) ( ) ( ) ( )22
2
2
1
21
2 13,13 ttPtttP −=−=They satisfy:
The Potential of any distribution of mass is given by:
See Presentation on
“Legendre Functions”
SOLO
14
Earth Gravitation
The Potential of any distribution of mass is given by:
( ) ( ) ( )
( ) ( ) S
n r Md
SSSSSSSSn
n
S
k
S
r Md
SSSSSSSS
k
n
n
S
rrddrdrrP
a
r
r
a
r
G
rrddrdrrP
r
r
r
G
rU
S S S
S S S
>











−=
>





−=
∑ ∫ ∫∫
∫ ∫∫ ∑
∞
=
∞
=
0
2
2
0
sin,,cos
sin,,cos
ϕ θ
ϕ θ
ϕθθθϕργ
ϕθθθϕργ
  
  

According to Addition Theorem for Spherical Harmonics:
( ) ( ) ( ) ( )
( )
( )[ ] ( ) ( )∑=
−
+
−
+=
n
m
S
m
n
m
nSSnnn PPm
mn
mn
PPP
1
coscoscos
!
!
2coscoscos θθϕϕθθγ
Using those results we obtain:
( ) 1cos0 =γP
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫
∑∑ ∫ ∫∫
∑ ∫ ∫ ∫∫ ∫ ∫
∞
=
∞
= =
∞
=












+
−
−












+
−
−












−





−=
1
2
1 0
2
1
22
1
0
0
sin,,sincossincos
!
!
2
sin,,coscoscoscos
!
!
2
sin,,coscossin,,cos
n r
SSSSSSSSSSn
n
S
n
n
n
n
m r
SSSSSSSSSS
m
n
n
Sm
n
n
n r
SSSSSSSSSn
n
S
n
n
M
r Md
SSSSSSSS
S
S S S
S S S
S S SS S S
ddrdrrmP
a
r
mP
r
a
mn
mn
r
G
ddrdrrmP
a
r
mP
r
a
mn
mn
r
G
ddrdrrP
a
r
P
r
a
r
G
ddrdrrP
a
r
r
G
rU
ϕ θ
ϕ θ
ϕ θϕ θ
ϕθθθϕρϕθϕθ
ϕθθθϕρϕθϕθ
ϕθθθϕρθθϕθθθϕργ
  
  
  

Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
a – any reference length
SOLO
15
Earth Gravitation
( ) ( ) ( ) ( ) ( )( )








+





+





+−= ∑∑∑
∞
= =
∞
= 1 11
0 sincoscoscos1
n
n
m
nmnm
m
n
n
n
nn
n
mSmCP
r
a
CP
r
a
r
MG
rU ϕϕθθ

( ) ( )∫∫∫ 





==
S S Sr Md
SSSSSSSSSn
n
S
nn ddrdrrP
a
r
M
CC
ϕ θ
ϕθθθϕρθ
  
sin,,cos
1
:
2
0
( )
( )
( )
( )
( )
( )∫ ∫∫ 











+
−
=





S S Sr Md
SSSSSSSS
S
S
S
m
n
n
S
nm
nm
ddrdrr
m
m
P
a
r
mn
mn
S
C
ϕ θ
ϕθθθϕρ
ϕ
ϕ
θ
  
sin,,
sin
cos
cos
!
!
2:
2
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
The Potential of any distribution of mass is given by:
SOLO
16
Earth Gravitation
(1) A tremendous simplification results if the mass
distribution is symmetric about the z axis, i.e. ρ is a
function only of rS and θS. Since
( ) ( ) ,2,10cossin
2
0
2
0
=== ∫∫ jdjdj SSSS
ππ
ϕϕϕϕ
the coefficients Cmn and Smn vanish identically.
(2) In addition to axial symmetry, the origin of coordinates coincides with the
center of mass, the constant C1 is identically zero.
( ) ( ) 0cos
1
sin,cos
1
:
2
cos
11 =





=





= ∫∫ ∫∫ m
S
S
r md
SSSSSSSS
S
md
a
r
M
ddrdrrP
a
r
M
C
S S S
S
θϕθθθρθ
ϕ θ θ
  
C1 is proportional to the first moment of the mass M with respect to the xy plane.
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
In this case
( ) ( ) 0
1
:cos1 nn
n
nn
n
CJJP
r
a
r
MG
rU −=














−−= ∑
∞
=
θ

SOLO
17
Earth Gravitation
(3) Finally, if the mass is distributed in homogeneous concentric layers, i.e. ρ is a
function only of rS , then Cn vanishes identically for all n
( ) ( ) 0sincos:
2
0
0
00
22
=





= ∫∫∫
+ ππ
ϕθθθρ SSSSk
R
SS
n
S
n ddPrdr
a
r
M
a
C
  
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
( )
r
MG
rU =

In this case
Return to Table of Content
SOLO
18
Earth Gravitation
Gravitation of a Uniform Distribution of Mass in a Spherical Volume( )( ).ConstrS =

ρ
For a Static Spherical Volume with an Uniform Distributed
Mass the Gravitation Potential at a distance r > R is given by
( )
r
MG
r
R
GVd
rr
GrU S
V
S
SS
−=−=
−
−= ∫
3/41 3
π
ρρ 

The Gravitation Potential for a Static Spherical Volume with
an Uniform Distributed Mass is equivalent to a Point Mass
Gravitation Potential concentrated at the Center of the
Sphere. The Equi-Potential Surfaces will be Concentric
Spherical Surfaces outside the Spherical Mass.
SOLO
19
Earth Gravitation
The Potential of the Reference Ellipsoid is given by:
where:
UG – Gravitational Potential (m2
/s2
)
GM – Earth’s Gravitational Constant
r - Distance from the Earth’s Center of Mass
rS - Distance from the Earth’s Center of Mass to d m
Gravitation of a Uniform Distribution of Mass in a Ellipsoid Volume( )( ).Constr =

ρ
( )
Srr
md
GrUd 

−
=
Typically the Potential is expanded in a series.
This can be done in two ways, which lead to the same
result:
1.By expanding the term and integrate the result
term by term.
2. By writing the Potential as solution of Lalace’s
Equation using Spherical Harmonics.
Srr

−
1
SOLO
20
Earth Gravitation
The Potential Equation of Gravity Field
where:
UG – Gravitational Potential (m2
/s2
)
GM – Earth’s Gravitational Constant
r - Distance from the Earth’s Center of Mass
rS - Distance from the Earth’s Center of Mass to dm
( ) ( )
( ) ( )
( )rG
VdrrrG
Vd
rr
rGrU
S
S
V
SSS
V
S
S
SS




ρπ
δπρ
ρ
4
4
122
−=
−−=








−
∇−=∇
∫∫∫
∫∫∫
( ) ( )∫∫∫∫ −
−=
−
−=
SV S
S
S
M S rr
Vd
rG
rr
md
GrU 



ρStart with:
Inside the mass M we have:
( ) ( )rGrU

ρπ42
−=∇Poisson Equation:
( ) 02
=∇ rU

Laplace Equation:
Outside the mass M we have:
Siméon Denis
Poisson
1781-1840
Pierre-Simon Laplace
(1749-1827)
Return to Table of Content
SOLO
21
Earth Gravitation
Physical Meaning of the Low Degree and Order SHCs
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
As pointed out in the previous slides the first term of the
Spherical Harmonic Coefficients (SHC) of Gravity
Potential is equal to the Potential for Spherical Mass. The
remaining terms then represent the Gravitational Potential
due to Non-spherical, Non-uniform Mass.
( ) ( ) ( ) ( ) ( )( )








+





+





+−= ∑∑∑
∞
= =
∞
= 1 11
0 sincoscoscos1
n
n
m
nmnm
m
n
n
n
nn
n
mSmCP
r
a
CP
r
a
r
MG
rU ϕϕθθ

We have (see Figure)










=










=
S
SS
SS
S
s
s
s
S r
z
y
x
r
θ
ϕθ
ϕθ
cos
sinsin
cossin

( ) 0&
1
cos
1
: 10
cos
1
1
110 ===





== ∫∫ S
a
z
Mdz
Ma
MdP
a
r
M
CC G
M
S
M
S
S
S

θ
θ
( ) 





=





=











=











=





∫∫ ∫ ay
ax
Md
y
x
Ma
Md
a
r
M
MdP
a
r
MS
C
G
G
M S
S
M M S
S
S
S
S
S
S
S
/
/
2
2
sin
cos
sin
2
sin
cos
cos
2
1
1
1
1
11
11
ϕ
ϕ
θ
ϕ
ϕ
θ
( ) ( )2
1
21
1 1 ttP −=where we used Legendre Polynomials.
GGG zyx

,, are the coordinates of the Mass Center of Gravity
SOLO
22
Earth Gravitation
Physical Meaning of the Low Degree and Order SHCs
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
( ) ( ) ( ) ( ) ( )( )








+





+





+−= ∑∑∑
∞
= =
∞
= 1 11
0 sincoscoscos1
n
n
m
nmnm
m
n
n
n
nn
n
mSmCP
r
a
CP
r
a
r
MG
rU ϕϕθθ











=










=
S
SS
SS
S
s
s
s
S r
z
y
x
r
θ
ϕθ
ϕθ
cos
sinsin
cossin






 +
−−=





−=
2
1
2
31
2220
SSSS
SSSSSS
yyxx
zzzzrr
II
I
Ma
II
Ma
C
( )∫ 











=





M
S
S
MdP
a
r
MS
C
0
1
cos
2 0
2
2
20
20
θ
( ) ( ) 






 +
−++=






 +
−=
−−−
=
−
==
2
3
1
2
1
2
3
2
1cos3
coscos
2
222
2
22
2
22
22222
2
2
22
2
0
22
2
SS
SSS
SS
S
SSSSSS
S
S
S
S yx
zyx
a
yx
z
aa
zyxz
a
r
P
a
r
P
a
r θ
θθ
( ) ∫∫∫ 







=





=





=











=





M zy
zx
SS
SS
M S
S
SSS
M S
S
S
S
MaI
MaI
Md
zy
zx
Ma
Mdr
Ma
MdP
a
r
MS
C
SS
SS
2
2
2
2
2
1
2
2
21
21
/
/1
sin
cos
cossin3
3
1
sin
cos
cos
!3
12
ϕ
ϕ
θθ
ϕ
ϕ
θ
( )
( ) ( )
( )∫∫∫ 






 −
=






 −
=






 −
⋅
=











=





M yx
xxyy
SS
SS
M SS
SS
SS
M S
S
S
S
MaI
MaII
Md
yx
yx
Ma
Mdr
Ma
MdP
a
r
MS
C
SS
SSSS
2
222
2
22
22
2
2
2
2
22
22
2/
4/
24
1
cossin2
sincos
sin3
34
1
2sin
2cos
cos
!4
!12
ϕϕ
ϕϕ
θ
ϕ
ϕ
θ
( ) ( ) ( ) ( )22
2
2
1
21
2 13,13 ttPtttP −=−=where we used
( ) ( ) ( ) ( ) ( )SSSSSSSSSSSSSS zzyyxx
M
SSSrr
M
SSzz
M
SSyy
M
SSxx IIIMdzyxIMdyxIMdzxIMdzyI ++=++=+=+=+= ∫∫∫∫ 2
1
::,:,:
222222222
Define Moments of Inertia
SOLO
23
Earth Gravitation
Physical Meaning of the Low Degree and Order SHCs
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
SOLO
24
Earth Gravitation
Physical Meaning of the Low Degree and Order SHCs
Gravitation of a Distribution of Mass Defined by the Density ( )Sr

ρ
Return to Table of Content
SOLO
25
Earth Gravitation
Earth is a Rotating Non-Spherical Body, with a slightly non-
uniform mass distribution. The force acting on an external
mass is due to Gravitation and Centrifugal Accelerations.
To find a Model for the Gravitation Acceleration the Earth
is approximated by an Ellipsoid
The flattering of the Earth was already discovered by the end of the 18th
century.
It was noticed that the distance between a degree of Latitude as measured, for
instance with a sextant, differs from that expected from a Sphere:
RE (θ1 – θ2) ≠ RE dθ, with RE the radius of the Earth, θ1 and θ2 two different
Latitudes
f - the flattening of a meridian
section of the Earth, defined as:
a
ba
f
−
=:
R = 6,371.000 km
a = 6,378.136 km
b = 6,356.751 km
Reference Earth Model
Return to Table of Content
SOLO
26
Reference Ellipsoid
Meridian Ellipse Equation: 12
2
2
2
=+
b
z
a
p
Slope of the Normal to Ellipse:
2
2
tan
bp
az
zd
pd
=−=φ
The Slope of the Geocentric Line to the same point
p
z
O =φtan OO RzRp φφ sincos ==
Deviation Angle between Geographic and Geodetic
At Ellipsoid Surface
O
b
a
φφ tantan 2
2
=






= −
O
b
a
φφ tantan 2
2
1
( ) ( ) φφφφ tan1tan1tantan
22
2
2
fe
a
b
O −=−==
a
ba
f
−
=:
2
2
22
2
2: ff
a
ba
e −=
−
=
Earth Gravitation
SOLO
27
Reference Ellipsoid
Meridian Ellipse Equation:
Oφφδ −=
12
2
2
2
=+
b
z
a
p
Slope of the Normal to Ellipse:
2
2
tan
bp
az
zd
pd
=−=φ
The Slope of the Geocentric Line to the same point
p
z
O =φtan






−=






−+






−
=
+
−
=
+
−
= 1
11
1
1
tantan1
tantan
tan 2
2
2
2
2
2
2
2
2
22
22
2
2
b
a
a
zp
a
p
p
a
b
a
p
z
bp
az
p
z
bp
az
O
O
φφ
φφ
δ
OO RzRp φφ sincos ==
( )

( ) ( )OO
f
O f
ba
R
b
ba
a
ba
R
ba
ba
φφφδ 2sin2sin
2
tan2sin
2
tan
1
2
11
12
22
22
1
≈












+





 −
=










 −
=
≈≈<<
−−

Deviation Angle between Geographic and Geodetic
At Ellipsoid Surface
Earth Gravitation
SOLO
28
Reference Ellipsoid
For a point at a Height h near the Ellipsoid the
value of δ must be corrected:
u−= 1δδ
From the Law of Sine we have:
Deviation Angle between Geographic and Geodetic
At Altitude h from Ellipsoid Surface
( ) R
h
hR
huu
≈
+
≈=
− 11 sin
sin
sin
sin
δδπ
Since u and δ1 are small: 1δ
R
h
u ≈
The corrected value of δ is:
( )Of
R
h
R
h
u φδδδ 2sin11 11 





−=





−=−=
Therefore:
( )OO f
R
h
φλδφφ 2sin1 





−+=+=
Earth Gravitation
SOLO
29
World Geodetic System (WGS 84)
where
λ – Longitude
e – Eccentricity = 0.08181919
Reference Earth Model
In Earth Center Earth Fixed Coordinate –ECEF-System (E)
the Vehicle Position is given by:
( )
( )
( )
( ) 









+
+
+
=










=
φ
φλ
φλ
sin
cossin
coscos
HR
HR
HR
z
y
x
P
M
N
N
E
E
E
E

( )
NhH
e
a
RN
+=
−
= 2/12
sin1 φ
Another variable, used frequently, is the radius of the
Ellipsoid referred as the Meridian Radius
( )
( ) 2/32
2
sin1
1
φe
ea
RM
−
−
=
Earth Gravitation
SOLO
30
Reference Ellipsoid
b
a
Oφ
?O – Geographic Latitude
? – Geodetic Latitude
Equator
North Pole
Tangent
to Ellipsoid
p
NR
z
P
a
r
φ
β
Meridian Ellipse
Ellipsoid Equation:
( ) 222
2
2
2
22
11 aeb
b
z
a
yx
−==+
+
Define: 22
: yxp +=
12
2
2
2
=+
b
z
a
p
Differentiate: 022
=+
b
dzz
a
dpp
z
p
a
b
dp
dz
2
2
cot =−=φFrom the Figure:
φtan2
2
p
a
b
z =
( )φφ 222
4
2
22
4
2
2
2
tantan1 ba
a
p
p
a
b
a
p
+=+=
φφ
φ
φφ
φ
2222
2
2222
2
sincos
sin
,
sincos
cos
ba
b
z
ba
a
p
+
=
+
=
Earth Gravitation
SOLO
31
Reference Ellipsoid
( )
φ
φ
φφ
φ
φ
φ
φφ
φ
22
2
2222
2
222222
2
sin1
cos1
sincos
sin
sin1
cos
sincos
cos
e
ea
ba
b
z
e
a
ba
a
p
−
−
=
+
=
−
=
+
=
( ) 222
1 aeb −=
Earth Gravitation
SOLO
32
Reference Ellipsoid
( ) 222
1 aeb −=
12
2
2
2
=+
b
z
a
p
0
0
sin
cos
φ
φ
rz
rp
=
=
1
sincos
2
0
2
2
0
2
2
=





+
ba
r
φφ
( )
2/1
2
0
2
2
0
2
0
sincos
−






+=
ba
r
φφ
φ
( )

( ) ( )0
22/1
0
2
2/1
0
2
2
2/1
0
2
2
222/1
0
2
2
2
0
2
0
sin1sin21
sin1sin1sincos
φφ
φφφφφ
fafa
b
ba
b
a
a
ba
a
b
ba
a
b
a
ar
f
−≈+≈










+−
+=




 −
+=





+=
−
−
≈
−−

Earth Gravitation
SOLO
33
Reference Ellipsoid
The Meridians and Parallels are the Lines of Curvature of the
Ellipsoid. The principal Radii of Curvature are therefore in
the Plane of Meridian (Meridian Radius of Curvature RM) and
in the Plane of Prime Vertical, perpendicular to Meridian
Plane (Radius of Curvature in the Prime Vertical RN)
Radiuses of Curvature of the Ellipsoid
Meridian Ellipse Equation: ( ) 222
2
2
2
2
11 aeb
b
z
a
p
−==+
From this Equation, at any point (x,y) on the Ellipse, we have:
φtan
1
2
2
−=−=
az
bp
pd
zd
32
4
32
2222
2
2
2
2
22
2
22
2
2
2
111
za
b
za
pbza
a
b
z
p
a
b
z
p
za
b
pd
zd
z
p
za
b
pd
zd
−=
+
−=





+−=





−−=
From the Ellipse Equation:
( ) φ
φ
φ 2
22
2
2
2
222
2
2
2
2
2
2
2
2
cos
sin1
1
1
tan1111
e
a
p
e
e
a
p
b
a
p
z
a
p −
=





−
−+=





+=
( )
( )
( ) 2/122
2
2
2
2/122
sin1
sin1
tan
sin1
cos
φ
φ
φ
φ
φ
e
ea
p
a
b
z
e
a
p
−
−
==→
−
=
From the Figure on right:
( ) 2/122
sin1cos φφ e
ap
RN
−
==
Earth Gravitation
SOLO
34
Reference Ellipsoid
Let develop the RN and RM (continue):
we have at any point (p,z) on the Ellipse:
φtan
1
2
2
−=−=
az
bp
pd
zd ( )
3
22
32
4
2
2
11
z
ea
za
b
pd
zd −
−=−=
The Radius of Curvature of the Ellipse at the
point (p,z) is:
( )
( )
( )
( )
( ) 2/322
2
2/322
3323
22
2/3
2
2
2
2/32
sin1
1
sin1
sin1
1
tan
1
11
:
φφ
φφ
e
ea
e
ea
ea
pd
zd
pd
zd
RM
−
−
=
−
−
−






+
=














+
=
( )
( )
( ) 2/122
2
2/122
sin1
sin1
sin1
cos
φ
φ
φ
φ
e
ea
z
e
a
p
−
−
=
−
=
( )
( ) 2/322
2
sin1
1
:
φe
ea
RM
−
−
=
Radiuses of Curvature of the Ellipsoid
Earth Gravitation
SOLO
35
Reference Ellipsoid
( )
( ) 2/322
2
sin1
1
:
φe
ea
RM
−
−
=
( ) 2/122
sin1cos φφ e
ap
RN
−
==
a
ba
f
−
=: 2
2
22
2
2: ff
a
ba
e −=
−
=Using
( )
( )[ ]
( ) ( ) [ ] ++−≈





+−++−≈
−−
−
= φφ
φ
2222
2/322
2
sin321sin2
2
3
121
sin21
1
: ffaffffa
ff
fa
RM
( )[ ]
( ) [ ]φφ
φ
222
2/122
sin31sin2
2
3
1
sin21
faffa
ff
a
RN +≈



+−+≈
−−
= 
[ ]φ2
sin321 ffaRM +−≈
[ ]φ2
sin31 faRN +≈
We used and we neglect f2
terms
( )
( ) +
−
++=
− !2
1
1
1
1 nn
xn
x
n
Radiuses of Curvature of the Ellipsoid
Return to Table of Content
Earth Gravitation
SOLO
36
Reference Earth Model
Clairaut's theorem
Clairaut's theorem, published in 1743 by Alexis Claude Clairaut in
his “Théorie de la figure de la terre, tirée des principes de
l'hydrostatique”, synthesized physical and geodetic evidence that
the Earth is an oblate rotational ellipsoid. It is a general
mathematical law applying to spheroids of revolution. It was
initially used to relate the gravity at any point on the Earth's
surface to the position of that point, allowing the ellipticity of the
Earth to be calculated from measurements of gravity at different
latitudes.
Clairaut's formula for the acceleration due to gravity g on the surface of a spheroid
at latitude , was:ϕ
where G is the value of the acceleration of gravity at the equator, m the ratio of
the centrifugal force to gravity at the equator, and f the flattening of a meridian
section of the earth, defined as:
a
ba
f
−
=:
Alexis Claude Clairaut
)1713–1765(












−+= φ2
sin
2
5
1 fmGg
Earth Gravitation
Return to Table of Content
SOLO
37
Reference Earth Model
Mac Cullagh’s Approximation (1845)
James MacCullagh
(1809 – 1847)
Mac Cullagh’s used the Approximation:
( )
( )

( )

( ) ( )


















−





−






+











+−≈ ∫∫
≈
M
P
SS
P
r
a
M
M P
S
S
P
Md
a
r
Mr
a
Md
a
r
Mr
a
M
r
G
rU
S
CM
S

  


θθ
θ
θ
θθ
θθ
cos
22
cos
22
cos
1
cos
1
22
0
1
1
2
1cos31
2
1cos3
cos
1
cos1
∫∫∫ 






 +
−++=






 +
−=
−
=
M
SS
SSS
M
SS
S
M
SS
dM
yx
zyx
Ma
dM
yx
z
Ma
dM
a
r
M
C
2
3
1
2
1
2
1cos31
:
2
222
2
22
2
2
2
2
2
20
θ
222220
2
1
2
31
J
Ma
ACII
I
Ma
II
Ma
C SSSS
SSSSSS
yyxx
zzzzrr −=
−
−=




 +
−−=





−=
( ) ( ) ( ) ( ) ( )SSSSSSSSSSSSSS zzyyxx
M
SSSrr
M
SSzz
M
SSyy
M
SSxx IIIMdzyxIMdyxIMdzxIMdzyI ++=++=+=+=+= ∫∫∫∫ 2
1
::,:,:
222222222
Define Moments of Inertia
2
:,: SSSS
SS
yyxx
zz
II
AIC
+
==
( )
( )
Ma
AC
JJ
r
aMG
M
r
G
rU
P
22
2
23
2
:
2
1cos3
2
−
=
−
+−≈


θ
θ
Earth Gravitation
Return to Table of Content
SOLO
38
Reference Earth Model
The definition of geodetic latitude (φ) and
longitude (λ) on an ellipsoid. The normal
to the surface does not pass through the
centre
Reference Ellipsoid
Geodetic latitude: the angle between the
normal and the equatorial plane. The
standard notation in English publications is ϕ
Geocentric latitude: the equatorial plane and
the radius from the centre to a point on the
surface. The relation between the geocentric
latitude (ψ) and the geodetic latitude ( ) isϕ
derived in the above references as
The definition of geodetic (or
geographic) and geocentric latitudes
( ) ( )[ ]φφψ tan1tan 21
e−= −
To use previous results, where we used
spherical coordinates, rS, φS, θS we will use
θ
π
ψϕλ −==
2
&
Earth Gravitation
SOLO
39
Earth Gravitation
Centrifugal Potential
Since Earth is a Rotating Body, a Centrifugal Acceleration is
exerted on a Mass m, at a (x,y,z) Position, given by
( ) Cyx
yxV
yx
C Uyx
yx
yx
Va ∇=+Ω=
+
+
Ω=
+Ω=
11
11 2
22
22



where:
Ω = 7292115.1467x10-11
rad/s – Earth Angular Velocity
The Centrifugal Earth Potential UC at (x,y,z) Position is
given by
( ) ( )
( ) .
.1111..
2
2
Constydyxdx
ConstydxdyxConstrdUConstUdU yxyxCCC
++Ω=
++⋅+Ω=+⋅∇=+=
∫∫
∫∫∫

Centrifugal Potential
Earth Gravitation Model
( )222
2
1
yxUC +Ω=
By choosing Const. = 0, we obtain
SOLO
40
Earth Gravitation
Potential of the Rotating Reference Ellipsoid
The Potential of the Rotating Reference Ellipsoid is the sum of the Gravitational and
Centrifugal Potentials:
CG UUW +=
( ) .
2
1 222
ConstyxUC ++Ω=
The Gravitational Potential of the Reference Ellipsoid
(assuming Uniform Density Distribution) is:
( ) ( )








+





+−= ∑∑= =
max
2 0
sincossin1
n
n
n
m
nmnmnm
n
G mSmCP
r
a
r
MG
U λλψ
where:
UG – Gravitational Potential (m2
/s2
)
GM – Earth’s Gravitational Constant
r - Distance from the Earth’s Center of Mass
a - Semi-Major Axis of the WG 84 Ellipsoid
n,m – Degree and Order respectively
ψ– Geocentric Latitude
λ – Geocentric Longitude = Geodetic Longitude Return to Table of Content
SOLO
41
Earth Gravitation
The WGS 84 Gravity Model is defined in terms of normalized coefficients:
( ) ( ) ( ) ( ) ( )( )








+





+





+−= ∑∑∑
∞
= =
∞
= 1 11
0 sincossinsin1
n
n
m
nmnm
m
n
n
n
nn
n
mSmCP
r
a
CP
r
a
r
MG
rU λλψψ

( )∫ 





==
M
Sn
n
S
nn MdP
a
r
M
CC ψsin
1
:0
( )
( )
( )
( )
( )∫ 











+
−
=





M S
S
S
m
n
n
S
nm
nm
Md
m
m
P
a
r
mn
mn
S
C
λ
λ
ψ
sin
cos
sin
!
!
2:
( ) ( ) ( ) ( ) ( )( )








+





+





+−= ∑∑∑
∞
= =
∞
= 1 11
0 sincossinsin1
n
n
m
nmnm
m
n
n
n
nn
n
mSmCP
r
a
CP
r
a
r
MG
rU λλψψ

( ) ( ) ( )
( )
( )



≠
=
=





+
−
+=
02
01
sin
!
!
12sin
m
m
kP
mn
mn
knP
m
n
m
n ψψ
( )
( )
( ) 


≠
=
=











−
+
+
=







02
01
!
!
12
1
m
m
k
S
C
mn
mn
knS
C
nm
nm
nm
nm
Cnm and Snm are called Spherical Harmonic Coefficients (SHC).
The Gravitation Potential of the Earth Model is given by:
Earth Gravitation Model
World Geodetic System (WGS 84)
SOLO
42
World Geodetic System (WGS 84)
Reference Earth Model
Spherical Harmonics
Visual representations of the first few
spherical harmonics. Red portions represent
regions where the function is positive, and
green portions represent regions where the
function is negative.
Earth Gravitation
SOLO
43
World Geodetic System (WGS 84)
Reference Earth Model
Carlo Somigliana
(1860 –1955)
The Theoretical Gravity on the surface of the Ellipsoid
is given by the Somigliana Formula (1929)
  
84
22
2
2222
22
sin1
sin1
sincos
sincos
WGS
e
pe
e
k
ba
ba
φ
φ
γ
φφ
φγφγ
γ
−
+
=
+
+
=
where
1: −=
e
p
a
b
k
γ
γ
2
22
:
a
ba
e
−
= - Ellipsoid Eccentricity
a - Ellipsoid Semi-major Axis = 6378137.0 m
b - Ellipsoid Semi-minor Axis = 6356752.314 m
γp – Gravity at the Poles = 983.21849378 cm/s2
γe – Gravity at the Equator = 978.03267714 cm/s2
– Geodetic Latitudeϕ
The Theory of the Equipotential Ellipsoid was first given by
P. Pizzetti (1894)
Earth Gravitation
SOLO
44
World Geodetic System (WGS 84)
Reference Earth Model
The coordinate origin of WGS 84 is meant to be located at the
Earth's center of mass; the error is believed to be less than 2 cm.
The WGS 84 meridian of zero longitude is the IERS Reference
Meridian. 5.31 arc seconds or 102.5 meters (336.3 ft) east of the
Greenwich meridian at the latitude of the Royal Observatory.
The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major
(transverse) radius a = 6378137 m at the equator and flattening
f = 1/298.257223563.The polar semi-minor (conjugate) radius b then equals a
times (1−f), or b = 6356752.3142 m.
Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) Geoid,
revised in 2004. This Geoid defines the nominal sea level surface by means of a
spherical harmonics series of degree 360 (which provides about 100 km
horizontal resolution).[7]
The deviations of the EGM96 Geoid from the WGS 84
Reference Ellipsoid range from about −105 m to about +85 m.[8]
EGM96 differs
from the original WGS 84 Geoid, referred to as EGM84.
Earth Gravitation
SOLO
45
World Geodetic System (WGS 84)
Reference Earth Model
Earth Gravitation
SOLO
46
World Geodetic System (WGS 84)
Reference Earth Model
Geoid product, the 15-minute, worldwide Geoid Height for EGM96
The difference between the Geoid and the Reference Ellipsoid exhibit the
following statistics:
Mean = - 0.57 m, Standard Deviation = 30.56 m
Minimum = -106.99 m, Maximum = 85.39 m
Earth Gravitation
SOLO
47
World Geodetic System (WGS – 84)
Reference Earth Model
Parameters Notation Value
Ellipsoid Semi-major Axis a 6.378.137 m
Ellipsoid Flattening (Ellipticity) f 1/298.257223563
(0.00335281066474)
Second Degree Zonal Harmonic Coefficient of the Geopotential C2,0 -484.16685x10-6
Angular Velocity of the Earth Ω 7.292115x10-5
rad/s
The Earth’s Gravitational Constant (Mass of Earth includes
Atmosphere)
GM 3.986005x1014
m3
/s2
Mass of Earth (Includes Atmosphere) M 5.9733328x1024
kg
Theoretical (Normal) Gravity at the Equator (on the Ellipsoid) γe 9.7803267714 m/s2
Theoretical (Normal) Gravity at the Poles (on the Ellipsoid) γp 9.8321863685 m/s2
Mean Value of Theoretical (Normal) Gravity γ 9.7976446561 m/s2
Geodetic and Geophysical Parameters of the WGS-84 Ellipsoid
Earth Gravitation
SOLO
48
World Geodetic System (WGS 84)
Reference Earth Model
a
ba
f
−
=:f - Ellipsoid Flattening (Ellipticity)
a - Ellipsoid Semi-major Axis
b - Ellipsoid Semi-minor Axis
e - Ellipsoid Eccentricity 2
2
22
2
2: ff
a
ba
e −=
−
=
( ) 2
11 eafab −=−=
Reference Ellipsoid
Earth Gravitation
SOLO
49
World Geodetic System (WGS 84)
where
λ – Longitude
e – Eccentricity = 0.08181919
Reference Earth Model
In Earth Center Earth Fixed Coordinate –ECEF-System (E)
the Vehicle Position is given by:
( )
( )
( )
( ) 









+
+
+
=










=
φ
φλ
φλ
sin
cossin
coscos
HR
HR
HR
z
y
x
P
M
N
N
E
E
E
E

( )
NhH
e
a
RN
+=
−
= 2/12
sin1 φ
Another variable, used frequently, is the radius of the
Ellipsoid referred as the Meridian Radius
( )
( ) 2/32
2
sin1
1
φe
ea
RM
−
−
=
Radius of Curvature in the Prime
Vertical
Return to Table of Content
Earth Gravitation
50
SOLO Air Vehicle in Ellipsoidal Earth Atmosphere
SIMULATION EQUATIONS
51
SOLO
7. Forces Acting on the Vehicle (continue – 4)
Gravitation Acceleration
( ) ( )
























−









 −










−
==
zg
yg
xg
gg
100
0
0
0
010
0
0
0
001
χχ
χχ
γγ
γγ
σσ
σσ cs
sc
cs
sc
cs
scC EW
E
W

( )
gg









−
=
γσ
γσ
γ
cc
cs
s
W

2sec/174.322sec/81.9
0
2
0
0
0
gg ftmg
HR
R
==
+
=










The derivation of Gravitation Acceleration assumes an Ellipsoidal Symmetrical Earth.
The Gravitational Potential U (R, ) is given byϕ
( ) ( )
( )
( )φ
φ
µ
φ
,
sin1, 2
RUg
P
R
a
J
R
RU
E
E
n n
n
n
∇=














−⋅−= ∑
∞
=

μ – The Earth Gravitational Constant
a – Mean Equatorial Radius of the Earth
R=[xE
2
+yE
2
+zE
2
]]/2
is the magnitude of
the Geocentric Position Vector
– Geocentric Latitude (sin =zϕ ϕ E/R)
Jn – Coefficients of Zonal Harmonics of the
Earth Potential Function
P (sin ) – Associated Legendre Polynomialsϕ
Air Vehicle in Ellipsoidal Earth Atmosphere
52
SOLO
7. Forces Acting on the Vehicle (continue – 5)
Gravitation Acceleration
Retaining only the first three terms of the
Gravitational Potential U (R, ) we obtain:ϕ
R
z
R
z
R
z
R
a
J
R
z
R
a
J
R
g
R
y
R
z
R
z
R
a
J
R
z
R
a
J
R
g
R
x
R
z
R
z
R
a
J
R
z
R
a
J
R
g
EEEE
z
EEEE
y
EEEE
x
E
E
E
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
34263
8
5
15
2
3
1
34263
8
5
15
2
3
1
34263
8
5
15
2
3
1
2
2
4
44
42
22
22
2
2
4
44
42
22
22
2
2
4
44
42
22
22
µ
µ
µ
φ
φλ
φλ
sin
cossin
coscos
=
⋅=
⋅=
R
z
R
y
R
x
E
E
E
( ) 2/1222
EEE zyxR ++=
Air Vehicle in Ellipsoidal Earth Atmosphere
53
SOLO
23. Local Level Local North (LLLN) Computations for an Ellipsoidal Earth Model
( )
( )
( )
( )
( )2
22
10
2
0
2
0
2
0
5
2
1
2
0
6
0
sin
sin1
sin321
sin1
sec/10292116557.7
sec/051646.0
sec/780333.9
26.298/.1
10378135.6
Ae
e
p
m
e
HR
RLatgg
g
LatfRR
LatffRR
LatfRR
rad
mg
mg
f
mR
+
+
=
+=
+−=
−=
⋅=Ω
=
=
=
⋅=
−
Lat
HR
V
HR
V
HR
V
Ap
East
Down
Am
North
East
Ap
East
North
tan
+
−=
+
−=
+
=
ρ
ρ
ρ
Lat
Lat
Down
East
North
sin
0
cos
Ω−=Ω
=Ω
Ω=Ω
DownDownDown
EastEast
NorthNorthNorth
Ω+=
=
Ω+=
ρφ
ρφ
ρφ
East
North
Lat
Lat
Long
ρ
ρ
−=
=
•
•
cos
( )
( ) ∫
∫
•
•
+=
+=
t
t
dtLatLattLat
dtLongLongtLong
0
0
0
0
SIMULATION EQUATIONS
Return to Table of Content
Air Vehicle in Ellipsoidal Earth Atmosphere
SOLO
54
References
Return to Table of Content
R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
S. Hermelin, “Legendre Functions”
Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”,
Progress in Astronautics and Aeronautics 174, 1997
X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”,
Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
http://en.wikipedia.org/wiki/
Department of Defense, World Geodetic System 84, NIMA (National Imagery and
Mapping Agency) TR8350.2, Third Edition
http://earth-info.nga.mil/GandG/images/ww15mgh2.gif
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
Earth Gravitation
55
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
56
Vector AnalysisSOLO
Vector Operations in Various Coordinate Systems
Laplacian 2
∇=∇⋅∇
•Cartesian:
2
2
2
2
2
2
2
z
U
y
U
x
U
U
∂
∂
+
∂
∂
+
∂
∂
=∇
•Cylindrical:
2
2
2
2
22
2
2
2
2
2
2
2 1111
z
UUUU
z
UUU
U
∂
∂
+
∂
∂
+





∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+





∂
∂
∂
∂
=∇
θρρρρθρρ
ρ
ρρ
•Spherical:
( )
φθθ
θ
θθ
φθ 2
2
222
2
2
2
sin
1
sin
sin
11
,,
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=∇
U
r
U
rr
U
r
rr
rU
57
SOLO
Laplace Differential Equation in Spherical Coordinates
0
sin
1
sin
sin
11
2
2
222
2
2
2
=
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=∇
φθθ
θ
θθ
U
r
U
rr
U
r
rr
U
Let solve this equation by the method of Separation of Variables,
by assuming a solution of the form :
( ) ( ) ( )φθφθ ,,, SrRrU =
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
In Spherical Coordinates the Laplace equation becomes:
Substituting in the Laplace Equation and dividing by U gives:
0sinsin
sin
11
2
2
22
2
2
=





∂
∂
+





∂
∂
∂
∂
+





φθ
θ
θ
θ
θ
SS
Srrd
Rd
r
rd
d
Rr
The first term is a function of r only, and the second of angular
coordinates. For the sum to be zero each must be a constant, therefore:
λ
φθ
θ
θ
θ
θ
λ
−=





∂
∂
+





∂
∂
∂
∂
=





2
2
2
2
sinsin
sin
1
1
SS
S
rd
Rd
r
rd
d
R
58
SOLO
Laplace Differential Equation in Spherical Coordinates
λ=





rd
Rd
r
rd
d
R
21
( ) ( )ϕθ,SrR=Φ
We get:
022
2
2
=−+ R
rd
Rd
r
rd
Rd
r λor:
Assume a solution of the form: R = C rα
, where α is a constant to be defined
and C is determined by the boundary conditions. Substituting in the Differential
Equation gives
( )[ ] 021 =−−− α
λααα rC
or:
( ) 01 =−+ λαα
Let define l as l (l+1):=λ
( ) ( ) ( ) 0111 2
=+−+=+−+ llll αααα
( ) ( )



−−
=
+±−
=
++±−
=
12
121
2
1411
2,1
l
llll
α
( )





=
+1
1
l
l
r
r
rR
59
SOLO
( )1sinsin
sin
1
2
2
2
+−=





∂
∂
+





∂
∂
∂
∂
ll
SS
S φθ
θ
θ
θ
θ
( ) ( )ϕθ,SrR=Φ
We obtain:
Multiply this by S sin2
θ and put to get:( ) ( ) ( )φθφθ ΦΘ=,S
0
1
sinsinsin
1
2
2
2
=
Φ
Φ
+





+




 Θ
∂
∂
Θ φ
θλ
θ
θ
θ
θ
d
d
d
d
Again, the first term, in the square bracket, and the last term must
be equal and opposite constants, which we write m2
, -m2
. Thus:
( )
Φ−=
Φ
=Θ





−++




 Θ
∂
∂
2
2
2
2
2
0
sin
1sin
sin
1
m
d
d
m
ll
d
d
φ
θθ
θ
θθ
The Φ ( ) must be periodical in (a period of 2 π) and becauseϕ ϕ
this we choose the constant m2
, with m an integer. Thus:
( ) φφφ mbma sincos +=Φ
Laplace Differential Equation in Spherical Coordinates
( ) φφ
φ mjmj
ee +−
=Φ ,or
With m integer, we have the Orthogonality Condition
21
21
,
2
0
2 mm
mjmj
dee δπϕ
π
φφ
=⋅∫
+−
60
SOLO
( ) ( ) ( ) ( )φθφθ ΦΘ= rRrU ,,
We get:
or:
( ) Θ+−=Θ−
Θ
+
Θ
1
sin
cot 2
2
2
2
ll
m
d
d
d
d
θθ
θ
θ
( ) 0
sin
1sin
sin
1
2
2
=Θ





−++




 Θ
∂
∂
θθ
θ
θθ
m
ll
d
d
Laplace Differential Equation in Spherical Coordinates
Change of variables: t = cos θ
θθ dtd sin−=
td
d
d
d Θ
−=
Θ
θ
θ
sin

( ) td
d
t
td
d
t
td
d
d
d
td
d
td
d
td
d
td
d
d
d
d
d
d
d Θ
−
Θ
−=
Θ
+
Θ
=




 Θ
−−=




 Θ
=
Θ
−
2
2
2
cossin/1
2
2
2
2
2
1
sin
sinsinsinsin

θθ
θ
θθ
θθθθ
θθθ
( ) ( ) Θ





−
−++
Θ
−
Θ
−
Θ
=Θ





−++
Θ
+
Θ
=
=
2
2
2
2cos
2
2
2
2
1
1
sin
1cot0
t
m
ll
td
d
t
td
d
t
td
dm
ll
d
d
d
d t θ
θθ
θ
θ
We obtain:
( )
1cos
,2,1,00
1
12 2
2
2
2
≤⇒=
==Θ





−
−++
Θ
−
Θ
tt
m
t
m
ll
td
d
t
td
d
θ

Associate Legendre Differential Equation
61
SOLO
( ) ( ) ( ) ( )φθφθ ΦΘ= rRrU ,,
Laplace Differential Equation in Spherical Coordinates
We obtain:
( )
1cos
,2,1,00
1
12 2
2
2
2
≤⇒=
==Θ





−
−++
Θ
−
Θ
tt
m
t
m
ll
td
d
t
td
d
θ

Associate Legendre Differential Equation
Let start with m = 0 with:
( )
1cos
0122
2
≤⇒=
=Θ++
Θ
−
Θ
tt
ll
td
d
t
td
d
θ
Legendre Differential Equation
They are named after Adrien-Marie Legendre. This
ordinary differential equation is frequently encountered in
physics and other technical fields. In particular, it occurs
when solving Laplace's equation (and related partial
differential equations) in spherical coordinates.
The Legendre polynomials were first introduced in 1785 by Adrien-Marie
Legendre, in “Recherches sur l’attraction des sphéroides homogènes”, as the
coefficients in the expansion of the Newtonian potential
Adrien-Marie Legendre
(1752 –1833(
SOLO
62
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Start from the function: ( ) .12
constktky
n
=−=
( ) 12
12:'
−
−==
n
ttkn
td
yd
y
( ) ( ) ( ) 22212
2
2
11412:''
−−
−−+−==
nn
ttnkntkn
td
yd
y
Let compute:
( ) ( ) ( ) ( ) ( ) '12211412''1
12222
ytntnttnkntknyt
nn
−+=−−+−=−
−
or: ( ) ( ) 02'12''12
=−−+− ynytnyt
Let differentiate the last equation n times with respect to t:
( )[ ] ( ) ( ) ( ) ( )
( ) ( ) ''1''2''1
00''1
3
''1
2
''1
1
''1''1
2
2
1
1
2
3
3
0
2
3
3
2
2
2
2
2
1
1
222
y
td
d
nny
td
d
tny
td
d
t
y
td
d
t
td
dn
y
td
d
t
td
dn
y
td
d
t
xd
dn
y
td
d
tyt
td
d
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
−
−
−
−
−
−
−
−
−
−
−++−=
+−





+−





+−





+−=− 

( ) ( ) ( ) ( ) 





+−=











+−=− −
−
−
−
''12'
1
'12'12 1
1
1
1
y
td
d
ny
td
d
tny
td
d
t
td
dn
y
td
d
tnyt
td
d
n n
n
n
n
n
n
n
n
n
n
Derivation of Legendre Polynomials via Rodrigues’ Formula
Laplace Differential Equation in Spherical Coordinates
SOLO
63
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Start from the function: ( ) .12
constktky
n
=−=
( ) ( ) 02'12''12
=−−+− ynytnytDifferentiate n times with
respect to t:
( ) ( ) ''1''2''1 2
2
1
1
2
y
td
d
nny
td
d
tny
td
d
t n
n
n
n
n
n
−
−
−
−
−++−
( ) 02''12 1
1
=−





+−+ −
−
y
td
d
ny
td
d
ny
td
d
tn n
n
n
n
n
n
Define: a Polynomial( ) ( )[ ]n
n
n
n
n
t
td
d
k
td
yd
tw 1: 2
−==
( ) ( ) ( )[ ] 02'121'2''12
=−+−+−++− wnwnwtnwnnwtnwt
( ) ( ) ( ) ( )[ ] 02121'2''12
=−−+−+−++− wnnnnnwtnttnwt
( ) ( ) 01'2''12
=+−+− wnnwtwt
This is Legendre’s Differential Equation. We proved that one of the solutions
are Polynomials. We can rewrite this equation in a Sturm-Liouville Form:
( ) ( ) 0112
=+−





− wnnw
td
d
t
td
d
Derivation of Legendre Polynomials via Rodrigues’ Formula
Laplace Differential Equation in Spherical Coordinates
SOLO
64
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Let find k such that:
by choosing Pn (1) = 1
( ) ( )[ ]n
n
n
n
n
n t
td
d
k
td
yd
tP 12
−==
( ) ( )[ ] ( ) ( ) ( ) ( ) 





−+=








+−=−= ∑>0
22
1!2111
i
inn
v
n
u
n
n
n
n
n
n
n ttatnktt
td
d
ktk
td
d
tP

!2
1
n
k n
=
We obtain the Rodrigues Formula:
( ) ( )[ ]n
n
n
nn t
td
d
n
tP 1
!2
1 2
−=
Let use Leibnitz’s Rule (Binomial Expansion for the n Derivative
of a Product - with u:=(t-1)n
and v:=(t+1)n
):
( )
( )
( ) udvudvdnvddu
nn
vddunvdu
vdud
mnm
n
vud
nnnnn
n
m
mnmn
+++
−
++=
−
=⋅
−−−
=
−
∑
1221
0
!2
1
!!
!

We have:
( )  
( )
   1!2
!2
1
1
1!20
12
0
21
00
==







+++
−
++==
=
−−−
nkudvudvdnvddu
nn
vddunvdukxP n
xn
nnnnn
n
n

We can see from this Formula that Pn (t) is indeed a Polynomial of Order n in t.
Derivation of Legendre Polynomials via Rodrigues’ Formula
Laplace Differential Equation in Spherical Coordinates
SOLO
65
Legendre Polynomials
The first few Legendre polynomials are:
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) 256/63346530030900901093954618910
128/31546201801825740121559
128/35126069301201264358
16/353156934297
16/51053152316
8/1570635
8/330354
2/353
2/132
1
10
246810
3579
2468
357
246
35
24
3
2
−+++−
+−+−
+−+−
−+−
−+−
+−
+−
−
−
xxxxx
xxxxx
xxxx
xxxx
xxx
xxx
xx
xx
x
x
xPn n
Laplace Differential Equation in Spherical Coordinates
66
SOLO
Orthogonality of Legendre Polynomials
Define ( ) ( )tPwtPv nm == :&:
We use Legendre’s Differential Equations:
( ) ( ) 011 2
=++





− vmm
td
vd
t
td
d
( ) ( ) 011 2
=++





− wnn
td
wd
t
td
d
Multiply first equation by w and integrate from t = -1 to t = +1.
( ) ( ) 011
1
1
1
1
2
=++





− ∫∫
+
−
+
−
dtwvmmdtw
td
vd
t
td
d
Integrate the first integral by parts we get
( ) ( ) ( ) 0111
1
1
1
1
2
0
1
1
2
=++−−− ∫∫
+
−
+
−
+=
−=
dtwvmmdt
td
wd
td
vd
tw
td
vd
t
t
t
  
In the same way, multiply second equation by v and integrate from t = -1 to t = +1.
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvnndt
td
wd
td
vd
t
Legendre Polynomials
67
SOLO
Orthogonality of Legendre Polynomials
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvmmdt
td
wd
td
vd
t
Subtracting those two equations we obtain
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvnndt
td
wd
td
vd
t
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 01111
1
1
1
1
=+−+=+−+ ∫∫
+
−
+
−
dttPtPnnmmdtwvnnmm nm
This gives the Orthogonality Condition for m ≠ n
( ) ( ) nmdttPtP nm ≠=∫
+
−
0
1
1
To find let square the relation and integrate
between t = -1 to t = +1. Due to orthogonality only the integrals of terms
having Pn
2
(t) survive on the right-hand side. So we get
( )∫
+
−
1
1
2
dttPn
( )∑
∞
=
=
+− 0
2
21
1
n
n
n
tPu
utu
( )∑ ∫∫
∞
=
+
−
+
−
=
+− 0
1
1
22
1
1 2
21
1
n
n
n
dttPudt
utu
Legendre Polynomials
68
SOLO
Orthogonality of Legendre Polynomials
( )∑ ∫∫
∞
=
+
−
+
−
=
+− 0
1
1
22
1
1 2
21
1
n
n
n
dttPudt
utu
( ) ( )
( )
1
1
1
ln
1
1
1
ln
2
1
21ln
2
1
21
1
2
21
1
2
1
1 2
<
−
+
=
+
−
−
=−+
−
=
−+
+=
−=
+
−∫ u
u
u
uu
u
u
tuu
u
dt
tuu
t
t
( ) ( ) ( ) ( ) ( ) ( ) ( )
∑∑∑
∞ ++∞ +∞ +
+
−−
−=
+
−
−−
+
−=−−+
0
11
0
1
0
1
1
1
1
1
1
1
1
1
1
1ln
1
1ln
1
n
uu
un
u
un
u
u
u
u
u
u
nn
n
n
n
n
n
( ) ( ) ( )
( )
( ) ( )
( ) ∑∑∑∑
∞∞ +∞ ++
+
∞ ++
+
=
+
=
+
−−
−+
+
−−
−=
0
2
0
12
0
0
1212
12
0
1212
2
12
2
12
1
2
12
1
1
12
1
1 n
nnn
n
nn
n
u
nn
u
un
uu
un
uu
u
  
Let compute first
Therefore
( )∑ ∫∑∫
∞ +
−
∞+
−
=
+
=
+− 0
1
1
22
0
2
1
1 2
12
2
21
1
dttPuu
n
dt
utu
n
nn
Comparing the coefficients of u2n
we get ( )
12
21
1
2
+
=∫
+
− n
dttPn
Legendre Polynomials
( ) ( ) nmmn
n
dttPtP δ
12
21
1 +
=∫
+
−
Hence
SOLO
69
Associated Legendre Functions
Let Differentiate this equation m times with respect to t, and use
Leibnitz Rule of
Product Differentiation: ( ) ( )[ ]
( )
( ) ( )
im
im
i
im
i
m
m
td
tgd
td
tsd
imi
m
tgts
td
d
−
−
=
∑ −
=⋅
0 !!
!
Start with
Legendre
Differential
Equation:
( ) ( ) ( ) ( ) 1011 2
≤=++





− ttwnntw
td
d
t
td
d
nn
or:
( ) ( ) ( ) ( ) ( ) 10121 2
2
2
≤=++−− ttwnntw
td
d
ttw
td
d
t nnn
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )twmmtwtmtwttw
td
d
t
td
d m
n
m
n
m
nnm
m
1211
122
2
2
2
−−−−=





−
++
( ) ( )
( ) ( )
( )twmtwttw
td
d
t
td
d m
n
m
nnm
m
+=




 +1
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( )twnntwmtwttwmmtwtmtwt
m
n
m
n
m
n
m
n
m
n
m
n 122121
1122
++−−−−−−
+++
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( )
( ) 011121
122
=+−+++−−=
++
twmmnntwtmtwt
m
n
m
n
m
n
Laplace Differential Equation in Spherical Coordinates
SOLO
70
Associated Legendre Functions
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( )
( ) 011121
122
=+−+++−−
++
twmmnntwtmtwt
m
n
m
n
m
n
Define: ( ) ( )
( )twty
m
n=:
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( ) 011121 122
=+−+++−− tymmnntytmtyt
Now define: ( ) ( ) ( )tyttu
m
22
1: −=
Let compute:
( ) ( ) ( )1221
22
11 ytyttm
td
ud mm
−+−−=
−
( ) ( ) ( ) ( )11
22222
111 ytyttm
td
ud
t
mm
+
−+−−=−
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )21
221221221
2222222
1121111 ytyttmyttmyttmytm
td
ud
t
td
d mmmmm
+−
−+−+−−−−+−−=





−
( ) ( ) ( )
( ) ( )
( ) ( )[ ]{ } ( ) ( ) y
t
tm
mnnmmtymmnnytmytt
mm






−
+−+−+−++−+++−−−= 2
22
222
0
12222
1
11111211
  
We get:
( ) ( ) 0
1
11 2
2
2
=





−
−++





− u
t
m
nn
td
ud
t
td
d Associate Legendre
Differential Equation
Laplace Differential Equation in Spherical Coordinates
SOLO
71
Associated Legendre Functions
Define: ( ) ( ) ( )tw
td
d
ttu nm
mm
22
1: −=
We get: ( ) ( ) 0
1
11 2
2
2
=





−
−++





− u
t
m
nn
td
ud
t
td
d
Start with Legendre Differential Equation:
( ) ( ) ( ) ( ) 1011 2
≤=++





− ttwnntw
td
d
t
td
d
nn
Summarize
But this is the Differential Equation of Θ (θ) obtained by solving Laplace’s
Equation
by Separation of Variables in Spherical Coordinates .
02
=Φ∇
( ) ( ) ( ) ( )φθφθ ΦΘ=Φ rRr ,,
The Solutions Pn
m
(t) of this Differential Equation are called Associated Legendre
Functions, because they are derived from the Legendre Polynomials
( ) ( ) ( )tP
td
d
ttP nm
mm
m
n
22
1: −=
Laplace Differential Equation in Spherical Coordinates
SOLO
72
Associated Legendre Functions
Examples
( ) ( ) ( )tP
td
d
ttP nm
mm
m
n
22
1: −=
( ) ( ) 10 0
0
0 === tPtPn
( ) ( )
( )
 ( )
( ) ( )
( ) ( ) ( ) θ
θ
θ
θ
θ
θ
sin1
cos:
sin111
cos
2
1
21
1
1
1
cos
1
0
1
cos
2
1
22
1
21
1
1
−=−−=−=
===
=−=−==
=
−
=
=
t
t
t
tP
ttPtP
ttPtP
tt
td
d
ttPn
( ) ( ) ( )
( )
( )tP
mn
mn
tP
m
n
mm
n
!
!
1
+
−
−=
−
( ) ( )
( )
( )
( ) ( )
( )
( )
( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) θ
θθ
θ
θθ
θ
θ
θ
θ
θ
θ
2
cos
22
2
22
2
cos
2
1
211
2
2cos2
2
0
2
cos
2
1
2
2
2
1
21
2
2
cos
2
2
2
2
2
2
22
2
sin
8
1
1
8
1
!4
!0
1
2
cossin
13
!3
1
1
2
1cos3
2
13
cossin313
2
13
1
sin313
2
13
12
1
2
2
1
=
−
=
−
=
=
=
=−=−=
−=−−=
−
=
−
==
=−=




 −
−=
=−=




 −
−==
t
t
tP
t
t
tP
t
tP
ttPtP
tttP
t
tPtP
tt
t
td
d
ttP
t
t
td
d
ttPn



( ) 10 =tP ( )
2
1
2
3 2
2 −= ttP( ) ttP =1
Laplace Differential Equation in Spherical Coordinates
SOLO
73
Associated Legendre Functions
Examples
( ) ( ) ( )tP
td
d
ttP nm
mm
m
n
22
1: −= ( ) ( ) ( )
( )
( )tP
mn
mn
tP
m
n
mm
n
!
!
1
+
−
−=
−
Laplace Differential Equation in Spherical Coordinates
SOLO
74
Associated Legendre Functions
Orthogonality of Associated Legendre Functions
( ) ( ) ( )[ ]n
mn
mnm
n
m
n t
td
d
t
n
tP 11
!2
1
: 222
−−= +
+
Let Compute
( ) ( ) ( ) ( )[ ] ( )[ ]∫∫
+
−
+
+
+
+
+
+
−
−−−=
1
1
222
1
1
111
!!2
1
dtt
td
d
t
td
d
t
qp
dttPtP
q
mq
mq
p
mp
mp
m
qp
m
q
m
p
Define X := x2
-1
( ) ( ) ( ) [ ] [ ]∫∫
+
−
+
+
+
+
+
+
−
−
=
1
1
1
1
!!2
1
dtX
td
d
X
td
d
X
qp
dttPtP q
mq
mq
p
mp
mp
m
qp
m
m
q
m
p
If p ≠ q, assume q > p and integrate by parts q + m times
[ ] [ ] mqidtX
td
d
vdX
td
d
X
td
d
u q
imq
imq
p
mp
mp
m
i
i
+==





= −+
−+
+
+
,,1,0 
All the integrated parts will vanish at the boundaries t = ± 1 as long as there is a factor
X = x2
-1. We have, after integrating m + q times
( ) ( ) ( ) ( ) [ ]∫∫
+
−
+
+
+
+
+
++
−





−−
=
1
1
1
1
!!2
11
dtX
td
d
X
td
d
X
qp
dttPtP p
mp
mp
m
mq
mq
q
qp
mqm
m
q
m
p
SOLO
75
Associated Legendre Functions
( ) ( ) ( ) ( ) [ ] 1:
!!2
11 2
1
1
1
1
−=




−−
= ∫∫
+
−
+
+
+
+
+
++
−
xXdtX
td
d
X
td
d
X
qp
dttPtP p
mp
mp
m
mq
mq
q
qp
mqm
m
q
m
p
Because the term Xm
contains no power greater than x2m
, we must have
q + m – i ≤ 2 m
or the derivative will vanish. Similarly,
p + m + i ≤ 2 p
Adding both inequalities yields
q ≤ p
which contradicts the assumption that q > p, therefore is no solution for i and the
integral vanishes.
Let expand the integrand on the right-side using Leibniz’s formula
( )
( )∑
+
=
++
++
−+
−+
+
+
+
+
−+
+
=




 mq
i
p
imp
imp
m
imq
imq
qp
mp
mp
m
mq
mq
q
X
td
d
X
td
d
imqi
mq
XX
td
d
X
td
d
X
0 !!
!
( ) ( ) qpdttPtP m
q
m
p ≠=∫
+
−
0
1
1
This proves that the Associated Legendre Functions are Orthogonal (for the same m).
Orthogonality of Associated Legendre Functions
SOLO
76
Associated Legendre Functions
( )[ ] ( ) ( ) 1:
!!2
11 2
1
1
2
21
1
2
−=




−−
= ∫∫
+
−
+
+
+
++
−
xXdtX
td
d
X
td
d
X
pp
dttP p
mp
mp
m
mp
mp
p
p
mp
m
p
Let expand the integrand on the right-side using Leibniz’s formula
( )
( )∑
+
=
++
++
−+
−+
+
+
+
+
−+
+
=




 mp
i
p
imp
imp
m
imp
imp
pp
mp
mp
m
mp
mp
p
X
td
d
X
td
d
impi
mp
XX
td
d
X
td
d
X
0 !!
!
For the case p = q we have
Because X = x2
– 1 the only non-zero term is for i = p - m
( )[ ] ( ) ( )
( ) ( ) ( )
( ) ( )
1:
!2!!2
!1 2
1
1
!2
2
2
!2
2
2
22
1
1
2
−=⋅
−
+−
= ∫∫
+
−
+
−
xXdtX
td
d
X
td
d
X
mmpp
mp
dttP
p
p
p
p
m
m
m
m
p
p
p
m
p

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( )
( )
( )
( )!
!
12
2
sin1
!!2
!2!1
1
!!2
!2!1
!12
!2
1
0
12
22
cos1
1
2
22
212
mp
mp
p
d
mpp
pmp
dtx
mpp
pmp
p
p
pp
p
ptp
X
p
p
p
p
−
+
⋅
+
=
−
−
+−
=−
−
+−
=
+
−
+
=+
−
+
∫∫
  

θθ
πθ
Orthogonality of Associated Legendre Functions
SOLO
77
Associated Legendre Functions
( ) ( ) ( ) ( ) ( )
( ) qp
m
q
m
p
t
m
q
m
p
mp
mp
p
dPPdttPtP ,
0
cos1
1
!
!
12
2
sincoscos δθθθθ
πθ
−
+
+
== ∫∫
=+
−
Therefore the Orthonormal Associated Legendre Functions is
( ) ( )
( )
( ) mnmP
mn
mnn
Θ
m
n
m
n ≤≤−
+
−+
= θθ cos
!
!
2
12
cos
Orthogonality of Associated Legendre Functions
78
SOLO
Absolute Angular Momentum Relative to a
Reference Point O
The Absolute Momentum Relative to a Reference
Point O, of the particle of mass dmi at time t is
defined as:
( ) ( ) iiOiiiOiiOiO dmVrdmVRRPdRRHd

×=×−=×−= ,, :
The Absolute Momentum Relative to a Reference Point O, of the mass m (t) is defined
as:
( ) ( ) ∑∑∑ ===
×=×−=×−=
N
i
i
I
i
Oi
N
i
iiOi
N
i
iOiO dm
td
Rd
rdmVRRPdRRH
1
,
11
, :


By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑
∞→
=
NN
i 1
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
The Absolute Momentum Relative to a Reference Point O, of the system (including the
mass entering (+)/leaving (-) through surface S), at time t + Δt is given by:
( ) ( )∑∑ ∆








∆+×∆++








∆+×∆+=∆+
= openings
iflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOiOO m
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rrHH




,,
1
,,,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
79
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 1)
By subtracting
I
O
t
I
O
t
H
td
Hd
∆
∆
=
→∆
,
0
,
lim

( ) ( )
t
dm
td
Rd
rm
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rr
openings
N
i
i
I
i
iOiflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOi
t ∆
×−∆










∆+×∆++








∆+×∆+
=
∑ ∑∑ ==
→∆
1
,,
1
,,
0
lim






∑∑∑ ×+×+×=
== openings
iflow
I
iflow
Oiflow
N
i
i
I
iOi
N
i
i
I
i
Oi m
td
Rd
rdm
td
Rd
td
rd
dm
td
Rd
r 




,
1
,
1
2
2
,
Now let add the constraint that at time t the flow at the opening is such
that
iopenS
( ) ( ) ( ) ( )trtrtRtR OiflowOiopeniflowiopen ,,

=→=
to obtain (next page)
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
dividing by Δt, and taking the limit, we get
from ( ) ( )∑∑ ∆








∆+×∆++








∆+×∆+=∆+
= openings
iflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOiOO m
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rrHH




,,
1
,,,,
80
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 2)
∑∑∑ ×+×+×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
Oi
N
i
i
I
i
Oi
I
O
m
td
Rd
rdm
td
Rd
td
rd
dm
td
Rd
r
td
Hd






,
1
,
1
2
2
,
,
( )∑ ×−+∑ ×








−+∑ ×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
O
I
i
N
i
i
I
i
Oi m
td
Rd
RRdm
td
Rd
td
Rd
td
Rd
dm
td
Rd
r 




11
2
2
,
( )∑ ×−+∑×−∑ ×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
O
N
i
i
I
i
Oi m
td
Rd
RRdm
td
Rd
td
Rd
dm
td
Rd
r 




11
2
2
,
By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑
∞→
=
NN
i 1
( )
( )∑ ×−+×−∫ ×=
openings
iflowiflowOiopenO
tm
I
O
I
O
mVRRPVdm
td
Rd
r
td
Hd





2
2
,
,
( ) ( ) ∑∑ −+=−−+=
openings
OiopeniflowO
I
O
openings
OiopeniflowO
I
O
rmVm
td
cd
RRmVm
td
cd
tP ,
,, 








Substitute to obtain
( )
( ) ( )∑ ×−+×








∑ −−++∫ ×=
openings
iflowiflowOiopenO
openings
iflowOiopenO
I
O
tm
I
O
I
O
mVRRVmRRVm
td
cd
dm
td
Rd
r
td
Hd





 ,
2
2
,
,
or
( )
( )∑ −×+×+∫ ×=
openings
iflowOiflowOiopenO
I
O
tm
I
O
I
O
mVVrV
td
cd
dm
td
Rd
r
td
Hd





,
,
2
2
,
,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
81
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 3)
We obtained
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
Substitute in the previous equation
OIO
O
O
O
I
O
I
O
I
OO r
td
rd
V
td
rd
td
Rd
td
Rd
VrRR ,
,,
, :&





×++=+==+= ←ω
( )( ) ( )
∫ 







×++×=∫ ×−= ←
tm
OIO
O
O
OO
tm
OO dmr
td
rd
VrdmVRRH ,
,
,,



ω
( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫= ←
tm
O
O
O
tm
OIOOO
tm
O dm
td
rd
rdmrrVdmr ,
,,,,


ω
We obtain
(a) (b) (c)
Let develop those three expressions (a), (b) and (c).
where is the angular velocity vector from I to O.IO←ω

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
82
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 4)
(a)
( ) ( ) ( ) ( ) ( )
( ) OOC
tm
OC
tm
OC
tm
OC
tm
C
tm
O cmRRdmrdmrdmrdmrdmr ,,,,,,

=−===+= ∫∫∫∫∫
Where we used because C is the Center of Mass (Centroid) of the system.
( )
0, =∫tm
C dmr

( )
OOOOCO
tm
O VcVrmVdmr

×=×=×








∫ ,,,
( )
( )
( )[ ]( )
IOOIO
tm
OOOO
tm
OIBO Idmrrrrdmrr ←←← ⋅=⋅∫ −⋅=∫ ×× ωωω

,,,,,,, 1(b)
where
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
We obtain (a) + (b) + (c)
( )( ) ( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫=∫ ×−= ←
tm
O
O
O
tm
OIOOO
tm
O
tv
OO dm
td
rd
rdmrrVdmrvdVRRH ,
,,,,, :


ωρ
( )
∫ 







×+⋅+×= ←
tm
O
O
OIOOOO dm
td
rd
rIVc ,
,,,


ω
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 4)
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH










=
O
O
O
O
z
y
x
r
,
,
,
,
 ( )[ ] [ ] [ ]OOO
O
O
O
O
O
O
OOOOOOO zyx
z
y
x
z
y
x
zyxrrrr ,,,
,
,
,
,
,
,
,,,,,,,
100
010
001
1










−




















=−⋅

( )
∫












+−−
−+−
−−+
=
tm
OOOOOO
OOOOOO
OOOOOO
O dm
yxzyzx
zyzxyx
zxyxzy
I
2
,
2
,,,,,
,,
2
,
2
,,,
,,,,
2
,
2
,
, :


Contenu connexe

Tendances

Overview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to CosmologyOverview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to Cosmology
Pratik Tarafdar
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptx
grssieee
 
Active Phased Array Radar Systems
Active Phased Array Radar SystemsActive Phased Array Radar Systems
Active Phased Array Radar Systems
Reza Taryghat
 

Tendances (20)

Overview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to CosmologyOverview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to Cosmology
 
Fdtd
FdtdFdtd
Fdtd
 
Capacitor
CapacitorCapacitor
Capacitor
 
Ch11.kriging
Ch11.krigingCh11.kriging
Ch11.kriging
 
Band ratioing presentation
Band ratioing presentationBand ratioing presentation
Band ratioing presentation
 
Satellite Orbital Mechanics
Satellite Orbital MechanicsSatellite Orbital Mechanics
Satellite Orbital Mechanics
 
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
 
Riemannian stochastic variance reduced gradient on Grassmann manifold (ICCOPT...
Riemannian stochastic variance reduced gradient on Grassmann manifold (ICCOPT...Riemannian stochastic variance reduced gradient on Grassmann manifold (ICCOPT...
Riemannian stochastic variance reduced gradient on Grassmann manifold (ICCOPT...
 
Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)
 
Matrix Groups and Symmetry
Matrix Groups and SymmetryMatrix Groups and Symmetry
Matrix Groups and Symmetry
 
Thermal remote sensing and its applications
Thermal remote sensing and its applicationsThermal remote sensing and its applications
Thermal remote sensing and its applications
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
 
coordinates system
coordinates systemcoordinates system
coordinates system
 
Digital Image Classification.pptx
Digital Image Classification.pptxDigital Image Classification.pptx
Digital Image Classification.pptx
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptx
 
Active Phased Array Radar Systems
Active Phased Array Radar SystemsActive Phased Array Radar Systems
Active Phased Array Radar Systems
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
 
IRNSS.pptx
IRNSS.pptxIRNSS.pptx
IRNSS.pptx
 

En vedette

En vedette (20)

7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Foundation of geometrical optics
Foundation of geometrical opticsFoundation of geometrical optics
Foundation of geometrical optics
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Prisms
Prisms Prisms
Prisms
 
Optical aberrations
Optical aberrationsOptical aberrations
Optical aberrations
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
3 recursive bayesian estimation
3  recursive bayesian estimation3  recursive bayesian estimation
3 recursive bayesian estimation
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
Lens
LensLens
Lens
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Polarization
PolarizationPolarization
Polarization
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 

Similaire à 5 earth gravitation

Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physics
Springer
 
Gravitational Fields
Gravitational FieldsGravitational Fields
Gravitational Fields
Paula Mills
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
Orchidea Maria Lecian
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
John Hutchison
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
John Hutchison
 
6.2 newtons law of gravitation
6.2 newtons law of gravitation6.2 newtons law of gravitation
6.2 newtons law of gravitation
Paula Mills
 
MATH3031_Project 130515
MATH3031_Project 130515MATH3031_Project 130515
MATH3031_Project 130515
Matt Grifferty
 

Similaire à 5 earth gravitation (20)

Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
 
08 gravitation
08   gravitation08   gravitation
08 gravitation
 
Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physics
 
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
 
Gravitational Fields
Gravitational FieldsGravitational Fields
Gravitational Fields
 
Quantum Assignment Help
Quantum Assignment HelpQuantum Assignment Help
Quantum Assignment Help
 
Quantum state
Quantum stateQuantum state
Quantum state
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy
 
6.2 newtons law of gravitation
6.2 newtons law of gravitation6.2 newtons law of gravitation
6.2 newtons law of gravitation
 
MATH3031_Project 130515
MATH3031_Project 130515MATH3031_Project 130515
MATH3031_Project 130515
 
Gravitation
GravitationGravitation
Gravitation
 
Gravitation - Physics
Gravitation - PhysicsGravitation - Physics
Gravitation - Physics
 
I027055062
I027055062I027055062
I027055062
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
 

Plus de Solo Hermelin

Plus de Solo Hermelin (17)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 

Dernier

Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 

Dernier (20)

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 

5 earth gravitation

  • 1. Earth Gravitation SOLO HERMELIN Updated: 17.01.13 16.12.14 1 http://www.solohermelin.com
  • 2. Table of Content SOLO 2 Earth Gravitation Introduction to Gravitation Gravitation of a Point Mass M (Netwon Gravitation Law) Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ Gravitation of a Uniform Distribution of Mass in a Spherical Volume ( )( ).ConstrS =  ρ Physical Meaning of the Low Degree and Order SHCs Reference Earth Model Clairaut's theorem Mac Cullagh’s Approximation World Geodetic System (WGS 84) Reference Ellipsoid Air Vehicle in Ellipsoidal Earth Atmosphere References
  • 3. Gravity Nicolaus Copernicus (1473 – 1543) “De Revolutionibus Orbium Coelestium” (On the Revolutions of the Heavenly Spheres”, Nuremberg 1543) SOLO
  • 4. Gravity Kepler’s Laws of Planetary Motion From 1601 to 1606 Kepler tried to fit various Geometric Curves to Tycho Brache’s Data on Mars Orbit. The result is “Kepler’s Law of Planetary Motion” Tycho Brahe (1546-1601) Johaness Kepler (1571-1630) SOLO
  • 5. KEPLER’S LAWS OF PLANETARY MOTION 1609-1619 •FIRST LAW THE ORBIT OF EACH PLANET IS AN ELLIPSE, WITH THE SUN AT A FOCUS. b a •SECOND LAW THE LINE JOINING THE PLANET TO THE SUN SWEEPS OUT EQUAL AREAS IN EQUAL TIME. a dA h dt 2 = b •THIRD LAW THE SQUARE OF THE PERIOD OF A PLANET IS PROPORTIONAL TO THE CUBE OF ITS MEAN DISTANCE FROM THE SUN. a 2/322 a GMGM ab TP ππ == b Gravity SOLO
  • 6. GALILEO GALILEI (1564-1642( “DISCOURSESANDMATHEMATICALDEMONSTRATIONS CONCERNINGTWONEWSCIENCES” 1636 THE FIRST TWO CHAPTERS DEAL WITH STRENGTHOFMATERIALS. THIS IS ESSENTIALLY THE FIRST NEW SCIENCE. THE THIRD AND FOURTH SUBJECT IS : • UNIFORMMOTION WITHCONSTANTACCELERATION ANDMOTION OFPROJECTILES •THE LAWOFINERTIA •THE COMPOSITION OFMOTIONSACCORDINGTO VECTORADDITION (“GALILEAN TRANSFORMATION”) AND •THE STUDY OFUNIFORMLYACCELERATEDMOTION Gravity SOLO
  • 7. NEWTON’SLAWSOFMOTION “THE MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY”1687 • FIRSTLAW EVERY BODY CONTINUES IN ITS STATE OF REST OR OF UNIFORM MOTION IN A STRAIGHT LINE UNLESS IT IS COMPELLED TO CHANGE THAT STATE BY FORCES IMPRESSED UPON IT. • SECONDLAW THE RATE OF CHANGE OF MOMENTUM IS PROPORTIONAL TO THE FORCE IMPRESSED AND IS IN THE SAME DIRECTION AS THAT FORCE. • THIRDLAW TO EVERY ACTION THERE IS ALWAYS OPPOSED AN EQUAL REACTION. Gravity SOLO
  • 8. NEWTON’S LAW OF UNIVERSAL GRAVITATION ANY TWO BODY ATTRACT ONE ONOTHER WITH A FORCE PROPORTIONAL TO THE PRODUCT OF THE MASSES AND INVERSLY PROPORTIONAL TO THE SQUARE OF THE DISTANCE BETWEEN THEM. THE UNIVERSAL GRAVITATIONAL CONSTANT INSTANTANEUS PROPAGATION OF THE FORCE ALONG THE DIRECTION BETWEEN THE MASES (“ACTION AT A DISTANCE”). M m Gravity SOLO
  • 9. THE LAGEOS SATELLITE MONITORS ITS POSITION RELATIVE TO THE EARTH USING REFLECTED LIGHT. THE TORSION BALANCE EXPERIMENTS: * HENRY CAVENDISH 1797 * RESEARCH GROUP OF UNIVERSITY OF WASHINGTON, SEATTLE (EOTWASH) CAVENDISH EXPERIMENTS HAVE NOT BEEN ABLE TO TEST THE GRAVITATIONAL FORCE AT SEPARATIONS SMALLER THAN A MILLIMETER. IF THERE ARE n EXTRA DIMENSIONS (TO THE 3 SPACE + 1 TIME) CURLED UP WITH DIAMETERS R, AT SCALES SMALLER THAN R THE GENERALIZED NEWTON POTENTIAL WILL BE: Rr r M GrV nn <<=+1 )( Gravity Henry Cavendish (1731 – 1810) Return to Table of Content SOLO
  • 10. 10 SOLO Earth Gravitation Gravitation of a Point Mass M (Netwon Gravitation Law) SF SF SF SF SF FM rrr rr rr rr Mm GgmF      −=        − − − −== :2 According to Newton the Gravitation Force of Point Mass M on the Point mass mF is given by MF  The acceleration of Mass m due to Gravity is ( ) ( )rrf r r r M Grg    =      −= 2 ( ) ( ) ( ) r r r rf r r rf rf  ∂ ∂ =∇ ∂ ∂ =∇ Any function of the form has the property that( )rrf  Because of this 1.we can write 2.we have ( ) ( )rUrg  −∇= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1 1111 rUrUmrUdmrdrUmrdrgmrdrF F rB rA F rB rA rB rA rB rA          −=−=⋅∇−=⋅=⋅ ∫∫∫∫ The Work necessary to move the Mass mF in the Gravity Field of Point Mass M, from point to point , is not a function of the trajectory chosen but on the values of the scalar function U (called Potential) at those two points. ( )rA  ( )1rB 
  • 11. SOLO 11 Earth Gravitation Gravitation of a Point Mass M (Netwon Gravitation Law) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) r M G r M Grd r M Grd r r r M GrdrgrUrU f rB rA rB rA rB rA f fff           −=−=⋅      −=⋅=− ∫∫∫ 22 The Gravitation Potential U of a Point Mass M is given by The Gravitation Equi-Potential Surface of a Point Mass M is Spherical Surface centered at M location. Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ The Gravitation Potential of the Distribution is obtaining by Integrating the Gravitation Potentials of the Point Masses dm over the Volume V ( ) ( ) ( ) ∫∫ − −= − −= V S S S M S S Vd rr r G rr rmd GrU      ρ If we take the reference rf → ∞ we get 0. == fr M GConst  ( ) r M GrU   −= ( ) .Const r M GrU +−=   Return to Table of Content
  • 12. SOLO 12 Earth Gravitation ( ) S SS S rrMd r r r rr G rr Md GrUd >       +      − −= − −= 2 cos21 1 γ   ( ) ( ) SSSSSSSS onDistributi Density SSS ddrdrrVdrMd ϕθθθϕρθϕρ sin,,,, 2 ==  ( ) ( ) S r SS SSSSSSSS rr r r r r ddrdrr r G rU S S S >       +      − −= ∫ ∫∫ϕ θ γ ϕθθθϕρ 2 2 cos21 sin,, ( ) S n n n SSS rrP r r r r r r >      =               +      − ∑ ∞ = − 0 2/12 coscos21 γγ Pn (u) are Lagrange Polynomials, of order n, given explicitly by Rodrigues’ Formula: ( ) ( ) n nn kn ud ud n uP 1 !2 1 2 − = Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ ( ) ( ) ( ) ( ) 2/13&,1 2 210 −=== uuPuuPuPExamples: Using Spherical Coordinates (rS, φS, θS) The Potential Differential of any distribution of mass is given by:
  • 13. SOLO 13 Earth Gravitation ( ) ( ) ( ) S r Md SSSSSSSS n n n S rrddrdrrP r r r G rU S S S >      −= ∫ ∫ ∫ ∑ ∞ =ϕ θ ϕθθθϕργ     sin,,cos 2 0 From Spherical Trigonometry: ( )SSS ϕϕθθθθγ −+= cossinsincoscoscos According to Addition Theorem for Spherical Harmonics: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∑= − + − += n m S m n m nSSnnn PPm mn mn PPP 1 coscoscos ! ! 2coscoscos θθϕϕθθγ ( ) ( ) ( )uP ud d uuP nm m mm n 2/2 1: −= Where Pn m (u) is the Associated Lagrange Function of the First Kind of Degree n and Order m, given by: Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ ( ) ( )uPuP nn = 0 ( ) ( ) ( ) ( )22 2 2 1 21 2 13,13 ttPtttP −=−=They satisfy: The Potential of any distribution of mass is given by: See Presentation on “Legendre Functions”
  • 14. SOLO 14 Earth Gravitation The Potential of any distribution of mass is given by: ( ) ( ) ( ) ( ) ( ) S n r Md SSSSSSSSn n S k S r Md SSSSSSSS k n n S rrddrdrrP a r r a r G rrddrdrrP r r r G rU S S S S S S >            −= >      −= ∑ ∫ ∫∫ ∫ ∫∫ ∑ ∞ = ∞ = 0 2 2 0 sin,,cos sin,,cos ϕ θ ϕ θ ϕθθθϕργ ϕθθθϕργ        According to Addition Theorem for Spherical Harmonics: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∑= − + − += n m S m n m nSSnnn PPm mn mn PPP 1 coscoscos ! ! 2coscoscos θθϕϕθθγ Using those results we obtain: ( ) 1cos0 =γP ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∑∑ ∫ ∫∫ ∑ ∫ ∫ ∫∫ ∫ ∫ ∞ = ∞ = = ∞ =             + − −             + − −             −      −= 1 2 1 0 2 1 22 1 0 0 sin,,sincossincos ! ! 2 sin,,coscoscoscos ! ! 2 sin,,coscossin,,cos n r SSSSSSSSSSn n S n n n n m r SSSSSSSSSS m n n Sm n n n r SSSSSSSSSn n S n n M r Md SSSSSSSS S S S S S S S S S SS S S ddrdrrmP a r mP r a mn mn r G ddrdrrmP a r mP r a mn mn r G ddrdrrP a r P r a r G ddrdrrP a r r G rU ϕ θ ϕ θ ϕ θϕ θ ϕθθθϕρϕθϕθ ϕθθθϕρϕθϕθ ϕθθθϕρθθϕθθθϕργ           Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ a – any reference length
  • 15. SOLO 15 Earth Gravitation ( ) ( ) ( ) ( ) ( )( )         +      +      +−= ∑∑∑ ∞ = = ∞ = 1 11 0 sincoscoscos1 n n m nmnm m n n n nn n mSmCP r a CP r a r MG rU ϕϕθθ  ( ) ( )∫∫∫       == S S Sr Md SSSSSSSSSn n S nn ddrdrrP a r M CC ϕ θ ϕθθθϕρθ    sin,,cos 1 : 2 0 ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫             + − =      S S Sr Md SSSSSSSS S S S m n n S nm nm ddrdrr m m P a r mn mn S C ϕ θ ϕθθθϕρ ϕ ϕ θ    sin,, sin cos cos ! ! 2: 2 Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ The Potential of any distribution of mass is given by:
  • 16. SOLO 16 Earth Gravitation (1) A tremendous simplification results if the mass distribution is symmetric about the z axis, i.e. ρ is a function only of rS and θS. Since ( ) ( ) ,2,10cossin 2 0 2 0 === ∫∫ jdjdj SSSS ππ ϕϕϕϕ the coefficients Cmn and Smn vanish identically. (2) In addition to axial symmetry, the origin of coordinates coincides with the center of mass, the constant C1 is identically zero. ( ) ( ) 0cos 1 sin,cos 1 : 2 cos 11 =      =      = ∫∫ ∫∫ m S S r md SSSSSSSS S md a r M ddrdrrP a r M C S S S S θϕθθθρθ ϕ θ θ    C1 is proportional to the first moment of the mass M with respect to the xy plane. Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ In this case ( ) ( ) 0 1 :cos1 nn n nn n CJJP r a r MG rU −=               −−= ∑ ∞ = θ 
  • 17. SOLO 17 Earth Gravitation (3) Finally, if the mass is distributed in homogeneous concentric layers, i.e. ρ is a function only of rS , then Cn vanishes identically for all n ( ) ( ) 0sincos: 2 0 0 00 22 =      = ∫∫∫ + ππ ϕθθθρ SSSSk R SS n S n ddPrdr a r M a C    Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ ( ) r MG rU =  In this case Return to Table of Content
  • 18. SOLO 18 Earth Gravitation Gravitation of a Uniform Distribution of Mass in a Spherical Volume( )( ).ConstrS =  ρ For a Static Spherical Volume with an Uniform Distributed Mass the Gravitation Potential at a distance r > R is given by ( ) r MG r R GVd rr GrU S V S SS −=−= − −= ∫ 3/41 3 π ρρ   The Gravitation Potential for a Static Spherical Volume with an Uniform Distributed Mass is equivalent to a Point Mass Gravitation Potential concentrated at the Center of the Sphere. The Equi-Potential Surfaces will be Concentric Spherical Surfaces outside the Spherical Mass.
  • 19. SOLO 19 Earth Gravitation The Potential of the Reference Ellipsoid is given by: where: UG – Gravitational Potential (m2 /s2 ) GM – Earth’s Gravitational Constant r - Distance from the Earth’s Center of Mass rS - Distance from the Earth’s Center of Mass to d m Gravitation of a Uniform Distribution of Mass in a Ellipsoid Volume( )( ).Constr =  ρ ( ) Srr md GrUd   − = Typically the Potential is expanded in a series. This can be done in two ways, which lead to the same result: 1.By expanding the term and integrate the result term by term. 2. By writing the Potential as solution of Lalace’s Equation using Spherical Harmonics. Srr  − 1
  • 20. SOLO 20 Earth Gravitation The Potential Equation of Gravity Field where: UG – Gravitational Potential (m2 /s2 ) GM – Earth’s Gravitational Constant r - Distance from the Earth’s Center of Mass rS - Distance from the Earth’s Center of Mass to dm ( ) ( ) ( ) ( ) ( )rG VdrrrG Vd rr rGrU S S V SSS V S S SS     ρπ δπρ ρ 4 4 122 −= −−=         − ∇−=∇ ∫∫∫ ∫∫∫ ( ) ( )∫∫∫∫ − −= − −= SV S S S M S rr Vd rG rr md GrU     ρStart with: Inside the mass M we have: ( ) ( )rGrU  ρπ42 −=∇Poisson Equation: ( ) 02 =∇ rU  Laplace Equation: Outside the mass M we have: Siméon Denis Poisson 1781-1840 Pierre-Simon Laplace (1749-1827) Return to Table of Content
  • 21. SOLO 21 Earth Gravitation Physical Meaning of the Low Degree and Order SHCs Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ As pointed out in the previous slides the first term of the Spherical Harmonic Coefficients (SHC) of Gravity Potential is equal to the Potential for Spherical Mass. The remaining terms then represent the Gravitational Potential due to Non-spherical, Non-uniform Mass. ( ) ( ) ( ) ( ) ( )( )         +      +      +−= ∑∑∑ ∞ = = ∞ = 1 11 0 sincoscoscos1 n n m nmnm m n n n nn n mSmCP r a CP r a r MG rU ϕϕθθ  We have (see Figure)           =           = S SS SS S s s s S r z y x r θ ϕθ ϕθ cos sinsin cossin  ( ) 0& 1 cos 1 : 10 cos 1 1 110 ===      == ∫∫ S a z Mdz Ma MdP a r M CC G M S M S S S  θ θ ( )       =      =            =            =      ∫∫ ∫ ay ax Md y x Ma Md a r M MdP a r MS C G G M S S M M S S S S S S S S / / 2 2 sin cos sin 2 sin cos cos 2 1 1 1 1 11 11 ϕ ϕ θ ϕ ϕ θ ( ) ( )2 1 21 1 1 ttP −=where we used Legendre Polynomials. GGG zyx  ,, are the coordinates of the Mass Center of Gravity
  • 22. SOLO 22 Earth Gravitation Physical Meaning of the Low Degree and Order SHCs Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ ( ) ( ) ( ) ( ) ( )( )         +      +      +−= ∑∑∑ ∞ = = ∞ = 1 11 0 sincoscoscos1 n n m nmnm m n n n nn n mSmCP r a CP r a r MG rU ϕϕθθ            =           = S SS SS S s s s S r z y x r θ ϕθ ϕθ cos sinsin cossin        + −−=      −= 2 1 2 31 2220 SSSS SSSSSS yyxx zzzzrr II I Ma II Ma C ( )∫             =      M S S MdP a r MS C 0 1 cos 2 0 2 2 20 20 θ ( ) ( )         + −++=        + −= −−− = − == 2 3 1 2 1 2 3 2 1cos3 coscos 2 222 2 22 2 22 22222 2 2 22 2 0 22 2 SS SSS SS S SSSSSS S S S S yx zyx a yx z aa zyxz a r P a r P a r θ θθ ( ) ∫∫∫         =      =      =            =      M zy zx SS SS M S S SSS M S S S S MaI MaI Md zy zx Ma Mdr Ma MdP a r MS C SS SS 2 2 2 2 2 1 2 2 21 21 / /1 sin cos cossin3 3 1 sin cos cos !3 12 ϕ ϕ θθ ϕ ϕ θ ( ) ( ) ( ) ( )∫∫∫         − =        − =        − ⋅ =            =      M yx xxyy SS SS M SS SS SS M S S S S MaI MaII Md yx yx Ma Mdr Ma MdP a r MS C SS SSSS 2 222 2 22 22 2 2 2 2 22 22 2/ 4/ 24 1 cossin2 sincos sin3 34 1 2sin 2cos cos !4 !12 ϕϕ ϕϕ θ ϕ ϕ θ ( ) ( ) ( ) ( )22 2 2 1 21 2 13,13 ttPtttP −=−=where we used ( ) ( ) ( ) ( ) ( )SSSSSSSSSSSSSS zzyyxx M SSSrr M SSzz M SSyy M SSxx IIIMdzyxIMdyxIMdzxIMdzyI ++=++=+=+=+= ∫∫∫∫ 2 1 ::,:,: 222222222 Define Moments of Inertia
  • 23. SOLO 23 Earth Gravitation Physical Meaning of the Low Degree and Order SHCs Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ
  • 24. SOLO 24 Earth Gravitation Physical Meaning of the Low Degree and Order SHCs Gravitation of a Distribution of Mass Defined by the Density ( )Sr  ρ Return to Table of Content
  • 25. SOLO 25 Earth Gravitation Earth is a Rotating Non-Spherical Body, with a slightly non- uniform mass distribution. The force acting on an external mass is due to Gravitation and Centrifugal Accelerations. To find a Model for the Gravitation Acceleration the Earth is approximated by an Ellipsoid The flattering of the Earth was already discovered by the end of the 18th century. It was noticed that the distance between a degree of Latitude as measured, for instance with a sextant, differs from that expected from a Sphere: RE (θ1 – θ2) ≠ RE dθ, with RE the radius of the Earth, θ1 and θ2 two different Latitudes f - the flattening of a meridian section of the Earth, defined as: a ba f − =: R = 6,371.000 km a = 6,378.136 km b = 6,356.751 km Reference Earth Model Return to Table of Content
  • 26. SOLO 26 Reference Ellipsoid Meridian Ellipse Equation: 12 2 2 2 =+ b z a p Slope of the Normal to Ellipse: 2 2 tan bp az zd pd =−=φ The Slope of the Geocentric Line to the same point p z O =φtan OO RzRp φφ sincos == Deviation Angle between Geographic and Geodetic At Ellipsoid Surface O b a φφ tantan 2 2 =       = − O b a φφ tantan 2 2 1 ( ) ( ) φφφφ tan1tan1tantan 22 2 2 fe a b O −=−== a ba f − =: 2 2 22 2 2: ff a ba e −= − = Earth Gravitation
  • 27. SOLO 27 Reference Ellipsoid Meridian Ellipse Equation: Oφφδ −= 12 2 2 2 =+ b z a p Slope of the Normal to Ellipse: 2 2 tan bp az zd pd =−=φ The Slope of the Geocentric Line to the same point p z O =φtan       −=       −+       − = + − = + − = 1 11 1 1 tantan1 tantan tan 2 2 2 2 2 2 2 2 2 22 22 2 2 b a a zp a p p a b a p z bp az p z bp az O O φφ φφ δ OO RzRp φφ sincos == ( )  ( ) ( )OO f O f ba R b ba a ba R ba ba φφφδ 2sin2sin 2 tan2sin 2 tan 1 2 11 12 22 22 1 ≈             +       − =            − = ≈≈<< −−  Deviation Angle between Geographic and Geodetic At Ellipsoid Surface Earth Gravitation
  • 28. SOLO 28 Reference Ellipsoid For a point at a Height h near the Ellipsoid the value of δ must be corrected: u−= 1δδ From the Law of Sine we have: Deviation Angle between Geographic and Geodetic At Altitude h from Ellipsoid Surface ( ) R h hR huu ≈ + ≈= − 11 sin sin sin sin δδπ Since u and δ1 are small: 1δ R h u ≈ The corrected value of δ is: ( )Of R h R h u φδδδ 2sin11 11       −=      −=−= Therefore: ( )OO f R h φλδφφ 2sin1       −+=+= Earth Gravitation
  • 29. SOLO 29 World Geodetic System (WGS 84) where λ – Longitude e – Eccentricity = 0.08181919 Reference Earth Model In Earth Center Earth Fixed Coordinate –ECEF-System (E) the Vehicle Position is given by: ( ) ( ) ( ) ( )           + + + =           = φ φλ φλ sin cossin coscos HR HR HR z y x P M N N E E E E  ( ) NhH e a RN += − = 2/12 sin1 φ Another variable, used frequently, is the radius of the Ellipsoid referred as the Meridian Radius ( ) ( ) 2/32 2 sin1 1 φe ea RM − − = Earth Gravitation
  • 30. SOLO 30 Reference Ellipsoid b a Oφ ?O – Geographic Latitude ? – Geodetic Latitude Equator North Pole Tangent to Ellipsoid p NR z P a r φ β Meridian Ellipse Ellipsoid Equation: ( ) 222 2 2 2 22 11 aeb b z a yx −==+ + Define: 22 : yxp += 12 2 2 2 =+ b z a p Differentiate: 022 =+ b dzz a dpp z p a b dp dz 2 2 cot =−=φFrom the Figure: φtan2 2 p a b z = ( )φφ 222 4 2 22 4 2 2 2 tantan1 ba a p p a b a p +=+= φφ φ φφ φ 2222 2 2222 2 sincos sin , sincos cos ba b z ba a p + = + = Earth Gravitation
  • 32. SOLO 32 Reference Ellipsoid ( ) 222 1 aeb −= 12 2 2 2 =+ b z a p 0 0 sin cos φ φ rz rp = = 1 sincos 2 0 2 2 0 2 2 =      + ba r φφ ( ) 2/1 2 0 2 2 0 2 0 sincos −       += ba r φφ φ ( )  ( ) ( )0 22/1 0 2 2/1 0 2 2 2/1 0 2 2 222/1 0 2 2 2 0 2 0 sin1sin21 sin1sin1sincos φφ φφφφφ fafa b ba b a a ba a b ba a b a ar f −≈+≈           +− +=      − +=      += − − ≈ −−  Earth Gravitation
  • 33. SOLO 33 Reference Ellipsoid The Meridians and Parallels are the Lines of Curvature of the Ellipsoid. The principal Radii of Curvature are therefore in the Plane of Meridian (Meridian Radius of Curvature RM) and in the Plane of Prime Vertical, perpendicular to Meridian Plane (Radius of Curvature in the Prime Vertical RN) Radiuses of Curvature of the Ellipsoid Meridian Ellipse Equation: ( ) 222 2 2 2 2 11 aeb b z a p −==+ From this Equation, at any point (x,y) on the Ellipse, we have: φtan 1 2 2 −=−= az bp pd zd 32 4 32 2222 2 2 2 2 22 2 22 2 2 2 111 za b za pbza a b z p a b z p za b pd zd z p za b pd zd −= + −=      +−=      −−= From the Ellipse Equation: ( ) φ φ φ 2 22 2 2 2 222 2 2 2 2 2 2 2 2 cos sin1 1 1 tan1111 e a p e e a p b a p z a p − =      − −+=      += ( ) ( ) ( ) 2/122 2 2 2 2/122 sin1 sin1 tan sin1 cos φ φ φ φ φ e ea p a b z e a p − − ==→ − = From the Figure on right: ( ) 2/122 sin1cos φφ e ap RN − == Earth Gravitation
  • 34. SOLO 34 Reference Ellipsoid Let develop the RN and RM (continue): we have at any point (p,z) on the Ellipse: φtan 1 2 2 −=−= az bp pd zd ( ) 3 22 32 4 2 2 11 z ea za b pd zd − −=−= The Radius of Curvature of the Ellipse at the point (p,z) is: ( ) ( ) ( ) ( ) ( ) 2/322 2 2/322 3323 22 2/3 2 2 2 2/32 sin1 1 sin1 sin1 1 tan 1 11 : φφ φφ e ea e ea ea pd zd pd zd RM − − = − − −       + =               + = ( ) ( ) ( ) 2/122 2 2/122 sin1 sin1 sin1 cos φ φ φ φ e ea z e a p − − = − = ( ) ( ) 2/322 2 sin1 1 : φe ea RM − − = Radiuses of Curvature of the Ellipsoid Earth Gravitation
  • 35. SOLO 35 Reference Ellipsoid ( ) ( ) 2/322 2 sin1 1 : φe ea RM − − = ( ) 2/122 sin1cos φφ e ap RN − == a ba f − =: 2 2 22 2 2: ff a ba e −= − =Using ( ) ( )[ ] ( ) ( ) [ ] ++−≈      +−++−≈ −− − = φφ φ 2222 2/322 2 sin321sin2 2 3 121 sin21 1 : ffaffffa ff fa RM ( )[ ] ( ) [ ]φφ φ 222 2/122 sin31sin2 2 3 1 sin21 faffa ff a RN +≈    +−+≈ −− =  [ ]φ2 sin321 ffaRM +−≈ [ ]φ2 sin31 faRN +≈ We used and we neglect f2 terms ( ) ( ) + − ++= − !2 1 1 1 1 nn xn x n Radiuses of Curvature of the Ellipsoid Return to Table of Content Earth Gravitation
  • 36. SOLO 36 Reference Earth Model Clairaut's theorem Clairaut's theorem, published in 1743 by Alexis Claude Clairaut in his “Théorie de la figure de la terre, tirée des principes de l'hydrostatique”, synthesized physical and geodetic evidence that the Earth is an oblate rotational ellipsoid. It is a general mathematical law applying to spheroids of revolution. It was initially used to relate the gravity at any point on the Earth's surface to the position of that point, allowing the ellipticity of the Earth to be calculated from measurements of gravity at different latitudes. Clairaut's formula for the acceleration due to gravity g on the surface of a spheroid at latitude , was:ϕ where G is the value of the acceleration of gravity at the equator, m the ratio of the centrifugal force to gravity at the equator, and f the flattening of a meridian section of the earth, defined as: a ba f − =: Alexis Claude Clairaut )1713–1765(             −+= φ2 sin 2 5 1 fmGg Earth Gravitation Return to Table of Content
  • 37. SOLO 37 Reference Earth Model Mac Cullagh’s Approximation (1845) James MacCullagh (1809 – 1847) Mac Cullagh’s used the Approximation: ( ) ( )  ( )  ( ) ( )                   −      −       +            +−≈ ∫∫ ≈ M P SS P r a M M P S S P Md a r Mr a Md a r Mr a M r G rU S CM S       θθ θ θ θθ θθ cos 22 cos 22 cos 1 cos 1 22 0 1 1 2 1cos31 2 1cos3 cos 1 cos1 ∫∫∫         + −++=        + −= − = M SS SSS M SS S M SS dM yx zyx Ma dM yx z Ma dM a r M C 2 3 1 2 1 2 1cos31 : 2 222 2 22 2 2 2 2 2 20 θ 222220 2 1 2 31 J Ma ACII I Ma II Ma C SSSS SSSSSS yyxx zzzzrr −= − −=      + −−=      −= ( ) ( ) ( ) ( ) ( )SSSSSSSSSSSSSS zzyyxx M SSSrr M SSzz M SSyy M SSxx IIIMdzyxIMdyxIMdzxIMdzyI ++=++=+=+=+= ∫∫∫∫ 2 1 ::,:,: 222222222 Define Moments of Inertia 2 :,: SSSS SS yyxx zz II AIC + == ( ) ( ) Ma AC JJ r aMG M r G rU P 22 2 23 2 : 2 1cos3 2 − = − +−≈   θ θ Earth Gravitation Return to Table of Content
  • 38. SOLO 38 Reference Earth Model The definition of geodetic latitude (φ) and longitude (λ) on an ellipsoid. The normal to the surface does not pass through the centre Reference Ellipsoid Geodetic latitude: the angle between the normal and the equatorial plane. The standard notation in English publications is ϕ Geocentric latitude: the equatorial plane and the radius from the centre to a point on the surface. The relation between the geocentric latitude (ψ) and the geodetic latitude ( ) isϕ derived in the above references as The definition of geodetic (or geographic) and geocentric latitudes ( ) ( )[ ]φφψ tan1tan 21 e−= − To use previous results, where we used spherical coordinates, rS, φS, θS we will use θ π ψϕλ −== 2 & Earth Gravitation
  • 39. SOLO 39 Earth Gravitation Centrifugal Potential Since Earth is a Rotating Body, a Centrifugal Acceleration is exerted on a Mass m, at a (x,y,z) Position, given by ( ) Cyx yxV yx C Uyx yx yx Va ∇=+Ω= + + Ω= +Ω= 11 11 2 22 22    where: Ω = 7292115.1467x10-11 rad/s – Earth Angular Velocity The Centrifugal Earth Potential UC at (x,y,z) Position is given by ( ) ( ) ( ) . .1111.. 2 2 Constydyxdx ConstydxdyxConstrdUConstUdU yxyxCCC ++Ω= ++⋅+Ω=+⋅∇=+= ∫∫ ∫∫∫  Centrifugal Potential Earth Gravitation Model ( )222 2 1 yxUC +Ω= By choosing Const. = 0, we obtain
  • 40. SOLO 40 Earth Gravitation Potential of the Rotating Reference Ellipsoid The Potential of the Rotating Reference Ellipsoid is the sum of the Gravitational and Centrifugal Potentials: CG UUW += ( ) . 2 1 222 ConstyxUC ++Ω= The Gravitational Potential of the Reference Ellipsoid (assuming Uniform Density Distribution) is: ( ) ( )         +      +−= ∑∑= = max 2 0 sincossin1 n n n m nmnmnm n G mSmCP r a r MG U λλψ where: UG – Gravitational Potential (m2 /s2 ) GM – Earth’s Gravitational Constant r - Distance from the Earth’s Center of Mass a - Semi-Major Axis of the WG 84 Ellipsoid n,m – Degree and Order respectively ψ– Geocentric Latitude λ – Geocentric Longitude = Geodetic Longitude Return to Table of Content
  • 41. SOLO 41 Earth Gravitation The WGS 84 Gravity Model is defined in terms of normalized coefficients: ( ) ( ) ( ) ( ) ( )( )         +      +      +−= ∑∑∑ ∞ = = ∞ = 1 11 0 sincossinsin1 n n m nmnm m n n n nn n mSmCP r a CP r a r MG rU λλψψ  ( )∫       == M Sn n S nn MdP a r M CC ψsin 1 :0 ( ) ( ) ( ) ( ) ( )∫             + − =      M S S S m n n S nm nm Md m m P a r mn mn S C λ λ ψ sin cos sin ! ! 2: ( ) ( ) ( ) ( ) ( )( )         +      +      +−= ∑∑∑ ∞ = = ∞ = 1 11 0 sincossinsin1 n n m nmnm m n n n nn n mSmCP r a CP r a r MG rU λλψψ  ( ) ( ) ( ) ( ) ( )    ≠ = =      + − += 02 01 sin ! ! 12sin m m kP mn mn knP m n m n ψψ ( ) ( ) ( )    ≠ = =            − + + =        02 01 ! ! 12 1 m m k S C mn mn knS C nm nm nm nm Cnm and Snm are called Spherical Harmonic Coefficients (SHC). The Gravitation Potential of the Earth Model is given by: Earth Gravitation Model World Geodetic System (WGS 84)
  • 42. SOLO 42 World Geodetic System (WGS 84) Reference Earth Model Spherical Harmonics Visual representations of the first few spherical harmonics. Red portions represent regions where the function is positive, and green portions represent regions where the function is negative. Earth Gravitation
  • 43. SOLO 43 World Geodetic System (WGS 84) Reference Earth Model Carlo Somigliana (1860 –1955) The Theoretical Gravity on the surface of the Ellipsoid is given by the Somigliana Formula (1929)    84 22 2 2222 22 sin1 sin1 sincos sincos WGS e pe e k ba ba φ φ γ φφ φγφγ γ − + = + + = where 1: −= e p a b k γ γ 2 22 : a ba e − = - Ellipsoid Eccentricity a - Ellipsoid Semi-major Axis = 6378137.0 m b - Ellipsoid Semi-minor Axis = 6356752.314 m γp – Gravity at the Poles = 983.21849378 cm/s2 γe – Gravity at the Equator = 978.03267714 cm/s2 – Geodetic Latitudeϕ The Theory of the Equipotential Ellipsoid was first given by P. Pizzetti (1894) Earth Gravitation
  • 44. SOLO 44 World Geodetic System (WGS 84) Reference Earth Model The coordinate origin of WGS 84 is meant to be located at the Earth's center of mass; the error is believed to be less than 2 cm. The WGS 84 meridian of zero longitude is the IERS Reference Meridian. 5.31 arc seconds or 102.5 meters (336.3 ft) east of the Greenwich meridian at the latitude of the Royal Observatory. The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major (transverse) radius a = 6378137 m at the equator and flattening f = 1/298.257223563.The polar semi-minor (conjugate) radius b then equals a times (1−f), or b = 6356752.3142 m. Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) Geoid, revised in 2004. This Geoid defines the nominal sea level surface by means of a spherical harmonics series of degree 360 (which provides about 100 km horizontal resolution).[7] The deviations of the EGM96 Geoid from the WGS 84 Reference Ellipsoid range from about −105 m to about +85 m.[8] EGM96 differs from the original WGS 84 Geoid, referred to as EGM84. Earth Gravitation
  • 45. SOLO 45 World Geodetic System (WGS 84) Reference Earth Model Earth Gravitation
  • 46. SOLO 46 World Geodetic System (WGS 84) Reference Earth Model Geoid product, the 15-minute, worldwide Geoid Height for EGM96 The difference between the Geoid and the Reference Ellipsoid exhibit the following statistics: Mean = - 0.57 m, Standard Deviation = 30.56 m Minimum = -106.99 m, Maximum = 85.39 m Earth Gravitation
  • 47. SOLO 47 World Geodetic System (WGS – 84) Reference Earth Model Parameters Notation Value Ellipsoid Semi-major Axis a 6.378.137 m Ellipsoid Flattening (Ellipticity) f 1/298.257223563 (0.00335281066474) Second Degree Zonal Harmonic Coefficient of the Geopotential C2,0 -484.16685x10-6 Angular Velocity of the Earth Ω 7.292115x10-5 rad/s The Earth’s Gravitational Constant (Mass of Earth includes Atmosphere) GM 3.986005x1014 m3 /s2 Mass of Earth (Includes Atmosphere) M 5.9733328x1024 kg Theoretical (Normal) Gravity at the Equator (on the Ellipsoid) γe 9.7803267714 m/s2 Theoretical (Normal) Gravity at the Poles (on the Ellipsoid) γp 9.8321863685 m/s2 Mean Value of Theoretical (Normal) Gravity γ 9.7976446561 m/s2 Geodetic and Geophysical Parameters of the WGS-84 Ellipsoid Earth Gravitation
  • 48. SOLO 48 World Geodetic System (WGS 84) Reference Earth Model a ba f − =:f - Ellipsoid Flattening (Ellipticity) a - Ellipsoid Semi-major Axis b - Ellipsoid Semi-minor Axis e - Ellipsoid Eccentricity 2 2 22 2 2: ff a ba e −= − = ( ) 2 11 eafab −=−= Reference Ellipsoid Earth Gravitation
  • 49. SOLO 49 World Geodetic System (WGS 84) where λ – Longitude e – Eccentricity = 0.08181919 Reference Earth Model In Earth Center Earth Fixed Coordinate –ECEF-System (E) the Vehicle Position is given by: ( ) ( ) ( ) ( )           + + + =           = φ φλ φλ sin cossin coscos HR HR HR z y x P M N N E E E E  ( ) NhH e a RN += − = 2/12 sin1 φ Another variable, used frequently, is the radius of the Ellipsoid referred as the Meridian Radius ( ) ( ) 2/32 2 sin1 1 φe ea RM − − = Radius of Curvature in the Prime Vertical Return to Table of Content Earth Gravitation
  • 50. 50 SOLO Air Vehicle in Ellipsoidal Earth Atmosphere SIMULATION EQUATIONS
  • 51. 51 SOLO 7. Forces Acting on the Vehicle (continue – 4) Gravitation Acceleration ( ) ( )                         −           −           − == zg yg xg gg 100 0 0 0 010 0 0 0 001 χχ χχ γγ γγ σσ σσ cs sc cs sc cs scC EW E W  ( ) gg          − = γσ γσ γ cc cs s W  2sec/174.322sec/81.9 0 2 0 0 0 gg ftmg HR R == + =           The derivation of Gravitation Acceleration assumes an Ellipsoidal Symmetrical Earth. The Gravitational Potential U (R, ) is given byϕ ( ) ( ) ( ) ( )φ φ µ φ , sin1, 2 RUg P R a J R RU E E n n n n ∇=               −⋅−= ∑ ∞ =  μ – The Earth Gravitational Constant a – Mean Equatorial Radius of the Earth R=[xE 2 +yE 2 +zE 2 ]]/2 is the magnitude of the Geocentric Position Vector – Geocentric Latitude (sin =zϕ ϕ E/R) Jn – Coefficients of Zonal Harmonics of the Earth Potential Function P (sin ) – Associated Legendre Polynomialsϕ Air Vehicle in Ellipsoidal Earth Atmosphere
  • 52. 52 SOLO 7. Forces Acting on the Vehicle (continue – 5) Gravitation Acceleration Retaining only the first three terms of the Gravitational Potential U (R, ) we obtain:ϕ R z R z R z R a J R z R a J R g R y R z R z R a J R z R a J R g R x R z R z R a J R z R a J R g EEEE z EEEE y EEEE x E E E ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= 34263 8 5 15 2 3 1 34263 8 5 15 2 3 1 34263 8 5 15 2 3 1 2 2 4 44 42 22 22 2 2 4 44 42 22 22 2 2 4 44 42 22 22 µ µ µ φ φλ φλ sin cossin coscos = ⋅= ⋅= R z R y R x E E E ( ) 2/1222 EEE zyxR ++= Air Vehicle in Ellipsoidal Earth Atmosphere
  • 53. 53 SOLO 23. Local Level Local North (LLLN) Computations for an Ellipsoidal Earth Model ( ) ( ) ( ) ( ) ( )2 22 10 2 0 2 0 2 0 5 2 1 2 0 6 0 sin sin1 sin321 sin1 sec/10292116557.7 sec/051646.0 sec/780333.9 26.298/.1 10378135.6 Ae e p m e HR RLatgg g LatfRR LatffRR LatfRR rad mg mg f mR + + = += +−= −= ⋅=Ω = = = ⋅= − Lat HR V HR V HR V Ap East Down Am North East Ap East North tan + −= + −= + = ρ ρ ρ Lat Lat Down East North sin 0 cos Ω−=Ω =Ω Ω=Ω DownDownDown EastEast NorthNorthNorth Ω+= = Ω+= ρφ ρφ ρφ East North Lat Lat Long ρ ρ −= = • • cos ( ) ( ) ∫ ∫ • • += += t t dtLatLattLat dtLongLongtLong 0 0 0 0 SIMULATION EQUATIONS Return to Table of Content Air Vehicle in Ellipsoidal Earth Atmosphere
  • 54. SOLO 54 References Return to Table of Content R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B S. Hermelin, “Legendre Functions” Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964 Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001 http://en.wikipedia.org/wiki/ Department of Defense, World Geodetic System 84, NIMA (National Imagery and Mapping Agency) TR8350.2, Third Edition http://earth-info.nga.mil/GandG/images/ww15mgh2.gif http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf Earth Gravitation
  • 55. 55 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA
  • 56. 56 Vector AnalysisSOLO Vector Operations in Various Coordinate Systems Laplacian 2 ∇=∇⋅∇ •Cartesian: 2 2 2 2 2 2 2 z U y U x U U ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ •Cylindrical: 2 2 2 2 22 2 2 2 2 2 2 2 1111 z UUUU z UUU U ∂ ∂ + ∂ ∂ +      ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ θρρρρθρρ ρ ρρ •Spherical: ( ) φθθ θ θθ φθ 2 2 222 2 2 2 sin 1 sin sin 11 ,, ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ U r U rr U r rr rU
  • 57. 57 SOLO Laplace Differential Equation in Spherical Coordinates 0 sin 1 sin sin 11 2 2 222 2 2 2 = ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ φθθ θ θθ U r U rr U r rr U Let solve this equation by the method of Separation of Variables, by assuming a solution of the form : ( ) ( ) ( )φθφθ ,,, SrRrU = Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = In Spherical Coordinates the Laplace equation becomes: Substituting in the Laplace Equation and dividing by U gives: 0sinsin sin 11 2 2 22 2 2 =      ∂ ∂ +      ∂ ∂ ∂ ∂ +      φθ θ θ θ θ SS Srrd Rd r rd d Rr The first term is a function of r only, and the second of angular coordinates. For the sum to be zero each must be a constant, therefore: λ φθ θ θ θ θ λ −=      ∂ ∂ +      ∂ ∂ ∂ ∂ =      2 2 2 2 sinsin sin 1 1 SS S rd Rd r rd d R
  • 58. 58 SOLO Laplace Differential Equation in Spherical Coordinates λ=      rd Rd r rd d R 21 ( ) ( )ϕθ,SrR=Φ We get: 022 2 2 =−+ R rd Rd r rd Rd r λor: Assume a solution of the form: R = C rα , where α is a constant to be defined and C is determined by the boundary conditions. Substituting in the Differential Equation gives ( )[ ] 021 =−−− α λααα rC or: ( ) 01 =−+ λαα Let define l as l (l+1):=λ ( ) ( ) ( ) 0111 2 =+−+=+−+ llll αααα ( ) ( )    −− = +±− = ++±− = 12 121 2 1411 2,1 l llll α ( )      = +1 1 l l r r rR
  • 59. 59 SOLO ( )1sinsin sin 1 2 2 2 +−=      ∂ ∂ +      ∂ ∂ ∂ ∂ ll SS S φθ θ θ θ θ ( ) ( )ϕθ,SrR=Φ We obtain: Multiply this by S sin2 θ and put to get:( ) ( ) ( )φθφθ ΦΘ=,S 0 1 sinsinsin 1 2 2 2 = Φ Φ +      +      Θ ∂ ∂ Θ φ θλ θ θ θ θ d d d d Again, the first term, in the square bracket, and the last term must be equal and opposite constants, which we write m2 , -m2 . Thus: ( ) Φ−= Φ =Θ      −++      Θ ∂ ∂ 2 2 2 2 2 0 sin 1sin sin 1 m d d m ll d d φ θθ θ θθ The Φ ( ) must be periodical in (a period of 2 π) and becauseϕ ϕ this we choose the constant m2 , with m an integer. Thus: ( ) φφφ mbma sincos +=Φ Laplace Differential Equation in Spherical Coordinates ( ) φφ φ mjmj ee +− =Φ ,or With m integer, we have the Orthogonality Condition 21 21 , 2 0 2 mm mjmj dee δπϕ π φφ =⋅∫ +−
  • 60. 60 SOLO ( ) ( ) ( ) ( )φθφθ ΦΘ= rRrU ,, We get: or: ( ) Θ+−=Θ− Θ + Θ 1 sin cot 2 2 2 2 ll m d d d d θθ θ θ ( ) 0 sin 1sin sin 1 2 2 =Θ      −++      Θ ∂ ∂ θθ θ θθ m ll d d Laplace Differential Equation in Spherical Coordinates Change of variables: t = cos θ θθ dtd sin−= td d d d Θ −= Θ θ θ sin  ( ) td d t td d t td d d d td d td d td d td d d d d d d d Θ − Θ −= Θ + Θ =      Θ −−=      Θ = Θ − 2 2 2 cossin/1 2 2 2 2 2 1 sin sinsinsinsin  θθ θ θθ θθθθ θθθ ( ) ( ) Θ      − −++ Θ − Θ − Θ =Θ      −++ Θ + Θ = = 2 2 2 2cos 2 2 2 2 1 1 sin 1cot0 t m ll td d t td d t td dm ll d d d d t θ θθ θ θ We obtain: ( ) 1cos ,2,1,00 1 12 2 2 2 2 ≤⇒= ==Θ      − −++ Θ − Θ tt m t m ll td d t td d θ  Associate Legendre Differential Equation
  • 61. 61 SOLO ( ) ( ) ( ) ( )φθφθ ΦΘ= rRrU ,, Laplace Differential Equation in Spherical Coordinates We obtain: ( ) 1cos ,2,1,00 1 12 2 2 2 2 ≤⇒= ==Θ      − −++ Θ − Θ tt m t m ll td d t td d θ  Associate Legendre Differential Equation Let start with m = 0 with: ( ) 1cos 0122 2 ≤⇒= =Θ++ Θ − Θ tt ll td d t td d θ Legendre Differential Equation They are named after Adrien-Marie Legendre. This ordinary differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates. The Legendre polynomials were first introduced in 1785 by Adrien-Marie Legendre, in “Recherches sur l’attraction des sphéroides homogènes”, as the coefficients in the expansion of the Newtonian potential Adrien-Marie Legendre (1752 –1833(
  • 62. SOLO 62 Legendre Polynomials Olinde Rodrigues (1794-1851) Start from the function: ( ) .12 constktky n =−= ( ) 12 12:' − −== n ttkn td yd y ( ) ( ) ( ) 22212 2 2 11412:'' −− −−+−== nn ttnkntkn td yd y Let compute: ( ) ( ) ( ) ( ) ( ) '12211412''1 12222 ytntnttnkntknyt nn −+=−−+−=− − or: ( ) ( ) 02'12''12 =−−+− ynytnyt Let differentiate the last equation n times with respect to t: ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ''1''2''1 00''1 3 ''1 2 ''1 1 ''1''1 2 2 1 1 2 3 3 0 2 3 3 2 2 2 2 2 1 1 222 y td d nny td d tny td d t y td d t td dn y td d t td dn y td d t xd dn y td d tyt td d n n n n n n n n n n n n n n n n − − − − − − − − − − −++−= +−      +−      +−      +−=−   ( ) ( ) ( ) ( )       +−=            +−=− − − − − ''12' 1 '12'12 1 1 1 1 y td d ny td d tny td d t td dn y td d tnyt td d n n n n n n n n n n n Derivation of Legendre Polynomials via Rodrigues’ Formula Laplace Differential Equation in Spherical Coordinates
  • 63. SOLO 63 Legendre Polynomials Olinde Rodrigues (1794-1851) Start from the function: ( ) .12 constktky n =−= ( ) ( ) 02'12''12 =−−+− ynytnytDifferentiate n times with respect to t: ( ) ( ) ''1''2''1 2 2 1 1 2 y td d nny td d tny td d t n n n n n n − − − − −++− ( ) 02''12 1 1 =−      +−+ − − y td d ny td d ny td d tn n n n n n n Define: a Polynomial( ) ( )[ ]n n n n n t td d k td yd tw 1: 2 −== ( ) ( ) ( )[ ] 02'121'2''12 =−+−+−++− wnwnwtnwnnwtnwt ( ) ( ) ( ) ( )[ ] 02121'2''12 =−−+−+−++− wnnnnnwtnttnwt ( ) ( ) 01'2''12 =+−+− wnnwtwt This is Legendre’s Differential Equation. We proved that one of the solutions are Polynomials. We can rewrite this equation in a Sturm-Liouville Form: ( ) ( ) 0112 =+−      − wnnw td d t td d Derivation of Legendre Polynomials via Rodrigues’ Formula Laplace Differential Equation in Spherical Coordinates
  • 64. SOLO 64 Legendre Polynomials Olinde Rodrigues (1794-1851) Let find k such that: by choosing Pn (1) = 1 ( ) ( )[ ]n n n n n n t td d k td yd tP 12 −== ( ) ( )[ ] ( ) ( ) ( ) ( )       −+=         +−=−= ∑>0 22 1!2111 i inn v n u n n n n n n n ttatnktt td d ktk td d tP  !2 1 n k n = We obtain the Rodrigues Formula: ( ) ( )[ ]n n n nn t td d n tP 1 !2 1 2 −= Let use Leibnitz’s Rule (Binomial Expansion for the n Derivative of a Product - with u:=(t-1)n and v:=(t+1)n ): ( ) ( ) ( ) udvudvdnvddu nn vddunvdu vdud mnm n vud nnnnn n m mnmn +++ − ++= − =⋅ −−− = − ∑ 1221 0 !2 1 !! !  We have: ( )   ( )    1!2 !2 1 1 1!20 12 0 21 00 ==        +++ − ++== = −−− nkudvudvdnvddu nn vddunvdukxP n xn nnnnn n n  We can see from this Formula that Pn (t) is indeed a Polynomial of Order n in t. Derivation of Legendre Polynomials via Rodrigues’ Formula Laplace Differential Equation in Spherical Coordinates
  • 65. SOLO 65 Legendre Polynomials The first few Legendre polynomials are: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 256/63346530030900901093954618910 128/31546201801825740121559 128/35126069301201264358 16/353156934297 16/51053152316 8/1570635 8/330354 2/353 2/132 1 10 246810 3579 2468 357 246 35 24 3 2 −+++− +−+− +−+− −+− −+− +− +− − − xxxxx xxxxx xxxx xxxx xxx xxx xx xx x x xPn n Laplace Differential Equation in Spherical Coordinates
  • 66. 66 SOLO Orthogonality of Legendre Polynomials Define ( ) ( )tPwtPv nm == :&: We use Legendre’s Differential Equations: ( ) ( ) 011 2 =++      − vmm td vd t td d ( ) ( ) 011 2 =++      − wnn td wd t td d Multiply first equation by w and integrate from t = -1 to t = +1. ( ) ( ) 011 1 1 1 1 2 =++      − ∫∫ + − + − dtwvmmdtw td vd t td d Integrate the first integral by parts we get ( ) ( ) ( ) 0111 1 1 1 1 2 0 1 1 2 =++−−− ∫∫ + − + − += −= dtwvmmdt td wd td vd tw td vd t t t    In the same way, multiply second equation by v and integrate from t = -1 to t = +1. ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvnndt td wd td vd t Legendre Polynomials
  • 67. 67 SOLO Orthogonality of Legendre Polynomials ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvmmdt td wd td vd t Subtracting those two equations we obtain ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvnndt td wd td vd t ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 01111 1 1 1 1 =+−+=+−+ ∫∫ + − + − dttPtPnnmmdtwvnnmm nm This gives the Orthogonality Condition for m ≠ n ( ) ( ) nmdttPtP nm ≠=∫ + − 0 1 1 To find let square the relation and integrate between t = -1 to t = +1. Due to orthogonality only the integrals of terms having Pn 2 (t) survive on the right-hand side. So we get ( )∫ + − 1 1 2 dttPn ( )∑ ∞ = = +− 0 2 21 1 n n n tPu utu ( )∑ ∫∫ ∞ = + − + − = +− 0 1 1 22 1 1 2 21 1 n n n dttPudt utu Legendre Polynomials
  • 68. 68 SOLO Orthogonality of Legendre Polynomials ( )∑ ∫∫ ∞ = + − + − = +− 0 1 1 22 1 1 2 21 1 n n n dttPudt utu ( ) ( ) ( ) 1 1 1 ln 1 1 1 ln 2 1 21ln 2 1 21 1 2 21 1 2 1 1 2 < − + = + − − =−+ − = −+ += −= + −∫ u u u uu u u tuu u dt tuu t t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑∑ ∞ ++∞ +∞ + + −− −= + − −− + −=−−+ 0 11 0 1 0 1 1 1 1 1 1 1 1 1 1 1ln 1 1ln 1 n uu un u un u u u u u u nn n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑∑∑ ∞∞ +∞ ++ + ∞ ++ + = + = + −− −+ + −− −= 0 2 0 12 0 0 1212 12 0 1212 2 12 2 12 1 2 12 1 1 12 1 1 n nnn n nn n u nn u un uu un uu u    Let compute first Therefore ( )∑ ∫∑∫ ∞ + − ∞+ − = + = +− 0 1 1 22 0 2 1 1 2 12 2 21 1 dttPuu n dt utu n nn Comparing the coefficients of u2n we get ( ) 12 21 1 2 + =∫ + − n dttPn Legendre Polynomials ( ) ( ) nmmn n dttPtP δ 12 21 1 + =∫ + − Hence
  • 69. SOLO 69 Associated Legendre Functions Let Differentiate this equation m times with respect to t, and use Leibnitz Rule of Product Differentiation: ( ) ( )[ ] ( ) ( ) ( ) im im i im i m m td tgd td tsd imi m tgts td d − − = ∑ − =⋅ 0 !! ! Start with Legendre Differential Equation: ( ) ( ) ( ) ( ) 1011 2 ≤=++      − ttwnntw td d t td d nn or: ( ) ( ) ( ) ( ) ( ) 10121 2 2 2 ≤=++−− ttwnntw td d ttw td d t nnn ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )twmmtwtmtwttw td d t td d m n m n m nnm m 1211 122 2 2 2 −−−−=      − ++ ( ) ( ) ( ) ( ) ( )twmtwttw td d t td d m n m nnm m +=      +1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )twnntwmtwttwmmtwtmtwt m n m n m n m n m n m n 122121 1122 ++−−−−−− +++ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 011121 122 =+−+++−−= ++ twmmnntwtmtwt m n m n m n Laplace Differential Equation in Spherical Coordinates
  • 70. SOLO 70 Associated Legendre Functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 011121 122 =+−+++−− ++ twmmnntwtmtwt m n m n m n Define: ( ) ( ) ( )twty m n=: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) 011121 122 =+−+++−− tymmnntytmtyt Now define: ( ) ( ) ( )tyttu m 22 1: −= Let compute: ( ) ( ) ( )1221 22 11 ytyttm td ud mm −+−−= − ( ) ( ) ( ) ( )11 22222 111 ytyttm td ud t mm + −+−−=− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 221221221 2222222 1121111 ytyttmyttmyttmytm td ud t td d mmmmm +− −+−+−−−−+−−=      − ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) y t tm mnnmmtymmnnytmytt mm       − +−+−+−++−+++−−−= 2 22 222 0 12222 1 11111211    We get: ( ) ( ) 0 1 11 2 2 2 =      − −++      − u t m nn td ud t td d Associate Legendre Differential Equation Laplace Differential Equation in Spherical Coordinates
  • 71. SOLO 71 Associated Legendre Functions Define: ( ) ( ) ( )tw td d ttu nm mm 22 1: −= We get: ( ) ( ) 0 1 11 2 2 2 =      − −++      − u t m nn td ud t td d Start with Legendre Differential Equation: ( ) ( ) ( ) ( ) 1011 2 ≤=++      − ttwnntw td d t td d nn Summarize But this is the Differential Equation of Θ (θ) obtained by solving Laplace’s Equation by Separation of Variables in Spherical Coordinates . 02 =Φ∇ ( ) ( ) ( ) ( )φθφθ ΦΘ=Φ rRr ,, The Solutions Pn m (t) of this Differential Equation are called Associated Legendre Functions, because they are derived from the Legendre Polynomials ( ) ( ) ( )tP td d ttP nm mm m n 22 1: −= Laplace Differential Equation in Spherical Coordinates
  • 72. SOLO 72 Associated Legendre Functions Examples ( ) ( ) ( )tP td d ttP nm mm m n 22 1: −= ( ) ( ) 10 0 0 0 === tPtPn ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) θ θ θ θ θ θ sin1 cos: sin111 cos 2 1 21 1 1 1 cos 1 0 1 cos 2 1 22 1 21 1 1 −=−−=−= === =−=−== = − = = t t t tP ttPtP ttPtP tt td d ttPn ( ) ( ) ( ) ( ) ( )tP mn mn tP m n mm n ! ! 1 + − −= − ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) θ θθ θ θθ θ θ θ θ θ θ 2 cos 22 2 22 2 cos 2 1 211 2 2cos2 2 0 2 cos 2 1 2 2 2 1 21 2 2 cos 2 2 2 2 2 2 22 2 sin 8 1 1 8 1 !4 !0 1 2 cossin 13 !3 1 1 2 1cos3 2 13 cossin313 2 13 1 sin313 2 13 12 1 2 2 1 = − = − = = = =−=−= −=−−= − = − == =−=      − −= =−=      − −== t t tP t t tP t tP ttPtP tttP t tPtP tt t td d ttP t t td d ttPn    ( ) 10 =tP ( ) 2 1 2 3 2 2 −= ttP( ) ttP =1 Laplace Differential Equation in Spherical Coordinates
  • 73. SOLO 73 Associated Legendre Functions Examples ( ) ( ) ( )tP td d ttP nm mm m n 22 1: −= ( ) ( ) ( ) ( ) ( )tP mn mn tP m n mm n ! ! 1 + − −= − Laplace Differential Equation in Spherical Coordinates
  • 74. SOLO 74 Associated Legendre Functions Orthogonality of Associated Legendre Functions ( ) ( ) ( )[ ]n mn mnm n m n t td d t n tP 11 !2 1 : 222 −−= + + Let Compute ( ) ( ) ( ) ( )[ ] ( )[ ]∫∫ + − + + + + + + − −−−= 1 1 222 1 1 111 !!2 1 dtt td d t td d t qp dttPtP q mq mq p mp mp m qp m q m p Define X := x2 -1 ( ) ( ) ( ) [ ] [ ]∫∫ + − + + + + + + − − = 1 1 1 1 !!2 1 dtX td d X td d X qp dttPtP q mq mq p mp mp m qp m m q m p If p ≠ q, assume q > p and integrate by parts q + m times [ ] [ ] mqidtX td d vdX td d X td d u q imq imq p mp mp m i i +==      = −+ −+ + + ,,1,0  All the integrated parts will vanish at the boundaries t = ± 1 as long as there is a factor X = x2 -1. We have, after integrating m + q times ( ) ( ) ( ) ( ) [ ]∫∫ + − + + + + + ++ −      −− = 1 1 1 1 !!2 11 dtX td d X td d X qp dttPtP p mp mp m mq mq q qp mqm m q m p
  • 75. SOLO 75 Associated Legendre Functions ( ) ( ) ( ) ( ) [ ] 1: !!2 11 2 1 1 1 1 −=     −− = ∫∫ + − + + + + + ++ − xXdtX td d X td d X qp dttPtP p mp mp m mq mq q qp mqm m q m p Because the term Xm contains no power greater than x2m , we must have q + m – i ≤ 2 m or the derivative will vanish. Similarly, p + m + i ≤ 2 p Adding both inequalities yields q ≤ p which contradicts the assumption that q > p, therefore is no solution for i and the integral vanishes. Let expand the integrand on the right-side using Leibniz’s formula ( ) ( )∑ + = ++ ++ −+ −+ + + + + −+ + =      mq i p imp imp m imq imq qp mp mp m mq mq q X td d X td d imqi mq XX td d X td d X 0 !! ! ( ) ( ) qpdttPtP m q m p ≠=∫ + − 0 1 1 This proves that the Associated Legendre Functions are Orthogonal (for the same m). Orthogonality of Associated Legendre Functions
  • 76. SOLO 76 Associated Legendre Functions ( )[ ] ( ) ( ) 1: !!2 11 2 1 1 2 21 1 2 −=     −− = ∫∫ + − + + + ++ − xXdtX td d X td d X pp dttP p mp mp m mp mp p p mp m p Let expand the integrand on the right-side using Leibniz’s formula ( ) ( )∑ + = ++ ++ −+ −+ + + + + −+ + =      mp i p imp imp m imp imp pp mp mp m mp mp p X td d X td d impi mp XX td d X td d X 0 !! ! For the case p = q we have Because X = x2 – 1 the only non-zero term is for i = p - m ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1: !2!!2 !1 2 1 1 !2 2 2 !2 2 2 22 1 1 2 −=⋅ − +− = ∫∫ + − + − xXdtX td d X td d X mmpp mp dttP p p p p m m m m p p p m p  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )! ! 12 2 sin1 !!2 !2!1 1 !!2 !2!1 !12 !2 1 0 12 22 cos1 1 2 22 212 mp mp p d mpp pmp dtx mpp pmp p p pp p ptp X p p p p − + ⋅ + = − − +− =− − +− = + − + =+ − + ∫∫     θθ πθ Orthogonality of Associated Legendre Functions
  • 77. SOLO 77 Associated Legendre Functions ( ) ( ) ( ) ( ) ( ) ( ) qp m q m p t m q m p mp mp p dPPdttPtP , 0 cos1 1 ! ! 12 2 sincoscos δθθθθ πθ − + + == ∫∫ =+ − Therefore the Orthonormal Associated Legendre Functions is ( ) ( ) ( ) ( ) mnmP mn mnn Θ m n m n ≤≤− + −+ = θθ cos ! ! 2 12 cos Orthogonality of Associated Legendre Functions
  • 78. 78 SOLO Absolute Angular Momentum Relative to a Reference Point O The Absolute Momentum Relative to a Reference Point O, of the particle of mass dmi at time t is defined as: ( ) ( ) iiOiiiOiiOiO dmVrdmVRRPdRRHd  ×=×−=×−= ,, : The Absolute Momentum Relative to a Reference Point O, of the mass m (t) is defined as: ( ) ( ) ∑∑∑ === ×=×−=×−= N i i I i Oi N i iiOi N i iOiO dm td Rd rdmVRRPdRRH 1 , 11 , :   By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑ ∞→ = NN i 1 ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ The Absolute Momentum Relative to a Reference Point O, of the system (including the mass entering (+)/leaving (-) through surface S), at time t + Δt is given by: ( ) ( )∑∑ ∆         ∆+×∆++         ∆+×∆+=∆+ = openings iflow I iflow I iflow OiflowOiflow N i i I i I i OiOiOO m td Rd td Rd rrdm td Rd td Rd rrHH     ,, 1 ,,,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 79. 79 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 1) By subtracting I O t I O t H td Hd ∆ ∆ = →∆ , 0 , lim  ( ) ( ) t dm td Rd rm td Rd td Rd rrdm td Rd td Rd rr openings N i i I i iOiflow I iflow I iflow OiflowOiflow N i i I i I i OiOi t ∆ ×−∆           ∆+×∆++         ∆+×∆+ = ∑ ∑∑ == →∆ 1 ,, 1 ,, 0 lim       ∑∑∑ ×+×+×= == openings iflow I iflow Oiflow N i i I iOi N i i I i Oi m td Rd rdm td Rd td rd dm td Rd r      , 1 , 1 2 2 , Now let add the constraint that at time t the flow at the opening is such that iopenS ( ) ( ) ( ) ( )trtrtRtR OiflowOiopeniflowiopen ,,  =→= to obtain (next page) EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ dividing by Δt, and taking the limit, we get from ( ) ( )∑∑ ∆         ∆+×∆++         ∆+×∆+=∆+ = openings iflow I iflow I iflow OiflowOiflow N i i I i I i OiOiOO m td Rd td Rd rrdm td Rd td Rd rrHH     ,, 1 ,,,,
  • 80. 80 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 2) ∑∑∑ ×+×+×= == openings iflow I iflow Oiopen N i i I i I Oi N i i I i Oi I O m td Rd rdm td Rd td rd dm td Rd r td Hd       , 1 , 1 2 2 , , ( )∑ ×−+∑ ×         −+∑ ×= == openings iflow I iflow Oiopen N i i I i I O I i N i i I i Oi m td Rd RRdm td Rd td Rd td Rd dm td Rd r      11 2 2 , ( )∑ ×−+∑×−∑ ×= == openings iflow I iflow Oiopen N i i I i I O N i i I i Oi m td Rd RRdm td Rd td Rd dm td Rd r      11 2 2 , By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑ ∞→ = NN i 1 ( ) ( )∑ ×−+×−∫ ×= openings iflowiflowOiopenO tm I O I O mVRRPVdm td Rd r td Hd      2 2 , , ( ) ( ) ∑∑ −+=−−+= openings OiopeniflowO I O openings OiopeniflowO I O rmVm td cd RRmVm td cd tP , ,,          Substitute to obtain ( ) ( ) ( )∑ ×−+×         ∑ −−++∫ ×= openings iflowiflowOiopenO openings iflowOiopenO I O tm I O I O mVRRVmRRVm td cd dm td Rd r td Hd       , 2 2 , , or ( ) ( )∑ −×+×+∫ ×= openings iflowOiflowOiopenO I O tm I O I O mVVrV td cd dm td Rd r td Hd      , , 2 2 , , EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 81. 81 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 3) We obtained ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ Substitute in the previous equation OIO O O O I O I O I OO r td rd V td rd td Rd td Rd VrRR , ,, , :&      ×++=+==+= ←ω ( )( ) ( ) ∫         ×++×=∫ ×−= ← tm OIO O O OO tm OO dmr td rd VrdmVRRH , , ,,    ω ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫= ← tm O O O tm OIOOO tm O dm td rd rdmrrVdmr , ,,,,   ω We obtain (a) (b) (c) Let develop those three expressions (a), (b) and (c). where is the angular velocity vector from I to O.IO←ω  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 82. 82 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 4) (a) ( ) ( ) ( ) ( ) ( ) ( ) OOC tm OC tm OC tm OC tm C tm O cmRRdmrdmrdmrdmrdmr ,,,,,,  =−===+= ∫∫∫∫∫ Where we used because C is the Center of Mass (Centroid) of the system. ( ) 0, =∫tm C dmr  ( ) OOOOCO tm O VcVrmVdmr  ×=×=×         ∫ ,,, ( ) ( ) ( )[ ]( ) IOOIO tm OOOO tm OIBO Idmrrrrdmrr ←←← ⋅=⋅∫ −⋅=∫ ×× ωωω  ,,,,,,, 1(b) where ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O We obtain (a) + (b) + (c) ( )( ) ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫=∫ ×−= ← tm O O O tm OIOOO tm O tv OO dm td rd rdmrrVdmrvdVRRH , ,,,,, :   ωρ ( ) ∫         ×+⋅+×= ← tm O O OIOOOO dm td rd rIVc , ,,,   ω EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 83. SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 4) ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH           = O O O O z y x r , , , ,  ( )[ ] [ ] [ ]OOO O O O O O O OOOOOOO zyx z y x z y x zyxrrrr ,,, , , , , , , ,,,,,,, 100 010 001 1           −                     =−⋅  ( ) ∫             +−− −+− −−+ = tm OOOOOO OOOOOO OOOOOO O dm yxzyzx zyzxyx zxyxzy I 2 , 2 ,,,,, ,, 2 , 2 ,,, ,,,, 2 , 2 , , : 

Notes de l'éditeur

  1. http://www.nndb.com/people/030/000083778/
  2. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  3. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  4. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  5. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  6. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  7. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  8. Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  9. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964 S. Hermelin, “Legendre Functions”
  10. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964 S. Hermelin, “Legendre Functions”
  11. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964 S. Hermelin, “Legendre Functions”
  12. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964 S. Hermelin, “Legendre Functions”
  13. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  14. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  15. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  16. Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  17. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  18. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  19. Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  20. http://en.wikipedia.org/wiki/Clairaut&amp;apos;s_theorem X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  21. http://en.wikipedia.org/wiki/Clairaut&amp;apos;s_theorem X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  22. http://en.wikipedia.org/wiki/Latitude
  23. Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  24. R.,H.,Battin, “Astronautical Guidance”, McGraw-Hill, 1964
  25. http://en.wikipedia.org/wiki/Clairaut&amp;apos;s_theorem X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  26. http://en.wikipedia.org/wiki/Carlo_Somigliana X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  27. http://en.wikipedia.org/wiki/World_Geodetic_System Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997
  28. http://en.wikipedia.org/wiki/World_Geodetic_System
  29. http://earth-info.nga.mil/GandG/images/ww15mgh2.gif http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf Department of Defense, World Geodetic System 84, NIMA (National Imagery and Mapping Agency) TR8350.2, Third Edition
  30. George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  31. http://en.wikipedia.org/wiki/Latitude
  32. Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  33. Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  34. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  35. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  36. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  37. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  38. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  39. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  40. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  41. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  42. http://en.wikipedia.org/wiki/Legendre_polynomials
  43. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  44. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  45. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  46. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  47. http://en.wikipedia.org/wiki/
  48. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  49. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  50. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  51. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001