SlideShare une entreprise Scribd logo
1  sur  174
1
AERODYNAMICS
Part II
SOLO HERMELIN
http://www.solohermelin.com
2
Table of Content
AERODYNAMICS
Earth Atmosphere
Mathematical Notations
SOLO
Basic Laws in Fluid Dynamics
Conservation of Mass (C.M.)
Conservation of Linear Momentum (C.L.M.)
Conservation of Moment-of-Momentum (C.M.M.)
The First Law of Thermodynamics
The Second Law of Thermodynamics and Entropy Production
Constitutive Relations for Gases
Newtonian Fluid Definitions – Navier–Stokes Equations
State Equation
Thermally Perfect Gas and Calorically Perfect Gas
Boundary Conditions
Flow Description
Streamlines, Streaklines, and Pathlines
AEROD
3
Table of Content (continue – 1)
AERODYNAMICS
SOLO
Circulation
Biot-Savart Formula
Helmholtz Vortex Theorems
2-D Inviscid Incompressible Flow
Stream Function ψ, Velocity Potential φ in 2-D Incompressible
Irrotational Flow
Aerodynamic Forces and Moments
Blasius Theorem
Kutta Condition
Kutta-Joukovsky Theorem
Joukovsky Airfoils
Theodorsen Airfoil Design Method
Profile Theory by the Method of Singularities
Airfoil Design
AEROD
4
Table of Content (continue – 2)
AERODYNAMICS
SOLO
Lifting-Line Theory
Subsonic Incompressible Flow (ρ∞ = const.) about Wings
of Finite Span (AR < ∞)
3D Lifting-Surface Theory through Vortex Lattice Method (VLM)
Incompressible Potential Flow Using Panel Methods
Dimensionless Equations
Boundary Layer and Reynolds Number
Wing Configurations
Wing Parameters
References
AEROD
5
Table of Content (continue – 3)
AERODYNAMICS
SOLO
Shock & Expansion Waves
Shock Wave Definition
Normal Shock Wave
Oblique Shock Wave
Prandtl-Meyer Expansion Waves
Movement of Shocks with Increasing Mach Number
Drag Variation with Mach Number
Swept Wings Drag Variation
Variation of Aerodynamic Efficiency with Mach Number
Analytic Theory and CFD
Transonic Area Rule
6
Table of Content (continue – 4)
AERODYNAMICS
SOLO
Linearized Flow Equations
Cylindrical Coordinates
Small Perturbation Flow
Applications: Nonsteady One-Dimensional Flow
Applications: Two Dimensional Flow
Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (d) and Lift (l) per Unit Span Computations for Subsonic Flow (M∞ < 1)
Prandtl-Glauert Compressibility Correction
Computations for Supersonic Flow (M∞ >1)
Ackeret Compressibility Correction
7
SOLO
Table of Contents (continue – 5)
Wings of Finite Span at Supersonic Incident Flow
Theoretic Solutions for Pressure Distribution on a
Finite Span Wing in a Supersonic Flow (M∞ > 1)
1. Conical Flow Method
2. Singularity-Distribution Method
Theoretical Solutions for Compressible Supersonic Flow (M∞ >1)
Theoretic Solution for Pressure Distribution on a Semi-Infinite Triangular Wing
in a Supersonic Flow and Subsonic Leading Edge (tanΛ > β)
Theoretic Solution for Pressure Distribution on a Semi-Infinite Triangular Wing
in a Supersonic Flow and Supersonic Leading Edge (tanΛ < β)
Theoretic Solution for Pressure Distribution on a Delta Wing in a
Supersonic Flow and Subsonic Leading Edge (tanΛ > β)
Theoretic Solution for Pressure Distribution on a Delta Wing in a Supersonic
Flow and Supersonic Leading Edge (tanΛ < β)
Arrowhead Wings with Double-Wedge Profile at Zero Incidence
Systematic Presentation of Wave Drag of Thin, Nonlifting Wings having
Straight Leading and Trailing Edges and the same dimensionless profile in
all chordwise plane [after Lawrence]
AERODYNAMICS
A
E
R
O
D
Y
N
A
M
I
C
S
P
A
R
T
I
I
I
8
Table of Content (continue – 6)
AERODYNAMICS
SOLO
Aircraft Flight Control
References
CNα – Slope of the Normal Force Coefficient Computations of Swept Wings
Comparison of Experiment and Theory for Lift-Curve Slope of Un-swept Wings
Drag Coefficient
A
E
R
O
D
Y
N
A
M
I
C
S
P
A
R
T
I
I
I
9
Continue from AERODYNAMICS – Part I
AERODYNAMICS
10
SOLO
- when the source moves at subsonic velocity V  a, it will stay inside the
family of spherical sound waves.
a
V
M
M
=





= −

1
sin 1
µ
Disturbances in a fluid propagate by molecular collision, at the sped of sound a,
along a spherical surface centered at the disturbances source position.
The source of disturbances moves with the velocity V.
- when the source moves at supersonic velocity V  a, it will stay outside the
family of spherical sound waves. These wave fronts form a disturbance
envelope given by two lines tangent to the family of spherical sound waves.
Those lines are called Mach waves, and form an angle μ with the disturbance
source velocity:
SHOCK  EXPANSION WAVES
11
SOLO
SHOCK  EXPANSION WAVES
M  1
M = 1
M  1
Mach Waves
12
SOLO
When a supersonic flow encounters a boundary the following will happen:
When a flow encounters a boundary it must satisfy the boundary conditions,
meaning that the flow must be parallel to the surface at the boundary.
- when the supersonic flow, in order to remain parallel to the boundary surface,
must “turn into itself” (see the Concave Corner example) a Oblique Shock will
occur. After the shock wave the pressure, temperature and density will increase.
The Mach number of the flow will decrease after the shock wave.
SHOCK  EXPANSION WAVES
- when the supersonic flow, in order to remain parallel to the boundary surface,
must “turn away from itself” (see the Convex Corner example) an Expansion
wave will occur. In this case the pressure, temperature and density will decrease.
The Mach number of the flow will increase after the expansion wave.
Return to Table of Content
13
SHOCK WAVESSOLO
A shock wave occurs when a supersonic flow decelerates in response to a sharp
increase in pressure (supersonic compression) or when a supersonic flow encounters
a sudden, compressive change in direction (the presence of an obstacle).
For the flow conditions where the gas is a continuum, the shock wave is a narrow region
(on the order of several molecular mean free paths thick, ~ 6 x 10-6
cm) across which is
an almost instantaneous change in the values of the flow parameters.
Shock Wave Definition (from John J. Bertin/ Michael L. Smith,
“Aerodynamics for Engineers”, Prentice Hall, 1979, pp.254-255)
When the shock wave is normal to the streamlines it is called a Normal Shock Wave,
otherwise it is an Oblique Shock Wave.
The difference between a shock wave and a Mach wave is that:
- A Mach wave represents a surface across which some derivative of the flow variables
(such as the thermodynamic properties of the fluid and the flow velocity) may be
discontinuous while the variables themselves are continuous. For this reason we call
it a weak shock.
- A shock wave represents a surface across which the thermodynamic properties and the
flow velocity are essentially discontinuous. For this reason it is called a strong shock.
14
Normal Shock Wave Over a Blunt Body
Normal Shock
Wave
SHOCK WAVESSOLO
Oblique
Shock
Wave
Oblique Shock Wave
Return to Table of Content
15
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Conservation of Mass (C.M.) ρ ρ1 1 2 2u u= η
ρ
ρ
= =2
1
1
2
u
u
Conservation of Linear Momentum (C.L.M.) 2
2
221
2
11 pupu +=+ ρρ ( )
p
p
u
p
2
1
1
2
1
1
1 1= + −
ρ
η
H H h u h u1 2 1 1
2
2 2
21
2
1
2
= → + = +
h
h
u
h
2
1
1
2
1
2
1
2
1
1
= + −






η
Conservation of Energy (C.E.)
Field Equations
Constitutive Relations
p R T= ρIdeal Gas
( )
( )
( )
e e T C Tv= =
1 2
(1) Thermally Perfect Gas
(2) Calorically Perfect Gas
ργ
γ
ρρρ
γ
ρ
pp
C
C
C
C
p
R
C
TC
p
eh
v
p
vp C
C
v
p
v
p
CCR
p
TRp
p
11 −
=
−
===+=
≡−==
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
16
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
First Way
h
h
p
p
p
p
p
p
u
h
u
p
2
1
2
2
1
1
2
1
1
2
2
1
1
2
1
2
1
2
1
1
2
1
1
1
1
2
1
1
1
2
1
1
1
=
−
−
= = = + −





 = +
−
−






γ
γ ρ
γ
γ ρ
ρ
ρ η η γ
γ ρ
η
or
( )
p
p
u
p
u
p
C L M
2
1
1
2
1
1
1
2
1
1
2
1
1 1
1
1
2
1
1
1
η
ρ
η
η γ
γ ρ
η
= + −










= +
−
−






( . . .)
after further development we obtain
1 2
1
1
1
1
1
1
2
01
2
1
1
2
1
2
1
1
1
2
1
1
−
−





 − +










+ +
−










=
γ
γ
ρ
η
ρ
η
γ
γ
ρ
u
p
u
p
u
p
Solving for 1/η , we obtain
1
1 1 2
1
1
1
2
1
1
2
2
1
1
2
1
1
1
2
1
1
2
1
2
1
1
1
2
1
1
η
ρ
ρ
ρ ρ
γ
γ
ρ
γ
γ
ρ
γ
γ
= = =
+










− +










−
+
+
−










+
u
u
u
p
u
p
u
p
u
p
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
17
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
We obtain an other relation in the following way:
( )
p
p
u
p
p
p
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
2
1
1
2
1
1
2
2
1
1
2
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
2
1
1
1 1
1
1
1
1
2
1
1
1 1
2
1
2
1
1
2
1
1
2
1
2
1
2
1
2
η
γ
γ
ρ
η
ρ
η
η γ
γ η
η
γ
γ
γ
γ
γ
γ
η
γ
γ
γ
γ
γ
γ
γ
γ
− =
−
−






− = −








⇒
−
−
=
−
+






⇓
−
−
−
−




 = +
−
−






⇓
=
+
−
−
−
+
+
η
ρ
ρ
γ
γ
γ
γ
= = =
+
−
−
+
+
−
=2
1
1
2
2
1
2
1
2
1
1
2
1
1
1
1
1
u
u
p
p
p
p
p
p
T
T
or
Rankine-Hugoniot Equation
Rankine-Hugoniot Equation (1)
William John Macquorn
Rankine
(1820-1872)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
Pierre-Henri Hugoniot
(1851 – 1887)
18
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
η
ρ
ρ
γ
γ
γ
γ
= = =
+
−
−
+
+
−
=2
1
1
2
2
1
2
1
2
1
1
2
1
1
1
1
1
u
u
p
p
p
p
p
p
T
T Rankine-Hugoniot Equation
Rankine-Hugoniot Equation (2)
p
p
2
1
2
1
2
1
1
1
1
1
1
=
+
−
−
+
−
−
γ
γ
ρ
ρ
γ
γ
ρ
ρ
T
T
p
p
p
p
p
p
p
p
p
p
p
p
2
1
2
1
1
2
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
= =
+
+
−
+
−
−
=
+
+
−
+
−
−
=
+
−
−
+
−
−
=
+
−
−
+
−
−
ρ
ρ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
ρ
ρ
γ
γ
ρ
ρ
ρ
ρ
γ
γ ρ
ρ
γ
γ
ρ
ρ
p2
p 1
ρ 2
ρ 1
NormalShockWave
Rankine-Hugoniot
Isentropic
γp2
p 1
ρ 2
ρ 1
( )=
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
19
Rankine-Hugoniot Equation (3)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
SOLO
20
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Strong Shock Wave Definition:
p
p
u
u
T
T
p
p
R H R H
2
1
2
1
1
2
2
1
2
1
1
1
1
1
→ ∞ ⇒ = →
+
−
→
−
+
− −ρ
ρ
γ
γ
γ
γ
Weak Shock Wave Definition:
∆ p
p
p p
p1
2 1
1
1=
−

ρ ρ ρ2 1
2 1
2 1
= +
= +
= +
∆
∆
∆
p p p
h h h
For weak shocks
u
p
1
2
=
∆
∆ρ
∆
∆
h u
ρ ρ
= 1
2
1
u u u u u u2
1
2
1
1
1
1
1
1 1
1
1
1
1
= =
+
=
+
≅ −
ρ
ρ
ρ
ρ ρ ρ
ρ
ρ
ρ∆ ∆
∆
(C.M.)
( ) ( )ρ ρ ρ
ρ
ρ
1 1
2
1 1 1 2 2 1 1 1
1
1 1u p u u p u u u p p+ = + = −





 + +
∆
∆(C.L.M.)

ordernd
uuuhhuuhhuhuh
2
4
1
2
1
2
1
2
1
2
1 2
1
2
1
2
1
1
2
11
2
1
1
11
2
22
2
11 




 ∆
+
∆
−+∆+=




 ∆
−+∆+=+=+
ρ
ρ
ρ
ρ
ρ
ρ(C.E.)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
21
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Second Way
h h u h u0 1 1
2
2 2
21
2
1
2
≡ + = +Define







−
−
−
=→+
−
=
−
−
−
=→+
−
=
2
10
1
12
1
1
1
0
2
20
2
22
2
2
2
0
11
2
1
1
11
2
1
1
uh
p
u
p
h
uh
p
u
p
h
γ
γ
γ
γ
ρργ
γ
γ
γ
γ
γ
ρργ
γ
u u h1 2 0
2
1
1
=
−
+
γ
γ
Prandtl’s Relation
( )u h
u
u
u
p
p
u
p2 0
1
2 1
1
2
2
1
1
2
1
1
2
1
1
1
1 1=
−
+
→ = = → = + −
γ
γ
ρ ρ ρη
ρ
ηFrom this relation, we obtain:
Prandtl’s Relation
Ludwig Prandtl
(1875-1953)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
(C.M.)
(C.L.M.)
ργ
γ p
h
1−
=
and use
12
22
2
11
1
2211
2
2
221
2
11 11
uu
u
p
u
p
uu
pupu
−=−→



=
+=+
ρρρρ
ρρ
1221
21
0
2
1
2
1111
uuuu
uu
h −=
−
+
−
−





−
−
γ
γ
γ
γ
γ
γ
( ) 




 −
−−=
−−
γ
γ
γ
γ
2
1
1
1
12
21
12
0 uu
uu
uu
h
22
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
(C.M.)
Hugoniot Equation
ρ ρ
ρ
ρ
1 1 2 2 2 1
1
2
u u u u= → =
( )ρ ρ ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ ρ
ρ ρ
ρ
ρ ρ ρ
ρ
ρ
ρ
ρ
ρ
ρ
1 1
2
1 2 2
2
2 2
1
2
2
1
2
2 2 1 1
2
1
1
2
2
1
2 1
2
2 1
1
2 2 1
2
2
2
2 2 1
2
1
2
2 1
1
2
2 1
1
2
u p u p u p p p u u
u
p p
u
p p
u u
u u
+ = + =





 + → − = −





 = − →
→ =
−
−





 → =
−
−














=
=
(C.L.M.)
( )( )
h u h u e
p p p
e
p p p
e e
p p p p p p p p
e e
p p
h e
p
1 1
2
2 2
2
1
1
1
2 1
2 1
2
2
2
2
2 1
2 1
1
2
2 1
2 1
2 1
2 1
2
1
1
2
2
2 1
2 1
2
2
1
2
1 2
1 2 2 1
2
2 1
2 1 1 2
1
2
1
2
1
2
1
2
1
2
+ = + → + +
−
−





 = + +
−
−





 →
→ − =
−
−
−





 + − =
−
−
−
+
−
→
→ − =
− +
= +
ρ
ρ ρ ρ
ρ
ρ ρ ρ ρ
ρ
ρ
ρ ρ
ρ
ρ
ρ
ρ ρ ρ ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρρ
ρ ρ
( ) ( )
+ −
=
+ − − + −
→
→ − =
+ − +














2 2
2
2 2
2
2
1 2 2
1 2
2 2 2 1 2 1 1 1 2 2
1 2
2 1
2 1 2 1 1 2
1 2
p p p p p p p p
e e
p p p p
ρ ρ
ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ
ρ ρ
ρ ρ
(C.E.)
e e
p p
2 1
1 2
2 1
2
1 1
− =
+
−






ρ ρ
Hugoniot Equation
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
Pierre-Henri Hugoniot
(1851 – 1887)
23
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Fanno’s Line for a Perfect Gas (1)
( )1 1 1 2 2ρ ρu u
m
A
= =

( ) frictionpupu ++=+ 2
2
221
2
112 ρρ
( )3
1
2
1
2
1 1
2
2 2
2
C T u C T u h C Tp p p+ = + =
( )4 1 1 1 2 2 2
p R T p R T= =ρ ρ
( )5 2 1
2
1
2
1
s s C
T
T
R
p
p
p
− = −ln ln
(C.M.)
(C.L.M.)
(C.E.)
Ideal Gas
( )
p
p
T
T
u
u
h C T
h C T
p
p
T
T
h C T
h C T
s s C
T
T
R
T
T
h C T
h C T
p
p
p
p
p
p
p
2
1
4
2
1
2
1
2
1
1
1
2
3
0 1
0 2
2
1
2
1
0 1
0 2
2 1
2
1
2
1
0 1
0 2
5
=












= =
−
−







→ =
−
−
→
− = −
−
−
( )
( ) ( )
ln ln
ρ
ρ
ρ
ρ
Assume that all the conditions
of the model are satisfied except
the moment equation (2)
(a flow with friction)
Using , we obtainh C Tp=
s
s 1
s 2
s max
h 1
h 2
h
2
1
s s C
h
h
R
h
h
h h
h h
p2 1
2
1
2
1
0 1
0 2
− = −
−
−
ln ln
Fanno’s Line for a Perfect Gas
This is the Adiabatic, Constant Area Flow.
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
Gino Girolamo Fanno
(1888 – 1962)
24
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Fanno’s Line for a Perfect Gas (2)
s
s 1
s 2
s max
h 1
h 2
h
2
1
We have a point of maximum entropy. Let see the significance of this point
ρρ
dp
dh
dp
dhdsT =→=−= 0
max
Gibbs
u
dud
dudu −=→=+
ρ
ρ
ρρ 0(C.M.)
duudh
u
hd −=→=





+ 0
2
2
(C.E.)
Therefore
)4..(
0
.).(
00
0
EC
ds
MC
dsds
ds
u
du
d
dpd
d
dpdp
dh =





−





=





==
===
=
ρρ
ρ
ρρ
0
0
=
= 





=
ds
ds
d
dp
u
ρ
or
ds C
dT
T
R
dp
p
ds C
dT
T
R
d
C
C
dp
p
d
dp
d p
dp
d
p
R T
p
v
p
v
ds
ds
ds ds
p R T
= − =
= − =







→ ≡ = = → = ==
=
= =
=
max
max
0
0
0
0
0 0
ρ
ρ
γ
ρ
ρ
ρ
ρ
ρ
γ
ρ
γ
ρ
We have:
u
dp
d
R T a speed of soundds
ds
=
=
=





 = = =0
0
ρ
γ
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
25
Ideal Gas
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Rayleigh’s Line for a Perfect Gas (1)
( )
A
m
uu

== 22111 ρρ
( )2 1 1
2
1 2 2
2
2ρ ρu p u p+ = +
( ) QhuTCuTC pp ++=+ 2
22
2
11
2
1
2
1
3
( )4 1 1 1 2 2 2
p R T p R T= =ρ ρ
( )5 2 1
2
1
2
1
s s C
T
T
R
p
p
p
− = −ln ln
(C.M.)
(C.L.M.)
(C.E.)
Assume that all the conditions
of the model are satisfied except
the energy equation (3)
(a flow with heating and cooling)
Let substitute in (5) , to obtainh C Tp=
Rayleigh’s Line for a Perfect Gas
This is the Frictionless, Constant Area Flow, with Cooling and Heating.
s max
s
s 1
s 2
h 1
h 2
h
M1
M1
Rayleigh2
1
Heating
Heating
Cooling
 m
A
R T
p
p
m
A
R T
p
p
x
p
1
1
1
2
2
2
1
+ = +
( )
2
1
12
1
1
1
2
12
11
1
2
12
1
2
1
lnln5
p
R
A
m
c
p
TR
A
m
b
h
C
a
bbR
h
h
Css
p
p

=







+=








−+−=−
We want to find x
p
p
≡ 2
1
. Let multiply the result by
x
p1
x
m
A
R T
p
b
x
m
A
R
p
c
T2 1
1
2
1
1
2
1
21
2
0− +





 + =
 
   
or
x
p
p
b b a T= = + −2
1
1 1
2
1 2
The solution is:
John William
Strutt
Lord Rayleigh
(1842-1919)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
26
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Rayleigh’s Line for a Perfect Gas (2)
We have a point of maximum entropy. Let see the significance of this point
u
dud
dudu −=→=+
ρ
ρ
ρρ 0(C.M.)
(C.L.M.)
A Normal Shock Wave must be on both Fanno and Rayleigh Lines, therefore
the end points of a Normal Shock Wave must be on the intersection of
Fanno and Rayleigh Lines
u
dp
d
R T a speed of soundds
ds
=
=
=





 = = =0
0
ρ
γ
d p u
dp
du
u+





 = → = −
1
2
02
ρ ρ
( )→ = = − −





 =
dp
d
dp
du
du
d
u
u
u
ρ ρ
ρ
ρ
2
s
s 1
s 2
h 1
h 2
h
M1
M1
Rayleigh
Fanno
2
1
SHOCK
According to the Second Law of Thermodynamics
the Entropy must increase. Therefore a Normal Shock
Wave from state (1) to state (2) must be such that
s2  s1. (from supersonic to subsonic flow only)
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
27
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (1)
( )
( )
( )
 
C M u u
C L M u p u p
p
u
p
u
u u
C E
a
h
u
a
h
u
a a u
a a u
a
p
. .
. . .
. .
ρ ρ
ρ ρ ρ ρ
γ γ
γ γ
γ γ
γ
ρ
1 1 2 2
1 1
2
1 2 2
2
2
1
1 1
2
2 2
2 1
1
2
1
1
2 2
2
2
2
2
1
2 2
1
2
2
2 2
2
2
4
1
1
2 1
1
2
1
2
1
2
1
2
1
2
=
+ = +



→ − = − →
−
+ =
−
+ →
=
+
−
−
=
+
−
−














=
∗
∗



− = −
a
u
a
u
u u1
2
1
2
2
2
2 1
γ γ
Field Equations:
( )
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
+
−
−
−
+
+
−
= −
↓
+ −
+
−
− = − →
+
= −
−
=
+
↓
∗ ∗
∗
∗
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
2
2
1
1
2
2
2 2 1
2 1
1 2
2
2 1 2 1
2
1 2
a
u
u
a
u
u u u
u u
u u
a u u u u
a
u u
u u a1 2
2
= ∗
u
a
u
a
M M1 2
1 21 1∗ ∗
∗ ∗
= → =
Prandtl’s Relation
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
Ludwig Prandtl
(1875-1953)
28
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (2)
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )[ ]
( )( ) ( )
M
M
M
M
M
M
M
M
M
2
2
2
2
1
1
2
1
2
1
2
1
2
1
2
2
1
1
2
1 1
2
1
1
1 2
1
2 1 2
1 1 1 1 1
1
2
=
+
− −
=
+ − −
=
+
+
− +
− −
=
− +
+ / + − / / + − / + − −
∗
=
∗
∗
∗
γ
γ γ γ
γ
γ
γ
γ
γ
γ γ γ γ γ
or
( )
M
M
M
M
M
H H
A A
2
1
2
1
2
1
2
1
21 2
1 2
1
1
2
1
2
2
1
1
1
2
1
2
1
1
=
+
−
−
−
=
+
+
−
+
+
−
=
=
γ
γ
γ γ
γ
γ
γ
( )
( )
ρ
ρ
γ
γ
2
1
1
2
1
2
1 2
1
2
2 1
2 1
2
1
2
1 2 1
1 2
= = = = =
+
− +
=
∗
∗
A A u
u
u
u u
u
a
M
M
M
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
29
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (3)
( )
( )
( ) ( )
( )
p
p
u
p
u
u
u
a
M
M
M
M
M M
M
2
1
1
2
1
1
2
1
1
2
1
2
1
2
1
2 1
2
1
2 1
2 1
2
1
2
1
2
1 1 1 1
1 1
1 2
1
1
1 1 2
1
= + −





 = + −






= + −
− +
+





 = +
/ + − / − −
+
ρ
γ
ρ
ρ
γ
γ
γ
γ
γ γ
γ
or
(C.L.M.)
( )
p
p
M2
1
1
2
1
2
1
1= +
+
−
γ
γ
( )
( )
( )
h
h
T
T
p
p
M
M
M
a
a
h C T p RTp
2
1
2
1
2
1
1
2
1
2 1
2
1
2
2
1
1
2
1
1
1 2
1
= = = +
+
−






− +
+
=
= =ρ ρ
ρ
γ
γ
γ
γ
( )
( )
( )
s s
R
T
T
p
p
M
M
M
2 1 2
1
1
2
1
1
1
2
1
1
1
2
1
2
1
1
2
1
1
1 2
1
−
=






















= +
+
−






− +
+
















−
−
− −
ln ln
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
( )
( )
( )
( )
s s
R
M M
M
2 1
1 1
2 1
2 3
2
2 1
2 41
2
2
3 1
1
2
1
1
−
≈
+
− −
+
− +
−  γ
γ
γ
γ
K Shapiro p.125
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
30
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (4)
( )
p
p
p
p
p
p
p
p
M
M
M02
01
02
2
1
01
2
1
2
2
1
2
1
1
2
1
1
2
1
1
2
1
2
1
1= =
+
−
+
−










+
+
−






−γ
γ
γ
γ
γ
γ
( )
( )
1
1
2
1
1
2
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
2
1
2
1
1
2
2
1
2
1
2
1
2
2
1
2
1
2
1
2
1
2
+
−
= +
−
+
−
−
−
=
−
−
+
−
+
−





+
+
+
−






=
+
+
+
−
γ γ
γ
γ
γ
γ
γ γ γ
γ γ
γ
γ
γ
γ
M
M
M
M M
M
M
M
( )
( )
p
p
M
M
M02
01
1
2
1
2
1
1
2
1
1
1
2
1
2
1
1
1
2
1
1=
+
+
+
−












+
+
−






−
−
−
γ
γ
γ
γ
γ
γ
γ
γ
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
31
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (5)
( )
s s
R
T
T
p
p
p
p
M
M
M
T T
2 1 02
01
1
02
01
1
02
01
1
2
1
2
1
2
02 01
1
1
1
2
1
1
1
1
2
1
1
2
−
=






















= −






=
−
+
+
−





 −
−
+
+
−










−
−
=
ln ln
ln ln
γ
γ
γ
γ
γ
γ
γ
γ
γ
s
s
1
s
2
T
M1
M1
Rayleigh
Fanno
2
1
SHOCK
T
2
T
1
T
02
T
01=
T 2
T 1=* *
p
2
p
1
p
01
p
02
Mollier’s Diagram
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
Q
1
1
1
1
1
2
2
2
2
2
1 2
John William
Strutt
Lord Rayleigh
)1842-1919(
Gino Girolamo Fanno
)1888–1062(
Return to Table of Content
32
OBLIQUE SHOCK  EXPANSION WAVESSOLO
→→
→→
+=
+=
twnuV
twnuV
11
11
222
111


Continuity Eq.: 2211 uu ρρ =
( ) ( ) ( )21222111 ppuuuu +−−=+− ρρ
Moment Eq. Tangential Component:
( ) ( ) 0222111 =+− wuwu ρρ
Moment Eq. Normal Component:
Energy Eq.: 22
2
2
2
2
211
2
1
2
1
1
22
u
wu
hu
wu
h ρρ 






 +
+=






 +
+
Continuity Eq.: 2211 uu ρρ =
Moment Eq.:
21 ww =
2
222
2
111 upup ρρ +=+
Energy Eq.:
22
2
2
2
2
1
1
u
h
u
h +=+
Summary
Calorically Perfect Gas:
Tch
TRp
p=
= ρ
6 Equations with 6 Unknowns
222222 ,,,,, hwuTpρ
33
OBLIQUE SHOCK  EXPANSION WAVESSOLO
For a calorically Perfect Gas
( )
( )
( )
( )[ ]
( )[ ]
2
1
1
2
1
2
2
1
2
12
2
2
1
1
2
2
1
2
1
1
2
11/2
1/2
1
1
2
1
21
1
ρ
ρ
γγ
γ
γ
γ
γ
γ
ρ
ρ
p
p
T
T
M
M
M
M
p
p
M
M
n
n
n
n
n
n
=
−−
−+
=
−
+
+=
+−
+
=
βsin11 MMn =
( )θβ −
=
sin
2
2
nM
M
Now we can compute
( )
( ) ( )
( )
( )
( )






⋅+
−
=
−
+
−+
===
−
⇒









=
=−
=
θββ
θβ
β
θβ
βγ
βγ
ρ
ρ
β
θβ
θβ
β
tantan1tan
tantan
tan
tan
sin1
sin12
tan
tan
tan
tan
22
1
22
1
2
1
1
2
12
2
2
1
1
M
M
u
u
ww
w
u
w
u
34
OBLIQUE SHOCK  EXPANSION WAVESSOLO
( ) 





++
−
=
22cos
1sin
cot2tan 2
1
22
1
βγ
β
βθ
M
M
M,, βθ relation
12 M
12 M
.5max =Mforθ
β θ
1M 2M
Strong Shock
Weak Shock
θ
β
We can see that θ = 0 for
1.β = 90° (Normal Shock)
2.sin β = 1/ M1
35
OBLIQUE SHOCK  EXPANSION WAVESSOLO
1. For any given M1 there is a maximum deflection angle θmax
If the physical geometry is such that θ  θmax, then no solution
exists for straight oblique shock wave. Instead the shock will be
curved and detached.
36
OBLIQUE SHOCK  EXPANSION WAVESSOLO
2.For any given θ  θmax, there are two values of β predicted by
the θ-β-M relation for a given Mach number.
WEAKβ
STRONGβ
( ) 





++
−
=
22cos
1sin
cot2tan 2
1
22
1
βγ
β
βθ
M
M
M,, βθ relation
- the large value of β is called the strong shock solution
In nature the weak shock solution usually occurs.
- the small value of β is called the weak shock solution
- in the strong shock solution M2 is subsonic (M2  1)
- in the weak shock M2 solution is supersonic (M2  1)
37( ) 





++
−
=
22cos
1sin
cot2tan 2
1
22
1
βγ
β
βθ
M
M
M,, βθ relation
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
θ
β
4.1=γ
θ
maxθ
θ
38
( )[ ]
( )[ ]
( )θβ
γγ
γ
β
−
=
−−
−+
=
=
sin
11/2
1/2
sin
2
2
2
1
2
12
2
11
n
n
n
n
n
M
M
M
M
M
MM
SOLO
θ
maxθ
OBLIQUE SHOCK  EXPANSION WAVES
Mach Number in Back of Oblique Shock M2 as a Function of the Mach Number
in Front of the Shock M , for Different Values of Deflection Angle θ (γ=1.4)
39
( )1
1
2
1
sin
2
1
1
2
11
−
+
+=
=
n
n
M
p
p
MM
γ
γ
β
SOLO
θ
θ
OBLIQUE SHOCK  EXPANSION WAVES
Static Pressure Ratio P2
/
P1 as a Function of M1 the Mach Number
in Front of an Oblique Shock, for Different Values of Deflection Angle θ (γ=1.4)
40
SOLO
θ
θ
OBLIQUE SHOCK  EXPANSION WAVES
Stagnation Pressure Ratio P2
0/
P1
0
as a Function of M1 the Mach Number
in Front of an Oblique Shock, for Different Values of Deflection Angle θ (γ=1.4)
41
Hodograph Shock Polar
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
42
Hodograph Shock Polar
SOLO
-For every deflection angle θ the Hodograph
gives two solutions, a strong shock (B outside
the sonic circle – M21) and a weak shock
(D inside the sonic circle – M11)
- The line OC tangent to the Hodograph gives
the maximum deflection angle θmax.
For θ  θmax there is no oblique shock wave.
- For point E θ=0 and β=π/2, therefore a normal
shock. Point A corresponds to the Mach value
before the shock M1.
- The Shock Angle β corresponding to a given
angle θ defined by the points B and D can be
found by drawing the line OH normal to line
AB. β = angle HOA.
OBLIQUE SHOCK  EXPANSION WAVES
43
SOLO
Family of Hodograph Shock Polars ( γ= 1.4)
θ
1
***1
2
1
**
*** 21
2
1
212
21
2
2
+−





+
−






−=





c
V
c
V
c
V
c
V
c
V
c
V
c
V
c
V
x
x
xy
γ
A. H. Shapiro “The Dynamics and Thermodynamics of Compressible Flow Fluid”,pg.543
45.2
OBLIQUE SHOCK  EXPANSION WAVES
44
SOLO
θmaxθ
maxθ
maxθ
γ
OBLIQUE SHOCK  EXPANSION WAVES
45
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
46
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
47
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
48
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
49
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
Return to Table of Content
50
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
Prandtl-Meyer Expansion Waves
Ludwig Prandtl
(1875 – 1953)
Theodor Meyer
(1882 – 1972)
The Expansion Fan depicted in Figure was
First analysed by Prandtl in 1907 and his
student Meyer in 1908.
Let start with an Infinitesimal Change across a
Mach Wave
M
ach
W
ave
θd
µ µ
π
−
2
θµ
π
d−−
2
V
VdV +
( )
( ) θµθµ
µ
θµπ
µπ
dddV
VdV
sinsincoscos
cos
2/sin
2/sin
−
=
−−
+
=
+
µ
θµθ
µθ tan
/
tan1
tan1
1
1
VVd
dd
dV
Vd
=⇒+≈
−
≈+
1
1
tan
1
sin
2
1
−
=⇒





= −
MM
µµ
V
Vd
Md 12
−=θ
1907 - 1908
51
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
Prandtl-Meyer Expansion Waves (continue-1)
M
ach
W
ave
θd
µ µ
π
−
2
θµ
π
d−−
2
V
VdV +
V
Vd
Md 12
−=θ
Integrating this equation gives
∫ −=
2
1
12
M
M
V
Vd
Mθ
Using the definition of Mach Number: V = M.
a
a
ad
M
Md
V
Vd
+=
For a Calorically Perfect Gas
20
2
0
2
1
1 M
T
T
a
a −
+==




 γ
MdMM
a
ad
1
2
2
1
1
2
1
−





 −
+
−
−=
γγ
M
Md
MV
Vd
2
2
1
1
1
−
+
=
γ ∫ −
+
−
=
2
1
2
2
2
1
1
1
M
M
M
Md
M
M
γ
θ
52
SOLO
OBLIQUE SHOCK  EXPANSION WAVES
Prandtl-Meyer Expansion Waves (continue-2)
The integral
∫ −
+
−
=
2
1
2
2
2
1
1
1
M
M
M
Md
M
M
γ
θ
( ) ∫ −
+
−
=
M
Md
M
M
M
2
2
2
1
1
1
γ
ν
is called the Prandtl-Meyer Function and is
given the symbol ν. Performing the integration we obtain
( ) ( ) ( )1tan1
1
1
tan
1
1 2121
−−−
+
−
−
+
= −−
MMM
γ
γ
γ
γ
ν
Deflection Angle ν and Mach Angle μ as functions of Mach Number






= −
M
1
sin 1
µ
Finally
( ) ( )12 MM ννθ −=
Return to Table of Content
53
Movement of Shocks with Increasing Mach Number
Drag rises due to pressure
Increase across a Shock Wave
•Subsonic Flow
- Local airspeed is less than
sonic
•Transonic Flow
- Local airspeed is less than sonic
at some points, greater than
sonic elsewhere
•Supersonic Flow
- Local Airspeed is greater
than sonic everywhere
SOLO AERODYNAMICS
54
Movement of Shocks with Increasing Mach Number
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )87654321 ∞∞∞∞∞∞∞∞  MMMMMMMM
SOLO AERODYNAMICS
55
Upper
Surface
Lower
Surface
Upper
Surface
Lower
Surface
Upper
Surface
Lower
Surface
Upper
Surface
Lower
Surface
Upper
Surface
Lower
Surface
( c) Shock on upper surface
Upper
Surface
Lower
Surface
(d ) Shocks on both surfaces
Shock
Movement of Shocks with Increasing Mach Number
SOLO AERODYNAMICS
56
Movement of Shocks with Increasing Mach Number
The Mach Number at witch M=1 appears
on the Airfoil Upper Surface is called the
Critical Mach Number for this Airfoil.
The Critical Mach Number can be
calculated as follows. Assuming an
isentropic flow through the flow-field we
have
( )1/
2
2
2
1
1
2
1
1
−
∞
∞












−
+
−
+
=
γγ
γ
γ
A
A
M
M
p
p
p∞, M∞ - Pressure and Mach Number upstream the Airfoil
pA, MA- Pressure and Mach Number at a point A on the Airfoil
Critical Mach Number
The Pressure Coefficient Cp is computed using
( )












−












−
+
−
+
=





−=
−
∞
∞∞∞
1
2
1
1
2
1
1
2
1
2
1/
2
2
γγ
γ
γ
γγ
A
A
pA
M
M
Mp
p
M
C
Definition of Critical Mach
Number.
Point A is the location of
minimum pressure on the
top surface of the Airfoil.
SOLO AERODYNAMICS
57
Movement of Shocks with Increasing Mach Number
Critical Mach Number
This relation gives a unique relation between the upstream values of p∞, M∞ and the
respective values pA, MA at a point A on the Airfoil.
Assume that point A is the point of minimum pressure, therefore maximum velocity,
on the Airfoil and that this maximum velocity corresponds to MA = 1. Then by
definition M∞ = Mcr .
( )












−












−
+
−
+
=





−=
−
∞
∞∞∞
1
2
1
1
2
1
1
2
1
2
1/
2
2
γγ
γ
γ
γγ
A
A
pA
M
M
Mp
p
M
C
( )












−












−
+
−
+
=
−
1
2
1
1
2
1
1
2
1/
2
γγ
γ
γ
γ
cr
cr
p
M
M
C cr
2
0
1 ∞−
=
M
C
C
p
p
( )












−












−
+
−
+
=
−
1
2
1
1
2
1
1
2
1/
2
γγ
γ
γ
γ
cr
cr
p
M
M
C cr
2
0
1 ∞−
=
M
C
C
p
p
To find the Mcr we need on other equation describing
Cp at subsonic speeds. We can use the
Prandtl-Glauert Correction
or the Karman-Tsien Rule or
Laiton’s Rule
SOLO AERODYNAMICS
58
Movement of Shocks with Increasing Mach Number
Critical Mach Number
AirfoilThickAirfoilMediumAirfoilThin
AirfoilThickAirfoilMediumAirfoilThin
crcrcr
ppp
MMM
CCC

 000
The point of minimum pressure, therefore maximum velocity, does not correspond
to the point of maximum thickness of the Airfoil. This is because the point of
minimum pressure is defined by the specific shape of the Airfoil and not by a local
property.
The Critical Mach Number is a function of
the thickness of the Airfoil.
For the thin Airfoil the Cp0 is smaller in
magnitude and because the disturbance in the
Flow is smaller. Because of this the Critical
Mach Number of the thin Airfoil is greater
SOLO AERODYNAMICS
59
Movement of Shocks with Increasing Mach Number
Drag Divergence Mach Number
The Drag at small Mach number, due to
Profile Drag with Induced Drag =0 (αi = 0)
is constant (points a, b, and c) until
M∞ = Mcr (point c). As the velocity
increase above Mcr (point d), a finite
region of supersonic flow (Weak Shock
boundary)appears on the Airfoil.
The Mach Number in this bubble of
supersonic flow is slightly above Mach 1,
typically 1.02 to 1.05. If M∞ increases more,
We encounter a point, e, at which is a sudden increase in Drag. The Value of M∞ at
which the sudden increase in Drag starts is defined as the Drag-divergence Mach
Number, Mdrag-divergence  1. At this point Shock Waves appear on the Airfoil. The
Shock Waves are dissipative phenomena extracting energy (Drag) from the kinetic
energy of the Airfoil. In addition the sharp increase of the pressure across the
Shock Wave create a strong adverse pressure gradient, causing the Flow to
separate
From the Airfoil Surface creating Drag increase. Beyond the Drag-divergence
Mach Number, the Drag Coefficient becomes very large, increasing by a factor of
10 or more. As M∞ approaches unity (point f) the Flow on both the top and the
SOLO AERODYNAMICS
60
Movement of Shocks with Increasing Mach Number
Summary of Airfoil Drag
The Drag of an Airfoil can be described as the sum of three contributions:
wpf DDDD ++=
where
D – Total Drag of the Airfoil
Df – Skin Friction Drag
Dp – Pressure Drag due to Flow Separation
Dw – Wave Drag (present only at Transonic and Supersonic Speeds; zero for
Subsonic Speeds below the Drag-divergence Mach Number)
In terms of the Drag Coefficients, we can write:
wDpDfDD CCCC ,,, ++=
The Sum:
pDfD CC ,, + Profile Drag Coefficient
SOLO AERODYNAMICS
61
Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2
SOLO
Return to Table of Content
AERODYNAMICS
62
AERODYNAMICS
Drag Variation with Mach Number
SOLO
Return to Table of Content
63
AERODYNAMICS
Swept Wings Drag Variation
Adolf Busemann and Alfred Betz, discovered around 1930 that Drag at Transonic
and Supersonic Speeds could be reduced using Swept Back Wings.
Assume Mcr for
Wing = 0.7
Airfoil Section
with Mcr = 0.7
Airfoil Section
with Mcr = 0.7
Airfoil ³ sees´
only this
component of
velocity
Mcr for swept wing
Adolph
Busemann
(1901 – 1986)
also NACA 
Colorado U.
Albert Betz
(1885 – 1968 ),
Λ
=
cos
_
cr
sweptcr
M
M
From the Figure we see that
if Λ is the Swept Angle, than
Supersonic L.E.
Subsonic L.E.
Mach Cone
For Supersonic Flow M∞  1
•If the Leading Edge of Swept Wing is outside
the Mach Cone, the component of the Mach
Number normal to the Leading Edge is
Supersonic. As a result a Strong Oblique Shock
Wave will be created on the Wing.
•If the Leading Edge of Swept Wing is inside
the Mach Cone, the component of the Mach
Number normal to the Leading Edge is
Subsonic. As a result a Weaker Oblique Shock
Wave will be created on the Wing
and a Lower Drag will result.
SOLO
64
SOLO Wings in Compressible Flow
64
Swept Wings
The Swept Wing Theory was first presented by Adolf Busemann at the Fifth Volta Conference
in Roma 1935. Busemann made use of so called
“Independence Principle”:
“The air forces on a sufficient long, narrow Wing Panel are
independent of the component of the flight velocity in the
direction of the Wing Leading Edge (disregarding friction).
The air forces the depend only on the reduced component
velocity perpendicular to the Wing Leading Edge”
Adolph
Busemann
(1901 – 1986).
The Wing angles relative to Flow Direction are:
α – Angle of Attack
Λ – Swept Angle
The Flow Mach components are:
forcesairaffectingnotELtoparallelM
forcesairaffecting
PlaneWingtheinELtonormalM
PlaneWingtonormalM
..sincos
..coscos
sin
Λ






Λ
∞
∞
∞
α
α
α
We have:
( ) ( )[ ] ( )
Λ
=
Λ
=
Λ=






Λ
=





Λ
=
Λ−=Λ+=
−
∞
∞−
∞∞∞∞
coscos
:
cos:
cos
tan
tan
coscos
sin
tan:
cossin1coscossin:
11
2/1222/122
τ
τ
α
α
α
α
ααα
c
t
cc
M
M
MMMM
e
e
e
e Section A-A
Section B-B
65
SOLO Wings in Compressible Flow
65
Swept Wings
Section A-A
Section B-B
( ) bcM
L
CL 2
2/ ∞∞
=
ργ
The Total Lift is:
( ) ( )[ ] ( )
Λ
=
Λ
=
Λ=






Λ
=





Λ
=
Λ−=Λ+=
−
∞
∞−
∞∞∞∞
coscos
:
cos:
cos
tan
tan
coscos
sin
tan:
cossin1coscossin:
11
2/1222/122
τ
τ
α
α
α
α
ααα
c
t
cc
M
M
MMMM
e
e
e
e
Therefore: ( ) ( )α222
cossin1/ Λ−== ∞∞ eLeeLL CMMCC
( ) ( ) ( )ΛΛ
==
∞∞∞∞ cos/cos2/2/ 22
bcM
L
bcM
L
C
eeee
eL
ργργ
and:
The Friction Drag is ignored the Tangential Component of Velocity does not
contribute to the Drag and the Pressure Drag is normal to the Leading Edge.
If D is the Total Pressure Drag the component in the M∞ direction is only D cosΛ.
( ) ( ) ( ) ( )ΛΛ
=
Λ
=
∞∞∞∞ cos/cos2/
;
2/
cos
22
bcM
D
C
bcM
D
C
e
DD
ργργ
or: ( ) ( )α222
cossin1cos/ Λ−Λ== ∞∞ eDeeDD CMMCC
66
SOLO Wings in Compressible Flow
66
Swept Wings
Oblique Wing aircraft, AD-1 was built and flown by NASA..
Oblique Wing concept was developed in the USA by
R.T. Jones.
Robert Thomas Jones
(1910–1999)
Oblique Wing Flight Demonstration by the AD-1.
67
AERODYNAMICS
Swept Wings Drag Variation
SOLO
68
Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2
AERODYNAMICS
Swept Wings Drag Variation
SOLO
69
AERODYNAMICS
Swept Wings Drag Variation
SOLO
70
AERODYNAMICS
Swept Wings Drag Variation
Comparison of the Transonic Drag Polar for an Unswept Wing with that for a
Swept Wing (data from Schlichting)
SOLO
71
SOLO Wings in Compressible Flow
Profile Drag Coefficients versus Mach Number for an Un-swept and a Swept-back Wing
(φ=45°), t/c=0.12, AR=4
Swept Wings
72
AERODYNAMICS
Swept Wings Drag Variation
SOLO
73
SOLO
Return to Table of Content
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
74
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
75
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
76
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
77
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
Return to Table of Content
78
SOLO
Return to Table of Content
Ray Whitford, “Design for Air Combat”
79
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
Return to Table of Content
80
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
Richard T. Whitcomb
(1921 – 2009)
SOLO
81
German aerodynamicist named Dr. Adolf Busemann, who had come to work at
Langley after World War II, gave a technical symposium on transonic airflows. In
a vivid analogy, Busemann described the stream tubes of air flowing over an
aircraft at transonic speeds as pipes, meaning that their diameter remained
constant. At subsonic speeds, by comparison, the stream tubes of air flowing over a
surface would change shape, become narrower as their speed increased. This
phenomenon was the converse, in a sense, of a well-known aerodynamic principle
called Bernoulli's theorem, which stated that as the area of an airflow was made
narrower, the speed of the air would increase. This principle was behind the design
of venturis,9
as well as the configuration of Langley's wind tunnels, which were
necked down in the test sections to generate higher speeds.10
But at the speed of sound, Busemarm explained, Bernoulli's theorem did not
apply. The size of the stream tubes remained constant. In working with this kind of
flow, therefore, the Langley engineers had to look at themselves as pipefitters.
Busemann's pipefitting metaphor caught the attention of Whitcomb, who was in
the symposium audience. Soon after that Whitcomb was, quite literally, sitting with
his feet up on his desk one day, contemplating the unusual shock waves he had
encountered in the transonic wind tunnel. He thought of Busemann's analogy of
pipes flowing over a wing-body shape and suddenly, as he described it later, a light
went on.
Richard T. Whitcomb
(1921 – 2009)
Adolph Busemann
(1901 – 1986)
also NACA 
Colorado U.
Origin of Transonic Area Rule
http://history.nasa.gov/SP-4219/Chapter5.html
SOLO
82
Richard T. Whitcomb
(1921 – 2009)
Adolph Busemann
(1901 – 1986)
also NACA 
Colorado U.
Origin of Transonic Area Rule
http://history.nasa.gov/SP-4219/Chapter5.html
In practical terms, the area rule concept meant that something had to
be done in order to compensate for the dramatic increase in cross-
sectional area where the wing joined the fuselage. The simplest
solution was to indent the fuselage in that area, creating what
engineers of the time described as a Coke bottle or Marilyn
Monroe shaped design. The indentation would need to be greatest at
the point where the wing was the thickest, and could be gradually
reduced as the wing became thinner toward its trailing edge. If
narrowing the fuselage was impossible, as was the case in several
designs that applied the area rule concept, the fuselage behind or in
front of the wing needed to be expanded to make the change in
crosssectional area from the nose of the aircraft to its tail less
dramatic.
Throughout the first quarter of 1952, Whitcomb conducted a series of
experiments using various area-rule based wing-body configurations in
Langley's 8-Foot High-Speed Tunnel. As he expected, indenting the
fuselage in the area of the wing did, indeed, significantly reduce the
amount of drag at transonic speeds. In fact, Whitcomb found that
indenting the body reduced the drag-rise increments associated with the
unswept and delta wings by approximately 60 percent near the speed of
sound, virtually eliminating the drag rise created by having to put wings
on a smooth, cylindrical shaped body.
http://www.youtube.com/watch?v=xZWBVgL8I54
http://www.youtube.com/watch?v=Cn0lSoreB1g
SOLO
83
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
84
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
85
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
86
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
87
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO
88
SOLO
89
Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2
AERODYNAMICSSOLO
Return to Table of Content
90
AERODYNAMICSSOLO
91
Nguyen X. Vinh, “Flight Mechanics of High Performance Aircraft”, Cambridge University,1993
AERODYNAMICSSOLO
92
Examples of airfoils in nature and within various vehicles
Lift and Drag curves for a typical airfoil
SOLO
93
SOLO
94
AERODYNAMICSSOLO
95
Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2
AERODYNAMICSSOLO
96
Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2
AERODYNAMICSSOLO
Return to Table of Content
97
Flow regimes for a slender bodySOLO
98
)A)- Flow field in wing-tail plane, influence of angle of attackSOLO
99
Slender wing-body combinationSOLO
100
))B)- Flow field in wing-tail plane, influence ofB)- Flow field in wing-tail plane, influence of
control deflectioncontrol deflection δδ for pitchfor pitch
SOLO
101
Missile controlMissile controlSOLO
102
CHARACTERISTICSCHARACTERISTICS
Summary of aerodynamic designSummary of aerodynamic design
SOLO
103
))C)- Flow field in wing-tail plane, influence ofC)- Flow field in wing-tail plane, influence of
control deflectioncontrol deflection ξξ for rollfor roll
SOLO
104
Types of missile roll control skid-to-turn, bank-to-turnTypes of missile roll control skid-to-turn, bank-to-turnSOLO
Return to Table of Content
105
Density Profile Mach 1.2, Color Contours Modified to see Detail on Shock Waves
More Fun With CFD – RM-10SOLO
106
Density Profiles, Mach 2.41, simulated altitude of 11,000 ft )Re=76.4x106
)
More Fun With CFD – RM-10SOLO
107
Density Profiles, Mach 2.41 – color contours modified to see detail in shock waves
More Fun With CFD – RM-10SOLO
108
Density Profiles, Mach 1.62 – rotated, with plot to show distribution around fins
More Fun With CFD – RM-10SOLO
109
The Effect of Leading Edge Slat, Flap, and Trailing Edge Flap
Upon Angle of Attack of Basic Wing
Darrol Stinton “ The Design of the Aircraft”SOLO
110High Angles of Attack Flows
)Development of a High Resolution CFD)
SOLO
111High Angles of Attack Flows
)Development of a High Resolution CFD)
SOLO
112
Three-Element Airfoil
Pressure Coefficient and Streamlines at Maximum Lift M=0.2 )Re=4.1x106
)
SALSA Computation
AERODYNAMICSSOLO
113Inviscid Transonic Flow Solution Over a 2-D Airfoil at M=0.75 )Re=1000)
AERODYNAMICSSOLO
114Inviscid Supersonic Flow Solution Over a 2-D Airfoil at M=1.50 )Re=1000)
AERODYNAMICSSOLO
115
AERODYNAMICSSOLO
116
Linearized Flow Equations
1. Irrotational Flow
SOLO
Assumptions
2. Homentropic
3. Thin bodies
( )0

=×∇ u






=
∂
∂
=∇ 00..;.
t
s
seieverywhereconsts
This implies also inviscid flow ( )~τ = 0
Changes in flow velocities due to body presence are small
were
- flow velocity as a function of position and time
- flow entropy as a function of position and time
( )tzyxu ,,,

( )tzyxs ,,,
117
SOLO
)C.L.M)
For an inviscid flow conservation of linear momentum gives:( )~τ = 0
Assume that body forces are conservative and stationary
were
- flow pressure as a function of position and time( )tzyxp ,,,
- flow density as a function of position and time( )tzyx ,,,ρ
( ) Gpuuu
t
u
uu
t
u
tD
uD 



ρ
∂
∂
ρ
∂
∂
ρρ +−∇=





×∇×−





∇+=





∇⋅+= 2
2
1
or
( ) G
p
uuu
t
u 

+
∇
−=×∇×−





∇+
∂
∂
ρ
2
2
1 Euler’s Equation
0 =
∂
Ψ∂
Ψ−∇=
t
G

- Body forces as a function of position( )zyxG ,,

Leonhard Euler
1707-1783
Linearized Flow Equations
118
SOLO
Let integrate the Euler’s Equation between two points )1) and )2)
( ) ( ) ( ) ∫∫∫∫∫∫ ⋅Ψ∇+
⋅∇
+×∇⋅×−⋅





∇+⋅
∂
∂
=⋅





Ψ∇+
∇
+×∇×−





∇+
∂
∂
=
2
1
2
1
2
1
2
1
2
2
1
2
1
2
2
1
2
1
0 rd
rdp
uurdrdurdu
t
rd
p
uuuu
t



υρ
We can chose the path of integration as follows:
- along a streamline ) and are collinear; i.e.: )rd

u

0

=×urd
- along any path, if the flow is irrotational ( )0

=×∇ u
to obtain:
( ) ( ) 0
2
1
=×∇⋅×∫ uurd

Assuming that the flow is irrotational we can define a potential ,
such that:
( )0

=×∇ u ( )tr ,

Φ
Φ∇=u

Let use the identity
to obtain:
( ) rdFtrFd constt

⋅∇==
,
( )
2
1
2
2
1
2
2
1
2
1
0








Ψ+++
∂
Φ∂
=





Ψ∇++





+Φ
∂
∂
= ∫∫
∞
p
p
pd
u
t
pd
udd
t ρρ
Bernoulli’s Equation
for Irrotational
and Inviscid Flow
Daniel Bernoulli
1700-1782
Linearized Flow Equations
119
SOLO
For an isentropic ideal gas we have
2
2
11 a
ad
T
Tdd
p
pd
−
=
−
==
γ
γ
γ
γ
ρ
ρ
γ
where
ρ
γ
γ
ρρ
p
TR
d
pdp
a
s
===
∂
∂
=2
is the square of the speed of sound
In this case
2
2
2
1
1
1 2
ad
a
adppd
RTa
RTp
−
=
−
=
=
=
γργ
γ
ρ γ
ρ
and
[ ]222
1
1
1
1
2
2
∞−
−
=
−
= ∫∫
∞∞
aaad
pd
a
a
p
p
γγρ
Using the Bernoulli’s Equation we obtain
( ) ( ) ( ) ( )





Ψ−Ψ+−+
∂
Φ∂
−−=−=− ∞∞∞ ∫
∞
2222
2
1
11 Uu
t
dp
aa
p
p
γ
ρ
γ
( )
2
1
2
2
1
2
2
1
2
1
0








Ψ+++
∂
Φ∂
=





Ψ∇++





+Φ
∂
∂
= ∫∫
∞
p
p
pd
u
t
pd
udd
t ρρ
Bernoulli’s Equation
for Irrotational
and Inviscid Flow
Linearized Flow Equations
120
SOLO
Let use the conservation of mass )C.M.) equation
)C.M.) 0=⋅∇+ u
tD
D 
ρ
ρ
or
tD
D
u
ρ
ρ
1
−=⋅∇

Let go back to Bernoulli’s Equation ( ) ( )





Ψ−Ψ+−+
∂
Φ∂
−= ∞∞∫
∞
22
2
1
Uu
t
pd
p
p
ρ
and use the Leibnitz rule of differentiation: ( ) ( )uxFdxuxF
xd
d
x
x
,,
0
=∫
to obtain
ρρ
1
=∫
∞
p
p
pd
pd
d
Now we can compute tD
Da
tD
D
d
pd
tD
pD
tD
pDpd
pd
dpd
tD
D
p
p
p
p
ρ
ρ
ρ
ρρρρρ
2
11
===








= ∫∫
∞∞
Therefore ( ) ( )





Ψ−Ψ+−+
∂
Φ∂
=−=−=⋅∇ ∞∞∫
∞
22
22
2
1111
Uu
ttD
D
a
pd
tD
D
atD
D
u
p
p
ρ
ρ
ρ

Since ( )[ ] 0=Ψ−Ψ= ∞∞
tD
D
u
tD
D
we have












∇⋅+
∂
∂
⋅+
∂
Φ∂
=











∇⋅+
∂
Φ∂
∇⋅+
∂
∂
⋅+
∂
Φ∂
=
=





+
∂
Φ∂






∇⋅+
∂
∂
=





+
∂
Φ∂
=⋅∇
Φ∇=
2
2
1
2
1
2
11
2
11
2
2
2
2
2
2
2
2
2
2
2
2
u
u
t
u
u
ta
u
u
t
u
t
u
u
ta
u
t
u
ta
u
ttD
D
a
u
u 






GOTTFRIED WILHELM
von LEIBNIZ
1646-1716
Linearized Flow Equations
121
SOLO












∇⋅+
∂
∂
⋅+
∂
Φ∂
=











∇⋅+
∂
Φ∂
∇⋅+
∂
∂
⋅+
∂
Φ∂
=
=





+
∂
Φ∂






∇⋅+
∂
∂
=





+
∂
Φ∂
=⋅∇
Φ∇=
2
2
1
2
1
2
11
2
11
2
2
2
2
2
2
2
2
2
2
2
2
u
u
t
u
u
ta
u
u
t
u
t
u
u
ta
u
t
u
ta
u
ttD
D
a
u
u 






Let substitute Φ∇=u













Φ∇⋅Φ∇∇⋅Φ∇+Φ∇
∂
∂
⋅Φ∇+
∂
Φ∂
=Φ∇⋅∇
2
1
2
1
2
2
2
tta
( ) ( ) ( )





Ψ−Ψ+−Φ∇⋅Φ∇+
∂
Φ∂
−−= ∞∞∞
222
2
1
1 U
t
aa γ
Special cases
0≈Φ∇⋅∇ Laplace’s equation
∞∞ Ua )subsonic flow) we can approximate
the first equation by
1
2 ( ) ( ) 2
2
t
uu
t
uuu
∂
Φ∂
⋅
∂
∂
+⋅∇⋅
 we can approximate
the first equation by
0
1
2
2
2
=
∂
Φ∂
−Φ∇⋅∇
ta
Wave equation
Pierre-Simon
Laplace
1749-1827
Linearized Flow Equations
122
SOLO
Note
The equation






+
∂
Φ∂






∇⋅+
∂
∂
=⋅∇ 2
2
2
11
u
t
u
ta
u

can be written as
Φ=





Φ∇⋅+
∂
Φ∂






∇⋅+
∂
∂
=





+
∂
Φ∂






∇⋅+
∂
∂
=Φ∇ 2
2
22
2
2
2 11
2
11
tD
D
a
u
t
u
ta
u
t
u
ta
c
c

where the subscript c on and on is intended to indicate that the velocity is
treated as a constant during the second application of the operators and .
cu

2
2
tD
Dc
t∂∂/ ( )∇⋅u

This equation is similar to a wave equation.
End Note
Linearized Flow Equations
123
SOLO
Let compute the local pressure coefficient: 2
2
1
:
∞∞
∞−
=
U
pp
C p
ρ
We have:










−







=










−







=










−





=





−=
−
∞∞
=−
∞
∞
∞
=
−
∞
∞
∞






=
=
∞
∞
∞
∞
∞∞∞
−
∞∞
∞∞∞
1
2
1
2
1
1
2
1
2
1
2
2
2
/1
2
2
2
2
1
22
2
1
γ
γ
γ
γ
γ
γ
γ
ρ
γ
γ
ρ γ
γ
a
a
Ma
a
a
U
T
T
U
TR
p
p
U
p
C
aUMTRa
T
T
p
p
TRp
p
Let use the equation
( ) ( ) ( )





Ψ−Ψ+−Φ∇⋅Φ∇+
∂
Φ∂
−−= ∞∞∞
222
2
1
1 U
t
aa γ
to compute
( ) ( ) ( )





Ψ−Ψ+−Φ∇⋅Φ∇+
∂
Φ∂−
−= ∞∞
∞∞
2
22
2
2
11
1 U
taa
a γ
Finally we obtain:
( ) ( ) ( )










−












Ψ−Ψ+−Φ∇⋅Φ∇+
∂
Φ∂−
−=
−
∞∞
∞∞
1
2
11
1
2 1
2
22
γ
γ
γ
γ
U
taM
Cp
Linearized Flow Equations
124
SOLO
Assuming a stationary flow and neglecting the body forces :





=
∂
∂
0
t
( )0=Ψ












Φ∇⋅Φ∇∇⋅Φ∇=Φ∇⋅∇
2
11
2
a
( ) ( )222
2
1
∞∞ −Φ∇⋅Φ∇
−
−= Uaa
γ
( ) ( )










−






−Φ∇⋅Φ∇
−
−=
−
∞
∞∞
1
2
1
1
2 1
2
22
γ
γ
γ
γ
U
aM
Cp
Φ∇=u

Linearized Flow Equations
125
SOLO
1
0
332211
323121
=⋅=⋅=⋅
=⋅=⋅=⋅
→→→→→→
→→→→→→
eeeeee
eeeeee
General Coordinates ( )321 ,, uuu
→→→
∂
Φ∂
+
∂
Φ∂
+
∂
Φ∂
=Φ∇ 3
33
2
22
1
11
111
e
uh
e
uh
e
uh
( ) ( ) ( )





∂
∂
+
∂
∂
+
∂
∂
=






++⋅∇=⋅∇
→→→
321
3
213
2
132
1321
332211
1
Ahh
u
Ahh
u
Ahh
uhhh
eAeAeAA

Using we obtainΦ∇=:A













∂
Φ∂
∂
∂
+





∂
Φ∂
∂
∂
+





∂
Φ∂
∂
∂
=
=Φ∇⋅∇=Φ∇
33
21
322
13
211
32
1321
2
1
uh
hh
uuh
hh
uuh
hh
uhhh
where
We have for ( ) ( )321321 ,,,,, uuuAuuu

Φ
Linearized Flow Equations
126
SOLO
zzyyxx Φ+Φ+Φ=Φ∇=Φ∇⋅∇ 2






Φ+Φ+Φ∇⋅





Φ+Φ+Φ=





Φ∇⋅Φ∇∇⋅Φ∇
→→→
222
2
1
2
1
2
1
111
2
1
zyxzyx zyx
( ) ( )
( )=ΦΦ+ΦΦ+ΦΦΦ+
ΦΦ+ΦΦ+ΦΦΦ+ΦΦ+ΦΦ+ΦΦΦ=
zzzyzyxzxz
yzzyyyxyxyxzzxyyxxxx
yzzyxzzxxyyxzzzyyyxxx ΦΦΦ+ΦΦΦ+ΦΦΦ+ΦΦ+ΦΦ+ΦΦ= 222
22












Φ∇⋅Φ∇∇⋅Φ∇=Φ∇⋅∇
2
11
2
a
( ) ( )222
2
1
∞∞ −Φ∇⋅Φ∇
−
−= Uaa
γ
( ) 0
12
2
22111
222
222
2
2
2
2
2
=Φ−ΦΦ+ΦΦ+ΦΦ−Φ
ΦΦ
−
Φ
ΦΦ
−Φ
ΦΦ
−Φ






 Φ
−+Φ







 Φ
−+Φ






 Φ
−
ttztzytyxtxyz
zy
xz
zx
xy
yx
zz
z
yy
y
xx
x
aaa
aaaaa
( ) ( ) ( )





Ψ−Ψ+−Φ+Φ+Φ+
∂
Φ∂
−−= ∞∞∞
222222
2
1
1 U
t
aa zyxγ
We finally obtain
Cartesian Coordinates ( )zuyuxu === 321 ,,
Linearized Flow Equations
Return to Table of Content
127
SOLO
Cylindrical Coordinates ( )θ=== 321 ,, uruxu
→→→→→→
++=++= zryrxxzzyyxxR 1sin1cos1111 θθ

→→→→→
+−=
∂
∂
+=
∂
∂
=
∂
∂
zryr
R
zy
r
R
x
x
R
1cos1sin1sin1cos1 θθ
θ
θθ

r
R
h
r
R
h
x
R
h =
∂
∂
==
∂
∂
==
∂
∂
=
θ

:1:1: 321
→→→→
→→→→→→
=+−=
∂
∂
∂
∂
=
=+=
∂
∂
∂
∂
==
∂
∂
∂
∂
=
θθθ
θ
θ
θθ
11cos1sin:
11sin1cos:1:
2
21
zy
R
R
e
rzy
r
R
r
R
ex
x
R
x
R
e






1
0
332211
323121
=⋅=⋅=⋅
=⋅=⋅=⋅
→→→→→→
→→→→→→
eeeeee
eeeeee
We have
Linearized Flow Equations
128
SOLO
Cylindrical Coordinates )continue – 1) ( )θ=== 321 ,, uruxu
→→→→→→
Φ+Φ+Φ=
∂
Φ∂
+
∂
Φ∂
+
∂
Φ∂
=Φ∇ 321321
11
e
r
eee
r
e
r
e
x
rx θ
θ
2
2
22 1
θΦ+Φ+Φ=Φ∇⋅Φ∇
r
rx
→
→→






ΦΦ+ΦΦ+ΦΦ+






Φ−ΦΦ+ΦΦ+ΦΦ+





ΦΦ+ΦΦ+ΦΦ=






Φ+Φ+Φ∇=





Φ∇⋅Φ∇∇
322
2
2
3212
2
2
22
11
111
1
2
1
2
1
e
rr
e
rr
e
r
r
rrxx
rrrrxrxxrxrxxx
rx
θθθθθ
θθθθθ
θ
θθ
θ
θθ
Φ+Φ+Φ+Φ=
∂
Φ∂
+
∂
Φ∂
+
∂
Φ∂
+
∂
Φ∂
=












∂
Φ∂
∂
∂
+





∂
Φ∂
∂
∂
+





∂
Φ∂
∂
∂
=
=Φ∇⋅∇=Φ∇
22
2
22
2
2
2
2
1111
11
rrrrrrx
rr
r
rx
r
xr
rrrxx
Linearized Flow Equations
129
SOLO
Cylindrical Coordinates )continue – 2) ( )θ=== 321 ,, uruxu
Then equation 











Φ∇⋅Φ∇∇⋅Φ∇+Φ∇
∂
∂
⋅Φ∇+
∂
Φ∂
=Φ∇⋅∇
2
1
2
1
2
2
2
tta
becomes
( ){












ΦΦ+ΦΦ+ΦΦ+






Φ−ΦΦ+ΦΦ+ΦΦ+









ΦΦ+ΦΦ+ΦΦ





Φ+Φ+Φ+
ΦΦ+ΦΦ+ΦΦ+Φ=Φ+Φ+Φ+Φ
→
→
→→→→
322
2
2
32
12321
22
11
11
11
2
111
e
rr
e
rr
e
r
e
r
ee
arr
rrxx
rrrrxrx
xrxrxxxrx
ztzytyxtxttrrrxx
θθθθθ
θθθ
θθθ
θθ
or
( ) 0
2
112
/
1
1/
1
1
11
22
222
2
22
2
22
22
2
2
2
=ΦΦ+ΦΦ+ΦΦ−
Φ
−






ΦΦΦ+ΦΦΦ+ΦΦΦ−







 Φ
+Φ+Φ






 Φ
−+Φ






 Φ
−+Φ






 Φ
−
ztzytyxtx
tt
rrxxrxrx
rrr
r
xx
x
aa
rra
a
r
ra
r
raa
θθθθ
θ
θθ
θ
Linearized Flow Equations
130
SOLO
Cylindrical Coordinates )continue – 3) ( )θ=== 321 ,, uruxu
becomes
( ) ( ) ( )





Ψ−Ψ+−Φ∇⋅Φ∇+
∂
Φ∂
−−= ∞∞∞
222
2
1
1 u
t
aa γ
In cylindrical coordinates, equation
( ) ( )





Ψ−Ψ+





−Φ+Φ+Φ+Φ−−= ∞∞∞
22
2
2222 1
2
1
1 U
r
aa rxt θγ
Assuming a stationary flow and neglecting body forces





=
∂
∂
0
t
( )0=Ψ
0
112
/
1
1/
1
1
11
222
2
22
2
22
22
2
2
2
=





ΦΦΦ+ΦΦΦ+ΦΦΦ−







 Φ
+Φ+Φ






 Φ
−+Φ






 Φ
−+Φ






 Φ
−
rrxxrxrx
rrr
r
xx
x
rra
a
r
ra
r
raa
θθθθ
θ
θθ
θ
( )






−Φ+Φ+Φ
−
−= ∞∞
22
2
2222 1
2
1
U
r
aa rx θ
γ
Linearized Flow Equations
Return to Table of Content
131
Linearized Flow EquationsSOLO
Boundary Conditions
1. Since the Small Perturbations are not
considering the Boundary Layer the
Flow must be parallel at the Wing
Surface.
The Wing Surface S is defined by
zU )x,y) – Upper Surface
zL )x,y) – Lower Surface
0

=⋅ S
un
n

- Normal at the Wing Surface
22
1/111 





∂
∂
+





∂
∂
+





+
∂
∂
−
∂
∂
−=
y
z
x
z
zy
y
z
x
x
z
n UUUU
U

( ) ( ) ( ) ( ) zwUyvxuUzwUyvxuUu 1'1'1'1'sin1'1'cos ++++≅++++= ∞∞∞∞ ααα

( ) ( ) 0,,''' =++
∂
∂
−
∂
∂
+− ∞∞ U
UU
zyxwU
x
z
v
x
z
uU α
For Upper Surface
( ) ( ) 





−
∂
∂
≅
∂
∂
+
∂
∂
+= ∞∞ α
x
z
U
x
z
v
x
z
uUzyxw U
onPerturbati
Small
UU
U '',,'
Therefore
( )
( )
( ) Sonyxallfor
x
z
Uzyxw
x
z
Uzyxw
L
L
U
U
,
,,'
,,'













−
∂
∂
≅






−
∂
∂
≅
∞
∞
α
α
Section AA
(enlarged)
Wake region
132
Linearized Flow EquationsSOLO
Boundary Conditions )continue -1)
1. Flow must be parallel at the Wing Surface.
The Wing Surface S is defined by
zU )x,y) – Upper Surface
zL )x,y) – Lower Surface
Since the Small Perturbation gives
Linear Equation we can divide the
Airfoil in the Camber Distribution zC )x,y)
and the Thickness Distribution zt )x,y) by:
( )
( )
( ) Sonyxallfor
x
z
Uyxw
x
z
Uyxw
C
C
t
t
,
0,,'
0,,'













−
∂
∂
=
∂
∂
±=±
∞
∞
α
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]


−=
+=
⇔



−=
+=
2/,,,
2/,,,
,,,
,,,
yxzyxzyxz
yxzyxzyxz
yxzyxzyxz
yxzyxzyxz
LUt
LUC
tCL
tCU
Because of the Linearity the complete solution can be obtained by summing the
Solutions for the following Boundary Conditions
Superposition of
• Angle of Attack
•Camber Distribution
•Thickness Distribution
Section AA
(enlarged)
Wake region
( ) ( ) ( )
( ) ( ) ( )
( ) Sonyxallfor
x
z
x
z
Uyxwyxwyxw
x
z
x
z
Uyxwyxwyxw
tC
tCL
tC
tCU
,
0,,'0,,'0,,'
0,,'0,,'0,,'













∂
∂
−−
∂
∂
=−+=±






∂
∂
+−
∂
∂
=++=±
∞
∞
α
α
133
Linearized Flow EquationsSOLO
Boundary Conditions (continue -2)
2. Disturbances Produced by the Motion
must Die Out in all portion of the Field
remote from the Wing and its Wake
Normally this requirement is met by making
ϕ→0 when y→ ±0, z → ±0, x→-∞
Subsonic Leading
Edge Flow
Subsonic Trailing
Edge Flow
Supersonic Leading
Edge Flow
Supersonic Trailing
Edge Flow
3. Kutta Condition at the Trailing Edge of a
Steady Subsonic Flow
There cannot be an infinite change in velocity at the
Trailing Edge. If the Trailing Edge has a non-zero
angle, the flow velocity there must be zero. At a cusped
Trailing Edge, however, the velocity can be non-zero
although it must still be identical above and below the
airfoil. Another formulation is that the pressure must
be continuous at the Trailing Edge.
http://nylander.wordpress.com/category/engineering/
Kutta Condition does not apply to Supersonic
Flow since the shape and location of the
Trailing Edge exert no influence on the flow
ahead.
134
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
'2u
∞+Uu '1∞U
( )
( )
'
'
'2'
'
'0
''2'0
'
222
1
33
2
11
22
22
11
ρρρ
φ
+=
+=
+≈+=
+=Φ
+=
++=+=
+=
∞
∞
∞∞∞
∞
∞∞
∞
ppp
aaaaaa
xU
uu
uuUUuuu
uUu
O
Small Perturbation Assumptions:












∇⋅+
∂
∂
⋅+
∂
Φ∂
=⋅∇
2
2
1 2
2
2
2
u
u
t
u
u
ta
u



(C.M.) +(C.L.M)
(C.M.) +(C.L.M)
12
1
12
1
2
2
2
2
−
+=
−
++
∂
∂ ∞
∞
γγ
φ a
U
a
u
t
Bernoulli
121 −
∞
−
∞∞∞






=





=





=
γ
γ
γ
γ
γ
ρ
ρ
a
a
T
T
p
p
Isentropic Chain
Development of the Flow Equations:
Flow Equations:
( ) '' 2
1 φφ ∇=+∇⋅∇=⋅∇ ∞ xUu

( )
1
1
2
2
1
12
12
2
2
''
'
1
2
1
x
u
a
U
x
u
uU
a
u
u
a ∂
∂
≅+
∂
∂
+≅





∇⋅
∞
∞
∞
∞


( ) t
u
UuUU
tt
u
t
u
u
∂
∂
=+
∂
∂
≅
∂
∂
=
∂
∂
⋅ ∞∞∞
'
2'22 1
1
2
2

( )

∞
∞
∞
∞
∞
∞
∞∞
∞∞ ++
∂
∂
=⇒
−
+=
−
+
+++
∂
∂
ρ
γ
φ
γγ
φ
p
a
puU
t
a
U
aaa
uUU
t
2
1
2
2
2
1
2
''
'
0
12
1
1
'2
'2
2
1'
∞∞∞∞∞∞∞∞ −
=
−
==⇒
−
=
−
==
a
a
T
T
p
p
a
ad
T
Tdd
p
pd '
1
2'
1
''
1
2
1 γ
γ
γ
γ
ρ
ρ
γ
γ
γ
γ
γ
ρ
ρ
γ Isentropic Chain
Bernoulli
Linearized Flow Equations
135
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
'2u
∞+Uu '1∞U
Small Perturbation Flow Equations:
(C.M.) +(C.L.M) 52.18.00
''
2
'1
' 2
2
1
1
12
2
2
≤≤≤≤





∂
∂
+
∂
∂
+
∂
∂
=∇ ∞∞
∞
MM
tt
u
U
x
u
U
a
φ
φ
( )
''
,,,'' 321
φ
φφ
∇=
=
u
xxxt

Bernoulli 





+
∂
∂
−= ∞∞ '
'
' 1uU
t
p
φ
ρ
∞∞∞∞ −
=
−
==
a
a
T
T
p
p '
1
2'
1
''
γ
γ
γ
γ
ρ
ρ
γIsentropic Chain
Linearized Flow Equations
136
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Three Dimensional Flow (Thin Wings at Small Angles of Attack)
α
U
Up
xd
ud
θ=
L
Low
xd
ud
θ−=
∞U
x
z
( ) 0
'''
1 2
2
2
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
− ∞
zyx
M
φφφ
(1)
( )zyx ,,'φ(2)
z
w
y
v
x
u
∂
∂
=
∂
∂
=
∂
∂
=
'
',
'
',
'
'
φφφ
(3)
α−=≅
+ ∞∞ S
xd
zd
U
w
uU
w '
'
'
(4)
x
UuUp
∂
∂
−=−= ∞∞∞∞
'
''
φ
ρρ(5)
'
2
1
1
''
1
2'
1
''
2
M
M
M
U
u
M
a
a
T
T
p
p
∞
∞
∞
∞
∞∞∞∞
−
+
−=−=
−
=
−
==
γ
γ
γ
γ
γ
γ
γ
ρ
ρ
γ(6)








∂
∂
+
∂∂
∂
+
∂
∂
=∇
∞∞∞
2
2
2
2
2
2
2
2 '1'2'1
'
tUxtUxM
φφφ
φ
( )
''
,,,''
φ
φφ
∇=
=
u
zyxt







+
∂
∂
−= ∞∞ '
'
' uU
t
p
φ
ρ
Steady Three Dimensional Flow Small Perturbation Flow Equations:
0
'
2
2
=
∂
∂
=
∂
∂
tt
52.1
8.00
≤≤
≤≤
∞
∞
M
M
137
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Three Dimensional Flow (Thin Wings at Small Angles of Attack)
0
'''
2
2
2
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
zyx
φφφ
β(1)
Steady Three Dimensional Flow
Subsonic Flow M∞  1
01:
22
−= ∞Mβ
( )
( )
( )
( )
α
ξ
α
φ
α
ξ
α
φ
−=−=
∂
∂
=
−=−=
∂
∂
=
∞∞
∞∞
LowerLower
Lower
UperUper
Upper
d
zd
xd
zd
zUU
w
d
zd
xd
zd
zUU
w
'1'
'1'
3
4
3
4
Transform of Coordinates
( ) ( )






=
=
=
=−= ∞
ςηξφφ
ς
η
ξβξ
,,,,'
1 2
zyx
z
y
Mx










∂
∂
=
∂
∂
⇒
∂
∂
=
∂
∂
∂
∂
=
∂
∂
⇒
∂
∂
=
∂
∂
∂
∂
=
∂
∂
⇒
∂
∂
=
∂
∂
2
2
2
2
2
2
2
2
2
2
22
2
''
''
1'1'
ς
φφ
ς
φφ
η
φφ
η
φφ
ξ
φ
β
φ
ξ
φ
β
φ
zz
yy
xx
( ) ( ) SMdcMydycS
bb
∞∞
−=−== ∫∫ 2
0
2
0
11 ηη
( ) ( )ηcMyc 2
1 ∞−=
∞∞
−
=
−
==
22
22
11 M
AR
SM
b
S
b
AR
22
1
2
1
12
∞∞∞∞ −
=
∂
∂
−
−=
∂
∂
−=
M
C
UMxU
C
p
p
ξ
φφ
Section AA
(enlarged)
Wake region
so 02
2
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
ς
φ
η
φ
ξ
φ
Laplace’s Equation like in Incompressible Flow
Similarity Rules
138
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack)
incpC
M 2
1
1
∞−
incLC
M 2
1
1
∞−
22
1
2
1
1
∞∞ −
=





− Md
Cd
M inc
L α
α
incMC
M 2
1
1
∞−
inc0α
4
1
=





inc
N
c
x
incMC
M
02
1
1
∞−
incLsC
M 2
1
1
∞−
incsα
LsC
sα
0MC
c
xN
MC
0α
αd
Cd L
LC
pCPressure Distribution
Lift
Lift Slope
Zero-Lift Angle
Pitching Moment
Neutral-Point Position
Zero Moment
Angle of Smooth
Leading-Edge Flow
Lift Coefficient of Smooth
Leading-Edge Flow
Aerodynamic Coefficients of a Profile in Subsonic Incident Flow
Based on Subsonic Similarity Rules
139
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
α
U
Up
xd
ud
θ=
L
Low
xd
ud
θ−=
∞U
x
y
( ) 0
''
1 2
2
2
2
2
=
∂
∂
+
∂
∂
− ∞
yx
M
φφ(1)
( )yx,'φ(2)
y
v
x
u
∂
∂
=
∂
∂
=
'
',
'
'
φφ
(3)
α==≅
+ ∞∞ S
xd
yd
U
v
vU
v '
'
'
(4)
x
UuUp
∂
∂
−=−= ∞∞∞∞
'
''
φ
ρρ(5)
'
2
1
1
''
1
2'
1
''
2
M
M
M
U
u
M
a
a
T
T
p
p
∞
∞
∞
∞
∞∞∞∞
−
+
−=−=
−
=
−
==
γ
γ
γ
γ
γ
γ
γ
ρ
ρ
γ(6)






∂
∂
+
∂
∂
+
∂
∂
=∇ ∞∞
∞
2
2
1
1
12
2
2 ''
2
'1
'
tt
u
U
x
u
U
a
φ
φ
( )
''
,,,'' 321
φ
φφ
∇=
=
u
xxxt







+
∂
∂
−= ∞∞ '
'
' uU
t
p
φ
ρ
Steady Two Dimensional Flow Small Perturbation Flow Equations:
0
'
2
2
=
∂
∂
=
∂
∂
tt
52.1
8.00
≤≤
≤≤
M
M
Linearized Flow Equations
140
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
0
''
2
2
2
2
2
=
∂
∂
+
∂
∂
yx
φφ
β(1)
Steady Two Dimensional Flow
Subsonic Flow M∞  1
01:
22
−= ∞Mβ
( )
( )
( )
( )
α
φ
α
φ
−=
∂
∂
=
−=
∂
∂
=
∞∞
∞∞
Lower
Lower
Uper
Upper
xd
yd
yUU
v
xd
yd
yUU
v
'1'
'1'
3
4
3
4
∞U
α
Transform of Coordinates
( ) ( )




=
=
=
yx
y
x
,', φβηξφ
βη
ξ











∂
∂
=
∂
∂
∂
∂
=
∂
∂
∂
∂
=





∂
∂
∂
∂
+
∂
∂
∂
∂
=
∂
∂
=
∂
∂
∂
∂
=





∂
∂
∂
∂
+
∂
∂
∂
∂
=
∂
∂
=
∂
∂
2
2
2
2
2
2
2
2
'
,
1'
11'
111'
η
φφ
ξ
φ
β
φ
η
φη
η
φξ
ξ
φ
β
φ
β
φ
ξ
φ
β
η
η
φξ
ξ
φ
β
φ
β
φ
yx
yyyy
xxxx
so 02
2
2
2
=
∂
∂
+
∂
∂
η
φ
ξ
φ
Laplace’s Equation like in Incompressible Flow
Linearized Flow Equations
141
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Subsonic Flow M∞  1 (continue)
The Airfoil is defined in (x,y) plane and by (ξ,η)
( ) ( )ξη gxfy AirfoilAirfoil =⇔=
The above Transformation relates the
Compressible Flow over an Airfoil
in (x,y) Space to the Incompressible Flow
in (ξ,η) over the same Airfoil.
α
η
φφ
−=
∂
∂
=
∂
∂
=
∞∞∞ Uper
Upper
xd
yd
UyUU
v 1'1'
α
η
φφ
−=
∂
∂
=
∂
∂
=
∞∞∞ Lower
Lower
xd
yd
UyUU
v 1'1'
( )yx,ρρ =
x
y η
ξ
∞= ρρ
Compressible Flow Incompressible Flow
α
η
φ
−=
∂
∂
=
∞∞ Uper
Upper
xd
fd
UU
v 1'
α
η
φ
−=
∂
∂
=
∞∞ Lower
Lower
xd
fd
UU
v 1'
Linearized Flow Equations
142
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
0
'1'
2
2
22
2
=
∂
∂
−
∂
∂
yx
φ
β
φ
(1)
( ) ( ) ( )
( ) ( ) ( ) yxGyxGyx
yxFyxFyx
Lower
Upper
βννβφ
βηηβφ
+==+=
−==−=
:,'
:,'(7)
(8)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
01:
22
−= ∞Mβ
α
U
Up
xd
yd
θ=
L
Low
xd
yd
θ−=
∞U
x
y
1
1
2
−
=
∞Mxd
yd
1
1
2
−
−=
∞Mxd
yd
Flow
Flow
( )
( )
( )
η
β
α
d
Fd
Uxd
yd
U
v
Uper
Upper
∞∞
−=−=
1
7
4'
( ) ( )
η
φ
d
Fd
xd
d
u Upper
73
'
' ==








−
−
−=
∞
∞
α
Upper
Upper
xd
yd
M
U
u
1
'
2
( )
( )
( )
ν
β
α
d
Gd
Uxd
yd
U
v
Lower
Lower
∞∞
=−=
3
8
4
'
( ) ( )
ν
φ
d
Gd
xd
d
u Lower
83
'
' ==








−
−
=
∞
∞
α
Lower
Lower
xd
yd
M
U
u
1
'
2








−
−
=−=
∞
∞∞
∞∞ α
ρ
ρ
Upper
UpperUpper
xd
yd
M
U
uUp
1
''
2
2








−
−
−=−=
∞
∞∞
∞∞ α
ρ
ρ
Lower
LowerLower
xd
yd
M
U
uUp
1
''
2
2
Linearized Flow Equations
143
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations
( )∫ 







−−= ∞
S S
sd
xd
yd
ppD αsin
np
α−
Upper
xd
yd
∞U
Upper
xd
yd
∞p∞p α( )∫ 







−−−= ∞
S S
sd
xd
yd
ppL αcos
( )∫ 







−−≅ ∞
S S
sd
xd
yd
ppD α
( )

Γ
∞∞∞ ∫∫ =








−−−≅
SS S
sduUsd
xd
yd
ppL 'ρα
1−α
Uper
xd
yd
1−α
Uper
xd
yd
Kutta-Joukovsky
Define: 2
2
1
:
∞∞
∞−
=
U
pp
Cp
ρ
( )
( )
∫∫
∫∫








−−=








−
−
−≅








−=








−
−
≅
∞∞
∞∞
∞
∞∞
∞∞
∞∞
∞
∞∞
S S
p
S S
S S
p
S S
sd
xd
yd
CUsd
xd
yd
U
pp
UL
sd
xd
yd
CUsd
xd
yd
U
pp
UD
αρα
ρ
ρ
αρα
ρ
ρ
2
2
2
2
2
2
2
1
2
12
1
2
1
2
12
1
Linearized Flow Equations
144
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Subsonic Flow (M∞  1)
np
α−
Upper
xd
yd
∞U
Upper
xd
yd
∞p∞p α
We found:
α−=
∞ xd
fd
U
v'
α
ξ
−=
∞ d
gd
U
v
( ) ( )











−=
−=
=
∞
∞
yxM
yM
x
,'1,
1
2
2
φηξφ
η
ξ
( ) 0
''
1 2
2
2
2
2
=
∂
∂
+
∂
∂
− ∞
yx
M
φφ 02
2
2
2
=
∂
∂
+
∂
∂
η
φ
ξ
φ
y
v
x
u
∂
∂
=
∂
∂
=
'
',
'
'
φφ
η
φ
ξ
φ
∂
∂
=
∂
∂
= vu ,
vv
M
u
u =
−
=
∞
',
1
'
2
'' uUp ∞∞−= ρ uUp ∞∞−= ρ
xUU
u
U
pp
Cp
∂
∂
−=−=
−
=
∞∞
∞∞
∞ '2'2
2
1
'
:
2
φ
ρ ξ
φ
ρ ∂
∂
−=−=
−
=
∞∞
∞∞
∞
UU
u
U
pp
Cp
22
2
1
:
2
0
2
1
'
∞−
=
M
p
p
2
1
0
∞−
=
M
C
C
p
p
Compressible: Incompressible:
Linearized Flow Equations
145
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Subsonic Flow (M∞  1)
np
α−
Upper
xd
yd
∞U
Upper
xd
yd
∞p∞p α
The Relation:
∫∫
∫∫






−
−=













−−≅














−
−
=













−≅
∞
∞∞
∞∞
∞
∞∞
∞∞
S
p
S S
p
S S
p
S S
p
c
s
dC
M
U
c
s
d
xd
yd
CUL
c
s
d
xd
yd
C
M
U
c
s
d
xd
yd
CUD
0
0
2
2
2
2
2
2
1
2
1
2
1
1
2
1
2
1
ρ
αρ
α
ρ
αρ
2
1
0
∞−
=
M
C
C
p
p
Prandtl-Glauert
Compressibility Correction
As earlier in 1922, Prandtl is quoted as stating that the Lift
Coefficient increased according to (1-M∞
2
)-1/2
; he mentioned
this at a Lecture at Göttingen, but without a proof. This result was
mentioned 6 years later by Jacob Ackeret, again without proof.
The result was finally established by H. Glauert in 1928 based on
Linear Small Perturbation.
Ludwig Prandtl
(1875 – 1953)
Hermann Glauert
(1892-1934)
Linearized Flow Equations
Return to
Critical Mach Number
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Several improved formulas where developed:
( )[ ] 2/11/1 0
0
222
p
p
p
CMMM
C
C
∞∞∞ −++−
= Karman-Tsien
Rule
Linearized Flow Equations
( ) 0
0
2222
12/
2
1
11 p
p
p
CMMMM
C
C






−




 −
++−
=
∞∞∞∞
γ
Laitone’s
Rule
Comparison of several compressibility corrections
compared with experimental results for NACA 4412
Airfoil at an angle of attack of α = 1◦
.
Return to Table of Content
147
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
0
'1'
2
2
22
2
=
∂
∂
−
∂
∂
zx
φ
β
φ
(1)
( ) ( ) ( )
( ) ( ) ( ) zxFzxGzx
zxFzxFzx
Lower
Upper
βννβφ
βηηβφ
+==+=
−==−=
:,'
:,'(7)
(8)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
01:
22
−= ∞Mβ
α
U
Up
xd
zd
θ=
L
Low
xd
zd
θ−=
∞U
x
z
1
1
2
−
=
∞Mxd
zd
1
1
2
−
−=
∞Mxd
zd
Flow
Flow
( )
( )
( )
η
β
α
d
Fd
Uxd
zd
U
w
Upper
Upper
∞∞
−=−=
3
7
4'
( ) ( )
η
φ
d
Fd
xd
d
u Upper
73
'
' ==
( )
( )
( )
ν
β
α
d
Gd
Uxd
zd
U
w
Lower
Lower
∞∞
==−=
3
8
4
'
( ) ( )
ν
φ
d
Gd
xd
d
u Lower
83
'
' ==








−
−
−=
∞
∞
α
Upper
Upper
xd
zd
M
U
w
1
'
2








−
−
=
∞
∞
α
Lower
Lower
xd
zd
M
U
w
1
'
2








−
−
=−==−
∞
∞∞
∞∞∞ α
ρ
ρ
Upper
UpperUpperUpper
xd
zd
M
U
wUppp
1
''
2
2








−
−
−=−==−
∞
∞∞
∞∞∞ α
ρ
ρ
Lower
LowerLowerLower
xd
zd
M
U
wUppp
1
''
2
2
z
w
x
u
∂
∂
=
∂
∂
=
'
',
'
'
φφ
(3)
α−=≅
+ ∞∞ S
xd
zd
U
w
uU
w '
'
'
(4)
148
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
α
U
Up
xd
zd
θ=
L
Low
xd
zd
θ−=
∞U
x
z
1
1
2
−
=
∞Mxd
zd
1
1
2
−
−=
∞Mxd
zd
Flow
Flow
Pressure Distribution and Lift Coefficient








−+
−
=
−
=
∞∞∞
α
ρ
2
1
2
2/
''
22
LowerUpper
LowerUpper
p
xd
zd
xd
zd
MU
pp
C
1
4
2
−
=
∞M
cL
α
( ) ( ) ( ) ( )








−+−
−
−
−
=








+





−





−
−
=





+





−=
∞∞
∞
∫∫∫∫
    
00
22
1
0
1
02
1
0
1
0
00
1
2
1
4
2
1
2
LowerLowerUpperUpper
LowerUpper
ppL
zczzcz
MM
c
x
d
xd
zd
c
x
d
xd
zd
Mc
x
dC
c
x
dCc LowerUpper
α
α








−
−
=
∞
α
Upper
p
xd
zd
M
C Upper
1
2
2 







−
−
−=
∞
α
Lower
p
xd
zd
M
C Lower
1
2
2
149
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
α
U
Up
xd
zd
θ=
L
Low
xd
zd
θ−=
∞U
x
z
1
1
2
−
=
∞Mxd
zd
1
1
2
−
−=
∞Mxd
zd
Flow
Flow
Wave Drag Coefficient
























−+













−
−
=













−−













−= ∫∫∫∫
∞
1
0
2
1
0
2
2
1
0
1
0
1
2
c
x
d
xd
zd
c
x
d
xd
zd
Mc
x
d
xd
zd
C
c
x
d
xd
zd
Cc
UpperUpperLower
p
Upper
pD LowerUpperW
αααα








−
−
=
∞
α
Upper
p
xd
zd
M
C Upper
1
2
2 







−
−
−=
∞
α
Lower
p
xd
zd
M
C Lower
1
2
2
( ) ( ) ( ) ( ) 



























+





−+













+





−
−
= ∫∫∫∫
=−=−
∞
1
0
2
00
1
0
2
1
0
2
00
1
0
2
2
22
1
2
c
x
d
xd
zd
c
x
d
xd
zd
c
x
d
xd
zd
c
x
d
xd
zd
M Lower
zcz
LowerUpper
zcz
Upper
LowerLowerUpperUpper
    
αααα
( )22
22
2
1
2
1
4
LowerUpperD
MM
C W
εε
α
+
−
+
−
=
∞∞
∫
∫














=














=
1
0
2
2
1
0
2
2
:
:
c
x
d
xd
zd
c
x
d
xd
zd
Lower
Lower
Upper
Upper
ε
ε
150
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
Wave Drag Coefficient
Flat Plate 







== 0
LowerUpper
xd
zd
xd
zd
Double Wedge Airfoil
1
4
2
2
−
=
∞M
C WD
α
022
== LowerUpper εε
( )
( )
( )kkc
t
ck
c
t
k
ck
c
t
kc
LowerUpper
−
=






−
−
+==
14
1
1
14
1
4
11
2
2
2
2
22
2
2
22
εε
( ) ( )







−
−
=








−
−

=
cxck
ck
t
ckx
ck
t
xd
zd
cxck
ck
t
ckx
ck
t
xd
zd
LowerUpper
12
0
2
12
0
2
( )
( )kk
ct
MM
C WD
−−
+
−
=
∞∞
1
/
1
1
1
4
2
22
2
α
151
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
Wave Drag Coefficient
Biconvex Airfoil
( ) ( )222
2/2/ ctRR +−=
The Biconvex Airfoil is obtained by intersection of two
Circular Arcs of radius R.
c – the chord
t – maximum thickness at x = c/2
( ) ( ) ( )tcttcR
tc
4/4/ 222
22

≈+=
θθθθ −≈−=≈= tan,tan
LowerUpper
xd
zd
xd
zd
2
2
2/2
/2
3
2
1
0
2
1
0
2
2
3
2
34
11
: Lower
ct
ctUpperUpper
Upper
c
t
t
c
dR
c
xd
xd
zd
cc
x
d
xd
zd
ε
θ
θθε
δ
δ
==≈≈








=













=
+
−
+
−∫∫∫
c
t
R
c
xd
zd
MaxUpper
2
2/
, ≈≈≈








δδ
( ) 2
2
22
2
22
22
2
3
16
1
1
1
4
1
2
1
4
c
t
MMMM
C LowerUpperDW
−
+
−
=+
−
+
−
=
∞∞∞∞
α
εε
α
02/10/15 152
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
Wave Drag Coefficient
Parabolic ProfileDesignation Double Wedge Profile
Contour
Side View
Wave Drag
( )kk −13
1
2( )kk −1
1
( )
( ) xckck
xcxt
z
212 22
−+
−
±=
( )







−
±
±
=
cxckx
ck
t
ckxx
ck
t
z
12
0
2
153
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
Wave Drag Coefficient
Wave Drag at Supersonic Incident Flow
versus Relative Thickness Position
for Double Wedge and Parabolic Profiles
k
( )kk −1
1
( )kk −13
1
2
154
SOLO Wings in Compressible Flow
Double Wedge
Modified Double Wedge
Biconvex
τ
2
1
2
122
1
2
' 2
==






=
c
t
c
t
c
A
τ
3
2
3
2332
1
2
' 2
==
+





=
c
t
c
t
c
t
c
A
155
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Steady Two Dimensional Flow
Supersonic Flow M∞  1
Pitching Moment Coefficient
The Pitching Moment Coefficient about the
Leading Edge for any Thin Airfoil is given by
xdx
xd
zd
xd
zd
Mcc
x
d
c
x
C
c
x
d
c
x
Cc
c
LowerUpper
ppM LowerUpperLE ∫∫∫ 















−+








−
−
−=











+











−=−
∞
022
1
0
1
0
1
2
αα
Thus




 +
−
+
−
−= ∫∫
∞∞
xdzxdz
McM
c
c
Lower
c
UpperM LE 00222
1
2
1
2α
( ) ( ) ( ) ( )[ ] xdzxdzczczcxdzzxxdzzxxdx
xd
zd
xd
zd c
Lower
c
UpperLowerUpper
c
Lower
cx
xLower
c
Upper
cx
xUpper
c
LowerUpper
∫∫∫∫∫ −−−=−+−=








+
=
=
=
= 00
0
00000   
Using integration by parts
Symmetric Airfoil zUpper = -zLower
1
2
2
−
−=
∞M
cM
α
The distance of the Airfoil Center of Pressure aft of the Leading Edge is given by
cc
M
M
c
c
c
c
x
L
MN
2
1
1/4
1/2
2
2
=⋅
−
−
=⋅−=
∞
∞
α
α
α
L
∞U
x
Return to Table of Content
156
SOLO
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)






















−+








−
−
−=





−≅






















−+








−
−
=













−≅
∫∫
∫∫
∞
∞∞
∞∞
∞
∞∞
∞∞
c
x
d
xd
yd
xd
yd
M
U
c
s
dCUL
c
x
d
xd
yd
xd
yd
M
U
c
s
d
xd
yd
CUD
c
LowerUpperS
p
c
LowerUpperS S
p
0
2
2
2
0
22
2
2
2
2
1
2
1
2
1
2
1
2
1
2
1
αα
ρ
ρ
αα
ρ
αρ
α
U
Up
xd
yd
θ=
L
Low
xd
yd
θ−=
∞U
x
y
1
1
2
−
=
∞Mxd
yd
1
1
2
−
−=
∞Mxd
yd
Flow
Flow








−
−
==−
∞
∞∞
∞ α
ρ
Upper
UpperUpper
xd
yd
M
U
ppp
1
'
2
2








−
−
−==−
∞
∞∞
∞ α
ρ
Lower
LowerLower
xd
yd
M
U
ppp
1
'
2
2
1
2
1
2
2
2
−








−
−=
−








−
=
∞
∞
M
xd
yd
C
M
xd
yd
C
Lower
p
Upper
p
Lower
Upper
α
α
We found:
This relation was first derived by Jacob Ackeret in 1925, in a paper
“Luftkrafte auf Flugel, die mit groserer als Schall-geschwingigkeit bewegt werden”
(“Air Forces on Wings Moving at Supersonic Speeds”), that appeared in
Zeitschhrift fur Flugtechnik und Motorluftschiffahrt, vol. 16, 1925, p.72
Jakob Ackeret
(1898–1981)
Linearized Flow Equations
157
AERODYNAMICS
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)
Supersonic Flow past a Symmetric Double-Edged Airfoil
1
2
3
4
SHOCK LINE
SHOCK LINE
SHOCK LINE
SHOCK LINE
EXPANSION
EXPANSION
Using Ackeret Theory we have
( ) ( )
( ) ( )
1
2
,
1
2
1
2
,
1
2
22
22
43
21
−
−
−=
−
+
−=
−
+
=
−
−
=
∞∞
∞∞
M
C
M
C
M
C
M
C
pp
pp
αδαδ
αδαδ
( ) ( )
1
4
2
1
1
4
2
1
1
4
222
1
2/1
2/1
0 3412
−
=
−
+
−
=






−+





−=





=
∞∞∞
∫∫∫
MMM
c
x
dCC
c
x
dCC
c
s
dCC pppp
S
pX
ααα
( ) ( )
( ) ( )
1
4
1
4
2
2
22 2
2/
2
0
2/
2/
0
3412
3412
−
=
−
×=−+−=






−+





−=





=
∞
=
∞
−∫∫∫
MMc
t
CC
c
t
CC
c
t
c
y
dCC
c
y
dCC
c
y
dCC
ct
pppp
ct
pp
ct
pp
S
pX
δδ δ
XYXYD
XYXYL
CCCCC
CCCCC
+≈+=
−≈−=


ααα
ααα
α
α
1
1
cossin
sincos
1
4
1
4
1
4
1
4
2
2
2
21
2
2
2
1
−
+
−
≈
−
−
−
≈
∞∞

∞∞

MM
C
MM
C
D
L
δα
αδα
α
α
158
AERODYNAMICS
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)
159
pc−
cx /
0.1
pc−
cx /
0.1
pc−
cx /
0.1
α
δα 
δ
∞M
δα 
∞M
∞M
δα =
α
∞M
Upper Surface
Lover Surface
Expansion
Shock
Shock
Expansion
Expansion
Shock
Expansion
Shock
Shock
Expansion
Expansion
Shock
Shock
Shock
Shock
∞M
∞M
( )
1
2
2
−
−
=
∞M
cp
αδ
( )
1
2
2
−
+
=
∞M
cp
αδ
( )
1
2
2
−
−
=
∞M
cp
αδ
( )
1
2
2
−
+
=
∞M
cp
αδ
1
4
2
−
=
∞M
cp
α
1
4
2
−
−
=
∞M
cp
α
( )
1
2
2
−
+
−=
∞M
cp
αδ
( )
1
2
2
−
−
−=
∞M
cp
αδ
( )
1
2
2
−
+
−=
∞M
cp
αδ
( )
1
2
2
−
−
−=
∞M
cp
αδ
Supersonic Flow past a Symmetric Biconvex Aerfoil
AERODYNAMICS
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)
2
2
2
2
2
2
2
4
1
1
3
16
3
16
1
4
LD
L
C
M
M
c
t
C
c
tD
L
Md
Cd
−
+
−






=






+
=
−
=
∞
∞
∞
α
α
α
160
SOLO
Linearized Flow Equations
Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0

=×∇ u
Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack)
Aerodynamic Coefficients of a Profile in Supersonic Incident Flow
Based on the Linear Theory Supersonic Rules






−
−
=
∞
Xd
Zd
M
α
1
1
2
1
4
2
−
=
∞M
2
1
=
0DC
0α
0MC
c
xN
αd
Cd L
pCPressure Distribution
Lift Slope
Neutral-Point Position
Zero Moment
Zero-Lift Angle 0=
( )
∫−
−=
∞
1
02
1
4
XdZ
M
S
Wave Drag
L
D
Cd
Cd 1
4
1 2
−−= ∞M
( ) ( )
∫ 













+





−
−=
∞
1
0
22
2
1
4
Xd
Xd
Zd
Xd
Zd
M
tS
161
SOLO
• Up to point A the flow is Subsonic and it follows Prandtl-
Glauert Linear Subsonic Theory.
• At point B (M∞=0.81) the flow on the Upper Surface exceeds
the Sound Velocity and a Shock Wave occurs. On the Lower
Surface the Flow is everywhere Subsonic.
• At point C (M∞=0.89) the Flow velocity exceeds the Speed of
Sound also on the Lower Surface and a Shock Wave occurs.
• At point D (M∞=0.98) the two Shock Waves on the Upper
and Lower Surface (weaker than at point C) are located at
the Trailing Edge. The Lift is larger than at point C.
• At point E (M∞=1.4) pure Supersonic Flow on both
Surfaces.
Transonic Flow past Airfoils
Lift Coefficient of an Airfoil versus Mach Number.
Solid Line – Measurement. Dashed Lines - Theory
AERODYNAMICS
Transonic Flow over an Airfoil at various
Mach Numbers; Angle of Attack α=2°.
The points A,B, C, D,E correspond to the Lift
Coefficients.
162
AERODYNAMICS
Return to Table of Content
163
Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
SOLO AERODYNAMICS
164
AERODYNAMICSSOLO
Return to Table of Content
Continue to Aerodynamics – Part III
165
I.H. Abbott, A.E. von Doenhoff
“Theory of Wing Section”, Dover,
1949, 1959
H.W.Liepmann, A. Roshko
“Elements of Gasdynamics”,
John Wiley  Sons, 1957
Jack Moran, “An Introduction to
Theoretical and Computational
Aerodynamics”
Barnes W. McComick, Jr.
“Aerodynamics of V/Stol Flight”,
Dover, 1967, 1999
H. Ashley, M. Landhal
“Aerodynamics of Wings
and Bodies”,
1965
Louis Melveille Milne-Thompson
“Theoretical Aerodynamics”,
Dover, 1988
E.L. Houghton, P.W. Carpenter
“Aerodynamics for Engineering
Students”, 5th
Ed.
Butterworth-Heinemann, 2001
William Tyrrell Thomson
“Introduction to Space Dynamics”,
Dover
References
AERODYNAMICSSOLO
166
Holt Ashley
“Engineering Analysis of
Flight Vehicles”,
Addison-Wesley, 1974
J.J. Bertin, M.L. Smith
“Aerodynamics for Engineers”,
Prentice-Hall, 1979
R.L. Blisplinghoff, H. Ashley,
R.L. Halfman
“Aeroelasticity”,
Addison-Wesley, 1955
Barnes W. McCormick, Jr.
“Aerodynamics, Aeronautics,
And Flight Mechanics”,
W.Z. Stepniewski
“Rotary-Wing Aerodynamics”,
Dover, 1984
William F. Hughes
“Schaum’s Outline of
Fluid Dynamics”,
McGraw Hill, 1999
Theodore von Karman
“Aerodynamics: Selected
Topics in the Light of their
Historical Development”,
Prentice-Hall, 1979
L.J. Clancy
“Aerodynamics”,
John Wiley  Sons, 1975
References (continue – 1)
AERODYNAMICSSOLO
167
Frank G. Moore
“Approximate Methods
for Missile Aerodynamics”,
AIAA, 2000
Thomas J. Mueller, Ed.
“Fixed and Flapping Wing
Aerodynamics for Micro Air
Vehicle Applications”,
AIAA, 2002
Richard S. Shevell
“Fundamentals of Flight”,
Prentice Hall, 2nd
Ed., 1988 Ascher H. Shapiro
“The Dynamics and Thermodynamics
of Compressible Fluid Flow”,
Wiley, 1953
Bernard Etkin, Lloyd Duff Reid
“Dynamics of Flight:
Stability and Control”,
Wiley 3d Ed., 1995
H. Schlichting, K. Gersten,
E. Kraus, K. Mayes
“Boundary Layer Theory”,
Springer Verlag, 1999
References (continue – 2)
AERODYNAMICSSOLO
168
John D. Anderson
“Computational Fluid Dynamics”,
1995
John D. Anderson
“Fundamentals of Aeodynamics”,
2001
John D. Anderson
“Introduction to Flight”,
McGraw-Hill, 1978, 2004
John D. Anderson
“Introduction to Flight”,
1995
John D. Anderson
“A History of Aerodynamics”,
1995
John D. Anderson
“Modern Compressible Flow:
with Historical erspective”,
McGraw-Hill, 1982
References (continue – 3)
AERODYNAMICSSOLO
Return to Table of Content
February 10, 2015 169
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA
170
Ludwig Prandtl
(1875 – 1953)
University of Göttingen
Max Michael Munk
(1890—1986)[
also NACA
Theodor Meyer
(1882 - 1972
Adolph Busemann
(1901 – 1986)
also NACA 
Colorado U.
Theodore von Kármán
(1881 – 1963)
also USA
Hermann Schlichting
(1907-1982)
Albert Betz
(1885 – 1968 ),
Jakob Ackeret
(1898–1981)
Irmgard Flügge-Lotz
(1903 - 1974)
also Stanford U.
Paul Richard Heinrich Blasius
(1883 – 1970)
171
Hermann Glauert
(1892-1934)
Pierre-Henri Hugoniot
(1851 – 1887)
Gino Girolamo Fanno
(1888 – 1962)
Karl Gustaf Patrik
de Laval
(1845 - 1913)
Aurel Boleslav
Stodola
(1859 -1942)
Eastman Nixon Jacobs
(1902 –1987)
Michael Max Munk
(1890 – 1986)
Sir Geoffrey Ingram
Taylor
(1886 – 1975)
ENRICO PISTOLESI
(1889 - 1968)
Antonio Ferri
(1912 – 1975)
Osborne Reynolds
(1842 –1912)
172
Robert Thomas Jones
(1910–1999)
Gaetano Arturo Crocco
(1877 – 1968)
Luigi Crocco
(1906-1986)
MAURICE MARIE
ALFRED COUETTE
(1858 -1943)
Hans Wolfgang Liepmann
(1914-2009)
Richard Edler
von Mises
(1883 – 1953)
Louis Melville
Milne-Thomson
(1891-1974)
William Frederick
Durand
(1858 – 1959)
Richard T. Whitcomb
(1921 – 2009)
Ascher H. Shapiro
(1916 — 2004)
173
John J. Bertin
(1928 – 2008)
Barnes W. McCormick
(1926 - )
Antonio Filippone John D. Anderson, Jr. Holt Ashley
)1923–2006(
Milton Denman Van
Dyke
(1922 – 2010)
174

Contenu connexe

Tendances

Mini project on RC plane
Mini project on RC planeMini project on RC plane
Mini project on RC planeSandeep Mishra
 
Combustion chambers-and-performance
Combustion chambers-and-performanceCombustion chambers-and-performance
Combustion chambers-and-performancemanojg1990
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 
UNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSUNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSsureshkcet
 
Sideslip | Flight Mechanics | GATE Aerospace
Sideslip | Flight Mechanics | GATE AerospaceSideslip | Flight Mechanics | GATE Aerospace
Sideslip | Flight Mechanics | GATE AerospaceAge of Aerospace
 
ME6604 GAS DYNAMICS AND JET PROPULSION NOTES
ME6604 GAS DYNAMICS AND JET PROPULSION NOTESME6604 GAS DYNAMICS AND JET PROPULSION NOTES
ME6604 GAS DYNAMICS AND JET PROPULSION NOTESBIBIN CHIDAMBARANATHAN
 
Classification of Aircraft power plants_Aircraft Propulsion
Classification of Aircraft power plants_Aircraft Propulsion Classification of Aircraft power plants_Aircraft Propulsion
Classification of Aircraft power plants_Aircraft Propulsion Suthan Rajendran
 
Gas turbine technology
Gas turbine technologyGas turbine technology
Gas turbine technologyAshish kumar
 
Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
Classification of Aircraft | Flight Mechanics | GATE Aerospace
Classification of Aircraft | Flight Mechanics | GATE AerospaceClassification of Aircraft | Flight Mechanics | GATE Aerospace
Classification of Aircraft | Flight Mechanics | GATE AerospaceAge of Aerospace
 
Aircraft landing gear system
Aircraft landing gear systemAircraft landing gear system
Aircraft landing gear systemKrishikesh Singh
 
Basic aerodynamics quiz with answer key
Basic aerodynamics quiz with answer keyBasic aerodynamics quiz with answer key
Basic aerodynamics quiz with answer keyMuhammad Sulaiman
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowAddisu Dagne Zegeye
 
Chapter 1 Introduction to Mechanisms of Machinery
Chapter 1 Introduction to Mechanisms of Machinery Chapter 1 Introduction to Mechanisms of Machinery
Chapter 1 Introduction to Mechanisms of Machinery Biniam Tufa Alemu
 

Tendances (20)

Jet Engines
Jet Engines Jet Engines
Jet Engines
 
Mini project on RC plane
Mini project on RC planeMini project on RC plane
Mini project on RC plane
 
Combustion chambers-and-performance
Combustion chambers-and-performanceCombustion chambers-and-performance
Combustion chambers-and-performance
 
aircraft drag reduction methods
aircraft drag reduction methodsaircraft drag reduction methods
aircraft drag reduction methods
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
ME-438 Aerodynamics (week 9)
ME-438 Aerodynamics (week 9)ME-438 Aerodynamics (week 9)
ME-438 Aerodynamics (week 9)
 
UNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSUNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKS
 
Sideslip | Flight Mechanics | GATE Aerospace
Sideslip | Flight Mechanics | GATE AerospaceSideslip | Flight Mechanics | GATE Aerospace
Sideslip | Flight Mechanics | GATE Aerospace
 
ME6604 GAS DYNAMICS AND JET PROPULSION NOTES
ME6604 GAS DYNAMICS AND JET PROPULSION NOTESME6604 GAS DYNAMICS AND JET PROPULSION NOTES
ME6604 GAS DYNAMICS AND JET PROPULSION NOTES
 
Classification of Aircraft power plants_Aircraft Propulsion
Classification of Aircraft power plants_Aircraft Propulsion Classification of Aircraft power plants_Aircraft Propulsion
Classification of Aircraft power plants_Aircraft Propulsion
 
Gas turbine technology
Gas turbine technologyGas turbine technology
Gas turbine technology
 
Basic aircraft structure
Basic aircraft structureBasic aircraft structure
Basic aircraft structure
 
Air compressor
Air compressorAir compressor
Air compressor
 
Aircraft propulsion system
Aircraft propulsion systemAircraft propulsion system
Aircraft propulsion system
 
Turbomachinary: Axial flow compressor and fans
Turbomachinary: Axial flow compressor and fansTurbomachinary: Axial flow compressor and fans
Turbomachinary: Axial flow compressor and fans
 
Classification of Aircraft | Flight Mechanics | GATE Aerospace
Classification of Aircraft | Flight Mechanics | GATE AerospaceClassification of Aircraft | Flight Mechanics | GATE Aerospace
Classification of Aircraft | Flight Mechanics | GATE Aerospace
 
Aircraft landing gear system
Aircraft landing gear systemAircraft landing gear system
Aircraft landing gear system
 
Basic aerodynamics quiz with answer key
Basic aerodynamics quiz with answer keyBasic aerodynamics quiz with answer key
Basic aerodynamics quiz with answer key
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
Chapter 1 Introduction to Mechanisms of Machinery
Chapter 1 Introduction to Mechanisms of Machinery Chapter 1 Introduction to Mechanisms of Machinery
Chapter 1 Introduction to Mechanisms of Machinery
 

En vedette

Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iiiSolo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 

En vedette (14)

Color theory
Color theoryColor theory
Color theory
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Diffraction
Diffraction Diffraction
Diffraction
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 

Similaire à Aerodynamics part ii

Numerical Study of Strong Free Surface Flow and Wave Breaking
Numerical Study of Strong Free Surface Flow and Wave BreakingNumerical Study of Strong Free Surface Flow and Wave Breaking
Numerical Study of Strong Free Surface Flow and Wave BreakingYi Liu
 
eg-353-paper687856
eg-353-paper687856eg-353-paper687856
eg-353-paper687856JOYAL JACOB
 
Weak and strong oblique shock waves
Weak and strong oblique shock wavesWeak and strong oblique shock waves
Weak and strong oblique shock wavesSaif al-din ali
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
 
4 radio wave propagation over the earth
4 radio wave propagation over the earth4 radio wave propagation over the earth
4 radio wave propagation over the earthSolo Hermelin
 
RESEARCHSTATEMENT_2016
RESEARCHSTATEMENT_2016RESEARCHSTATEMENT_2016
RESEARCHSTATEMENT_2016Unnikrishnan S
 
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...iosrjce
 
How turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scalesHow turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scalesFarid Ait-Chaalal, PhD
 
Applying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance RelationshipsApplying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance RelationshipsDaniel Chia
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdfcfisicaster
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Lectures on Cosmological Correlations
Lectures on Cosmological CorrelationsLectures on Cosmological Correlations
Lectures on Cosmological CorrelationsDanielBaumann11
 

Similaire à Aerodynamics part ii (20)

Numerical Study of Strong Free Surface Flow and Wave Breaking
Numerical Study of Strong Free Surface Flow and Wave BreakingNumerical Study of Strong Free Surface Flow and Wave Breaking
Numerical Study of Strong Free Surface Flow and Wave Breaking
 
eg-353-paper687856
eg-353-paper687856eg-353-paper687856
eg-353-paper687856
 
Weak and strong oblique shock waves
Weak and strong oblique shock wavesWeak and strong oblique shock waves
Weak and strong oblique shock waves
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
4 radio wave propagation over the earth
4 radio wave propagation over the earth4 radio wave propagation over the earth
4 radio wave propagation over the earth
 
RESEARCHSTATEMENT_2016
RESEARCHSTATEMENT_2016RESEARCHSTATEMENT_2016
RESEARCHSTATEMENT_2016
 
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...
Boundary Layer Flow in the Vicinity of the Forward Stagnation Point of the Sp...
 
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
 
How turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scalesHow turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scales
 
Waves
WavesWaves
Waves
 
Applying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance RelationshipsApplying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance Relationships
 
Chapter 3.pdf
Chapter 3.pdfChapter 3.pdf
Chapter 3.pdf
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
harmonic-1.ppt
harmonic-1.pptharmonic-1.ppt
harmonic-1.ppt
 
Chapter 4.pptx
Chapter 4.pptxChapter 4.pptx
Chapter 4.pptx
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Shock wave 1
Shock wave  1Shock wave  1
Shock wave 1
 
Lectures on Cosmological Correlations
Lectures on Cosmological CorrelationsLectures on Cosmological Correlations
Lectures on Cosmological Correlations
 

Plus de Solo Hermelin

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 

Plus de Solo Hermelin (19)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Dernier

Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 

Dernier (20)

Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 

Aerodynamics part ii

  • 2. 2 Table of Content AERODYNAMICS Earth Atmosphere Mathematical Notations SOLO Basic Laws in Fluid Dynamics Conservation of Mass (C.M.) Conservation of Linear Momentum (C.L.M.) Conservation of Moment-of-Momentum (C.M.M.) The First Law of Thermodynamics The Second Law of Thermodynamics and Entropy Production Constitutive Relations for Gases Newtonian Fluid Definitions – Navier–Stokes Equations State Equation Thermally Perfect Gas and Calorically Perfect Gas Boundary Conditions Flow Description Streamlines, Streaklines, and Pathlines AEROD
  • 3. 3 Table of Content (continue – 1) AERODYNAMICS SOLO Circulation Biot-Savart Formula Helmholtz Vortex Theorems 2-D Inviscid Incompressible Flow Stream Function ψ, Velocity Potential φ in 2-D Incompressible Irrotational Flow Aerodynamic Forces and Moments Blasius Theorem Kutta Condition Kutta-Joukovsky Theorem Joukovsky Airfoils Theodorsen Airfoil Design Method Profile Theory by the Method of Singularities Airfoil Design AEROD
  • 4. 4 Table of Content (continue – 2) AERODYNAMICS SOLO Lifting-Line Theory Subsonic Incompressible Flow (ρ∞ = const.) about Wings of Finite Span (AR < ∞) 3D Lifting-Surface Theory through Vortex Lattice Method (VLM) Incompressible Potential Flow Using Panel Methods Dimensionless Equations Boundary Layer and Reynolds Number Wing Configurations Wing Parameters References AEROD
  • 5. 5 Table of Content (continue – 3) AERODYNAMICS SOLO Shock & Expansion Waves Shock Wave Definition Normal Shock Wave Oblique Shock Wave Prandtl-Meyer Expansion Waves Movement of Shocks with Increasing Mach Number Drag Variation with Mach Number Swept Wings Drag Variation Variation of Aerodynamic Efficiency with Mach Number Analytic Theory and CFD Transonic Area Rule
  • 6. 6 Table of Content (continue – 4) AERODYNAMICS SOLO Linearized Flow Equations Cylindrical Coordinates Small Perturbation Flow Applications: Nonsteady One-Dimensional Flow Applications: Two Dimensional Flow Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack) Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (d) and Lift (l) per Unit Span Computations for Subsonic Flow (M∞ < 1) Prandtl-Glauert Compressibility Correction Computations for Supersonic Flow (M∞ >1) Ackeret Compressibility Correction
  • 7. 7 SOLO Table of Contents (continue – 5) Wings of Finite Span at Supersonic Incident Flow Theoretic Solutions for Pressure Distribution on a Finite Span Wing in a Supersonic Flow (M∞ > 1) 1. Conical Flow Method 2. Singularity-Distribution Method Theoretical Solutions for Compressible Supersonic Flow (M∞ >1) Theoretic Solution for Pressure Distribution on a Semi-Infinite Triangular Wing in a Supersonic Flow and Subsonic Leading Edge (tanΛ > β) Theoretic Solution for Pressure Distribution on a Semi-Infinite Triangular Wing in a Supersonic Flow and Supersonic Leading Edge (tanΛ < β) Theoretic Solution for Pressure Distribution on a Delta Wing in a Supersonic Flow and Subsonic Leading Edge (tanΛ > β) Theoretic Solution for Pressure Distribution on a Delta Wing in a Supersonic Flow and Supersonic Leading Edge (tanΛ < β) Arrowhead Wings with Double-Wedge Profile at Zero Incidence Systematic Presentation of Wave Drag of Thin, Nonlifting Wings having Straight Leading and Trailing Edges and the same dimensionless profile in all chordwise plane [after Lawrence] AERODYNAMICS A E R O D Y N A M I C S P A R T I I I
  • 8. 8 Table of Content (continue – 6) AERODYNAMICS SOLO Aircraft Flight Control References CNα – Slope of the Normal Force Coefficient Computations of Swept Wings Comparison of Experiment and Theory for Lift-Curve Slope of Un-swept Wings Drag Coefficient A E R O D Y N A M I C S P A R T I I I
  • 9. 9 Continue from AERODYNAMICS – Part I AERODYNAMICS
  • 10. 10 SOLO - when the source moves at subsonic velocity V a, it will stay inside the family of spherical sound waves. a V M M =      = − 1 sin 1 µ Disturbances in a fluid propagate by molecular collision, at the sped of sound a, along a spherical surface centered at the disturbances source position. The source of disturbances moves with the velocity V. - when the source moves at supersonic velocity V a, it will stay outside the family of spherical sound waves. These wave fronts form a disturbance envelope given by two lines tangent to the family of spherical sound waves. Those lines are called Mach waves, and form an angle μ with the disturbance source velocity: SHOCK EXPANSION WAVES
  • 11. 11 SOLO SHOCK EXPANSION WAVES M 1 M = 1 M 1 Mach Waves
  • 12. 12 SOLO When a supersonic flow encounters a boundary the following will happen: When a flow encounters a boundary it must satisfy the boundary conditions, meaning that the flow must be parallel to the surface at the boundary. - when the supersonic flow, in order to remain parallel to the boundary surface, must “turn into itself” (see the Concave Corner example) a Oblique Shock will occur. After the shock wave the pressure, temperature and density will increase. The Mach number of the flow will decrease after the shock wave. SHOCK EXPANSION WAVES - when the supersonic flow, in order to remain parallel to the boundary surface, must “turn away from itself” (see the Convex Corner example) an Expansion wave will occur. In this case the pressure, temperature and density will decrease. The Mach number of the flow will increase after the expansion wave. Return to Table of Content
  • 13. 13 SHOCK WAVESSOLO A shock wave occurs when a supersonic flow decelerates in response to a sharp increase in pressure (supersonic compression) or when a supersonic flow encounters a sudden, compressive change in direction (the presence of an obstacle). For the flow conditions where the gas is a continuum, the shock wave is a narrow region (on the order of several molecular mean free paths thick, ~ 6 x 10-6 cm) across which is an almost instantaneous change in the values of the flow parameters. Shock Wave Definition (from John J. Bertin/ Michael L. Smith, “Aerodynamics for Engineers”, Prentice Hall, 1979, pp.254-255) When the shock wave is normal to the streamlines it is called a Normal Shock Wave, otherwise it is an Oblique Shock Wave. The difference between a shock wave and a Mach wave is that: - A Mach wave represents a surface across which some derivative of the flow variables (such as the thermodynamic properties of the fluid and the flow velocity) may be discontinuous while the variables themselves are continuous. For this reason we call it a weak shock. - A shock wave represents a surface across which the thermodynamic properties and the flow velocity are essentially discontinuous. For this reason it is called a strong shock.
  • 14. 14 Normal Shock Wave Over a Blunt Body Normal Shock Wave SHOCK WAVESSOLO Oblique Shock Wave Oblique Shock Wave Return to Table of Content
  • 15. 15 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Conservation of Mass (C.M.) ρ ρ1 1 2 2u u= η ρ ρ = =2 1 1 2 u u Conservation of Linear Momentum (C.L.M.) 2 2 221 2 11 pupu +=+ ρρ ( ) p p u p 2 1 1 2 1 1 1 1= + − ρ η H H h u h u1 2 1 1 2 2 2 21 2 1 2 = → + = + h h u h 2 1 1 2 1 2 1 2 1 1 = + −       η Conservation of Energy (C.E.) Field Equations Constitutive Relations p R T= ρIdeal Gas ( ) ( ) ( ) e e T C Tv= = 1 2 (1) Thermally Perfect Gas (2) Calorically Perfect Gas ργ γ ρρρ γ ρ pp C C C C p R C TC p eh v p vp C C v p v p CCR p TRp p 11 − = − ===+= ≡−== u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 16. 16 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, First Way h h p p p p p p u h u p 2 1 2 2 1 1 2 1 1 2 2 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 = − − = = = + −       = + − −       γ γ ρ γ γ ρ ρ ρ η η γ γ ρ η or ( ) p p u p u p C L M 2 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 η ρ η η γ γ ρ η = + −           = + − −       ( . . .) after further development we obtain 1 2 1 1 1 1 1 1 2 01 2 1 1 2 1 2 1 1 1 2 1 1 − −       − +           + + −           = γ γ ρ η ρ η γ γ ρ u p u p u p Solving for 1/η , we obtain 1 1 1 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 1 2 1 1 η ρ ρ ρ ρ γ γ ρ γ γ ρ γ γ = = = +           − +           − + + −           + u u u p u p u p u p u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 17. 17 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, We obtain an other relation in the following way: ( ) p p u p p p u p p p p p p p p p p p p p p p 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 η γ γ ρ η ρ η η γ γ η η γ γ γ γ γ γ η γ γ γ γ γ γ γ γ − = − −       − = −         ⇒ − − = − +       ⇓ − − − −      = + − −       ⇓ = + − − − + + η ρ ρ γ γ γ γ = = = + − − + + − =2 1 1 2 2 1 2 1 2 1 1 2 1 1 1 1 1 u u p p p p p p T T or Rankine-Hugoniot Equation Rankine-Hugoniot Equation (1) William John Macquorn Rankine (1820-1872) u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2 Pierre-Henri Hugoniot (1851 – 1887)
  • 18. 18 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, η ρ ρ γ γ γ γ = = = + − − + + − =2 1 1 2 2 1 2 1 2 1 1 2 1 1 1 1 1 u u p p p p p p T T Rankine-Hugoniot Equation Rankine-Hugoniot Equation (2) p p 2 1 2 1 2 1 1 1 1 1 1 = + − − + − − γ γ ρ ρ γ γ ρ ρ T T p p p p p p p p p p p p 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = = + + − + − − = + + − + − − = + − − + − − = + − − + − − ρ ρ γ γ γ γ γ γ γ γ γ γ ρ ρ γ γ ρ ρ ρ ρ γ γ ρ ρ γ γ ρ ρ p2 p 1 ρ 2 ρ 1 NormalShockWave Rankine-Hugoniot Isentropic γp2 p 1 ρ 2 ρ 1 ( )= u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 20. 20 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Strong Shock Wave Definition: p p u u T T p p R H R H 2 1 2 1 1 2 2 1 2 1 1 1 1 1 → ∞ ⇒ = → + − → − + − −ρ ρ γ γ γ γ Weak Shock Wave Definition: ∆ p p p p p1 2 1 1 1= − ρ ρ ρ2 1 2 1 2 1 = + = + = + ∆ ∆ ∆ p p p h h h For weak shocks u p 1 2 = ∆ ∆ρ ∆ ∆ h u ρ ρ = 1 2 1 u u u u u u2 1 2 1 1 1 1 1 1 1 1 1 1 1 = = + = + ≅ − ρ ρ ρ ρ ρ ρ ρ ρ ρ∆ ∆ ∆ (C.M.) ( ) ( )ρ ρ ρ ρ ρ 1 1 2 1 1 1 2 2 1 1 1 1 1 1u p u u p u u u p p+ = + = −       + + ∆ ∆(C.L.M.)  ordernd uuuhhuuhhuhuh 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 11 2 1 1 11 2 22 2 11       ∆ + ∆ −+∆+=      ∆ −+∆+=+=+ ρ ρ ρ ρ ρ ρ(C.E.) u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 21. 21 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Second Way h h u h u0 1 1 2 2 2 21 2 1 2 ≡ + = +Define        − − − =→+ − = − − − =→+ − = 2 10 1 12 1 1 1 0 2 20 2 22 2 2 2 0 11 2 1 1 11 2 1 1 uh p u p h uh p u p h γ γ γ γ ρργ γ γ γ γ γ ρργ γ u u h1 2 0 2 1 1 = − + γ γ Prandtl’s Relation ( )u h u u u p p u p2 0 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1= − + → = = → = + − γ γ ρ ρ ρη ρ ηFrom this relation, we obtain: Prandtl’s Relation Ludwig Prandtl (1875-1953) u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2 (C.M.) (C.L.M.) ργ γ p h 1− = and use 12 22 2 11 1 2211 2 2 221 2 11 11 uu u p u p uu pupu −=−→    = +=+ ρρρρ ρρ 1221 21 0 2 1 2 1111 uuuu uu h −= − + − −      − − γ γ γ γ γ γ ( )       − −−= −− γ γ γ γ 2 1 1 1 12 21 12 0 uu uu uu h
  • 22. 22 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, (C.M.) Hugoniot Equation ρ ρ ρ ρ 1 1 2 2 2 1 1 2 u u u u= → = ( )ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ 1 1 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 2 2 1 2 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1 2 u p u p u p p p u u u p p u p p u u u u + = + =       + → − = −       = − → → = − −       → = − −               = = (C.L.M.) ( )( ) h u h u e p p p e p p p e e p p p p p p p p e e p p h e p 1 1 2 2 2 2 1 1 1 2 1 2 1 2 2 2 2 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 + = + → + + − −       = + + − −       → → − = − − −       + − = − − − + − → → − = − + = + ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ( ) ( ) + − = + − − + − → → − = + − +               2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 p p p p p p p p e e p p p p ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ (C.E.) e e p p 2 1 1 2 2 1 2 1 1 − = + −       ρ ρ Hugoniot Equation u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2 Pierre-Henri Hugoniot (1851 – 1887)
  • 23. 23 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Fanno’s Line for a Perfect Gas (1) ( )1 1 1 2 2ρ ρu u m A = =  ( ) frictionpupu ++=+ 2 2 221 2 112 ρρ ( )3 1 2 1 2 1 1 2 2 2 2 C T u C T u h C Tp p p+ = + = ( )4 1 1 1 2 2 2 p R T p R T= =ρ ρ ( )5 2 1 2 1 2 1 s s C T T R p p p − = −ln ln (C.M.) (C.L.M.) (C.E.) Ideal Gas ( ) p p T T u u h C T h C T p p T T h C T h C T s s C T T R T T h C T h C T p p p p p p p 2 1 4 2 1 2 1 2 1 1 1 2 3 0 1 0 2 2 1 2 1 0 1 0 2 2 1 2 1 2 1 0 1 0 2 5 =             = = − −        → = − − → − = − − − ( ) ( ) ( ) ln ln ρ ρ ρ ρ Assume that all the conditions of the model are satisfied except the moment equation (2) (a flow with friction) Using , we obtainh C Tp= s s 1 s 2 s max h 1 h 2 h 2 1 s s C h h R h h h h h h p2 1 2 1 2 1 0 1 0 2 − = − − − ln ln Fanno’s Line for a Perfect Gas This is the Adiabatic, Constant Area Flow. u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2 Gino Girolamo Fanno (1888 – 1962)
  • 24. 24 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Fanno’s Line for a Perfect Gas (2) s s 1 s 2 s max h 1 h 2 h 2 1 We have a point of maximum entropy. Let see the significance of this point ρρ dp dh dp dhdsT =→=−= 0 max Gibbs u dud dudu −=→=+ ρ ρ ρρ 0(C.M.) duudh u hd −=→=      + 0 2 2 (C.E.) Therefore )4..( 0 .).( 00 0 EC ds MC dsds ds u du d dpd d dpdp dh =      −      =      == === = ρρ ρ ρρ 0 0 = =       = ds ds d dp u ρ or ds C dT T R dp p ds C dT T R d C C dp p d dp d p dp d p R T p v p v ds ds ds ds p R T = − = = − =        → ≡ = = → = == = = = = max max 0 0 0 0 0 0 ρ ρ γ ρ ρ ρ ρ ρ γ ρ γ ρ We have: u dp d R T a speed of soundds ds = = =       = = =0 0 ρ γ u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 25. 25 Ideal Gas NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Rayleigh’s Line for a Perfect Gas (1) ( ) A m uu  == 22111 ρρ ( )2 1 1 2 1 2 2 2 2ρ ρu p u p+ = + ( ) QhuTCuTC pp ++=+ 2 22 2 11 2 1 2 1 3 ( )4 1 1 1 2 2 2 p R T p R T= =ρ ρ ( )5 2 1 2 1 2 1 s s C T T R p p p − = −ln ln (C.M.) (C.L.M.) (C.E.) Assume that all the conditions of the model are satisfied except the energy equation (3) (a flow with heating and cooling) Let substitute in (5) , to obtainh C Tp= Rayleigh’s Line for a Perfect Gas This is the Frictionless, Constant Area Flow, with Cooling and Heating. s max s s 1 s 2 h 1 h 2 h M1 M1 Rayleigh2 1 Heating Heating Cooling  m A R T p p m A R T p p x p 1 1 1 2 2 2 1 + = + ( ) 2 1 12 1 1 1 2 12 11 1 2 12 1 2 1 lnln5 p R A m c p TR A m b h C a bbR h h Css p p  =        +=         −+−=− We want to find x p p ≡ 2 1 . Let multiply the result by x p1 x m A R T p b x m A R p c T2 1 1 2 1 1 2 1 21 2 0− +       + =       or x p p b b a T= = + −2 1 1 1 2 1 2 The solution is: John William Strutt Lord Rayleigh (1842-1919) u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2
  • 26. 26 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Rayleigh’s Line for a Perfect Gas (2) We have a point of maximum entropy. Let see the significance of this point u dud dudu −=→=+ ρ ρ ρρ 0(C.M.) (C.L.M.) A Normal Shock Wave must be on both Fanno and Rayleigh Lines, therefore the end points of a Normal Shock Wave must be on the intersection of Fanno and Rayleigh Lines u dp d R T a speed of soundds ds = = =       = = =0 0 ρ γ d p u dp du u+       = → = − 1 2 02 ρ ρ ( )→ = = − −       = dp d dp du du d u u u ρ ρ ρ ρ 2 s s 1 s 2 h 1 h 2 h M1 M1 Rayleigh Fanno 2 1 SHOCK According to the Second Law of Thermodynamics the Entropy must increase. Therefore a Normal Shock Wave from state (1) to state (2) must be such that s2 s1. (from supersonic to subsonic flow only) u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2
  • 27. 27 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (1) ( ) ( ) ( )   C M u u C L M u p u p p u p u u u C E a h u a h u a a u a a u a p . . . . . . . ρ ρ ρ ρ ρ ρ γ γ γ γ γ γ γ ρ 1 1 2 2 1 1 2 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 1 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 4 1 1 2 1 1 2 1 2 1 2 1 2 1 2 = + = +    → − = − → − + = − + → = + − − = + − −               = ∗ ∗    − = − a u a u u u1 2 1 2 2 2 2 1 γ γ Field Equations: ( ) γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ + − − − + + − = − ↓ + − + − − = − → + = − − = + ↓ ∗ ∗ ∗ ∗ 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 2 1 2 1 1 2 2 2 1 2 1 2 1 2 a u u a u u u u u u u u a u u u u a u u u u a1 2 2 = ∗ u a u a M M1 2 1 21 1∗ ∗ ∗ ∗ = → = Prandtl’s Relation u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2 Ludwig Prandtl (1875-1953)
  • 28. 28 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( ) M M M M M M M M M 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 1 1 1 2 = + − − = + − − = + + − + − − = − + + / + − / / + − / + − − ∗ = ∗ ∗ ∗ γ γ γ γ γ γ γ γ γ γ γ γ γ γ or ( ) M M M M M H H A A 2 1 2 1 2 1 2 1 21 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 1 1 = + − − − = + + − + + − = = γ γ γ γ γ γ γ ( ) ( ) ρ ρ γ γ 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 1 2 = = = = = + − + = ∗ ∗ A A u u u u u u a M M M u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2
  • 29. 29 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (3) ( ) ( ) ( ) ( ) ( ) p p u p u u u a M M M M M M M 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 = + −       = + −       = + − − + +       = + / + − / − − + ρ γ ρ ρ γ γ γ γ γ γ γ or (C.L.M.) ( ) p p M2 1 1 2 1 2 1 1= + + − γ γ ( ) ( ) ( ) h h T T p p M M M a a h C T p RTp 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 1 1 2 1 = = = + + −       − + + = = =ρ ρ ρ γ γ γ γ ( ) ( ) ( ) s s R T T p p M M M 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 − =                       = + + −       − + +                 − − − − ln ln γ γ γ γ γ γ γ γ γ γ ( ) ( ) ( ) ( ) s s R M M M 2 1 1 1 2 1 2 3 2 2 1 2 41 2 2 3 1 1 2 1 1 − ≈ + − − + − + − γ γ γ γ K Shapiro p.125 u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2
  • 30. 30 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (4) ( ) p p p p p p p p M M M02 01 02 2 1 01 2 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1= = + − + −           + + −       −γ γ γ γ γ γ ( ) ( ) 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 + − = + − + − − − = − − + − + −      + + + −       = + + + − γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ M M M M M M M M ( ) ( ) p p M M M02 01 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 1= + + + −             + + −       − − − γ γ γ γ γ γ γ γ u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2
  • 31. 31 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (5) ( ) s s R T T p p p p M M M T T 2 1 02 01 1 02 01 1 02 01 1 2 1 2 1 2 02 01 1 1 1 2 1 1 1 1 2 1 1 2 − =                       = −       = − + + −       − − + + −           − − = ln ln ln ln γ γ γ γ γ γ γ γ γ s s 1 s 2 T M1 M1 Rayleigh Fanno 2 1 SHOCK T 2 T 1 T 02 T 01= T 2 T 1=* * p 2 p 1 p 01 p 02 Mollier’s Diagram u p ρ T e u p ρ T e τ 11 q Q 1 1 1 1 1 2 2 2 2 2 1 2 John William Strutt Lord Rayleigh )1842-1919( Gino Girolamo Fanno )1888–1062( Return to Table of Content
  • 32. 32 OBLIQUE SHOCK EXPANSION WAVESSOLO →→ →→ += += twnuV twnuV 11 11 222 111   Continuity Eq.: 2211 uu ρρ = ( ) ( ) ( )21222111 ppuuuu +−−=+− ρρ Moment Eq. Tangential Component: ( ) ( ) 0222111 =+− wuwu ρρ Moment Eq. Normal Component: Energy Eq.: 22 2 2 2 2 211 2 1 2 1 1 22 u wu hu wu h ρρ         + +=        + + Continuity Eq.: 2211 uu ρρ = Moment Eq.: 21 ww = 2 222 2 111 upup ρρ +=+ Energy Eq.: 22 2 2 2 2 1 1 u h u h +=+ Summary Calorically Perfect Gas: Tch TRp p= = ρ 6 Equations with 6 Unknowns 222222 ,,,,, hwuTpρ
  • 33. 33 OBLIQUE SHOCK EXPANSION WAVESSOLO For a calorically Perfect Gas ( ) ( ) ( ) ( )[ ] ( )[ ] 2 1 1 2 1 2 2 1 2 12 2 2 1 1 2 2 1 2 1 1 2 11/2 1/2 1 1 2 1 21 1 ρ ρ γγ γ γ γ γ γ ρ ρ p p T T M M M M p p M M n n n n n n = −− −+ = − + += +− + = βsin11 MMn = ( )θβ − = sin 2 2 nM M Now we can compute ( ) ( ) ( ) ( ) ( ) ( )       ⋅+ − = − + −+ === − ⇒          = =− = θββ θβ β θβ βγ βγ ρ ρ β θβ θβ β tantan1tan tantan tan tan sin1 sin12 tan tan tan tan 22 1 22 1 2 1 1 2 12 2 2 1 1 M M u u ww w u w u
  • 34. 34 OBLIQUE SHOCK EXPANSION WAVESSOLO ( )       ++ − = 22cos 1sin cot2tan 2 1 22 1 βγ β βθ M M M,, βθ relation 12 M 12 M .5max =Mforθ β θ 1M 2M Strong Shock Weak Shock θ β We can see that θ = 0 for 1.β = 90° (Normal Shock) 2.sin β = 1/ M1
  • 35. 35 OBLIQUE SHOCK EXPANSION WAVESSOLO 1. For any given M1 there is a maximum deflection angle θmax If the physical geometry is such that θ θmax, then no solution exists for straight oblique shock wave. Instead the shock will be curved and detached.
  • 36. 36 OBLIQUE SHOCK EXPANSION WAVESSOLO 2.For any given θ θmax, there are two values of β predicted by the θ-β-M relation for a given Mach number. WEAKβ STRONGβ ( )       ++ − = 22cos 1sin cot2tan 2 1 22 1 βγ β βθ M M M,, βθ relation - the large value of β is called the strong shock solution In nature the weak shock solution usually occurs. - the small value of β is called the weak shock solution - in the strong shock solution M2 is subsonic (M2 1) - in the weak shock M2 solution is supersonic (M2 1)
  • 37. 37( )       ++ − = 22cos 1sin cot2tan 2 1 22 1 βγ β βθ M M M,, βθ relation SOLO OBLIQUE SHOCK EXPANSION WAVES θ β 4.1=γ θ maxθ θ
  • 38. 38 ( )[ ] ( )[ ] ( )θβ γγ γ β − = −− −+ = = sin 11/2 1/2 sin 2 2 2 1 2 12 2 11 n n n n n M M M M M MM SOLO θ maxθ OBLIQUE SHOCK EXPANSION WAVES Mach Number in Back of Oblique Shock M2 as a Function of the Mach Number in Front of the Shock M , for Different Values of Deflection Angle θ (γ=1.4)
  • 39. 39 ( )1 1 2 1 sin 2 1 1 2 11 − + += = n n M p p MM γ γ β SOLO θ θ OBLIQUE SHOCK EXPANSION WAVES Static Pressure Ratio P2 / P1 as a Function of M1 the Mach Number in Front of an Oblique Shock, for Different Values of Deflection Angle θ (γ=1.4)
  • 40. 40 SOLO θ θ OBLIQUE SHOCK EXPANSION WAVES Stagnation Pressure Ratio P2 0/ P1 0 as a Function of M1 the Mach Number in Front of an Oblique Shock, for Different Values of Deflection Angle θ (γ=1.4)
  • 41. 41 Hodograph Shock Polar SOLO OBLIQUE SHOCK EXPANSION WAVES
  • 42. 42 Hodograph Shock Polar SOLO -For every deflection angle θ the Hodograph gives two solutions, a strong shock (B outside the sonic circle – M21) and a weak shock (D inside the sonic circle – M11) - The line OC tangent to the Hodograph gives the maximum deflection angle θmax. For θ θmax there is no oblique shock wave. - For point E θ=0 and β=π/2, therefore a normal shock. Point A corresponds to the Mach value before the shock M1. - The Shock Angle β corresponding to a given angle θ defined by the points B and D can be found by drawing the line OH normal to line AB. β = angle HOA. OBLIQUE SHOCK EXPANSION WAVES
  • 43. 43 SOLO Family of Hodograph Shock Polars ( γ= 1.4) θ 1 ***1 2 1 ** *** 21 2 1 212 21 2 2 +−      + −       −=      c V c V c V c V c V c V c V c V x x xy γ A. H. Shapiro “The Dynamics and Thermodynamics of Compressible Flow Fluid”,pg.543 45.2 OBLIQUE SHOCK EXPANSION WAVES
  • 45. 45 SOLO OBLIQUE SHOCK EXPANSION WAVES
  • 46. 46 SOLO OBLIQUE SHOCK EXPANSION WAVES
  • 47. 47 SOLO OBLIQUE SHOCK EXPANSION WAVES
  • 48. 48 SOLO OBLIQUE SHOCK EXPANSION WAVES
  • 49. 49 SOLO OBLIQUE SHOCK EXPANSION WAVES Return to Table of Content
  • 50. 50 SOLO OBLIQUE SHOCK EXPANSION WAVES Prandtl-Meyer Expansion Waves Ludwig Prandtl (1875 – 1953) Theodor Meyer (1882 – 1972) The Expansion Fan depicted in Figure was First analysed by Prandtl in 1907 and his student Meyer in 1908. Let start with an Infinitesimal Change across a Mach Wave M ach W ave θd µ µ π − 2 θµ π d−− 2 V VdV + ( ) ( ) θµθµ µ θµπ µπ dddV VdV sinsincoscos cos 2/sin 2/sin − = −− + = + µ θµθ µθ tan / tan1 tan1 1 1 VVd dd dV Vd =⇒+≈ − ≈+ 1 1 tan 1 sin 2 1 − =⇒      = − MM µµ V Vd Md 12 −=θ 1907 - 1908
  • 51. 51 SOLO OBLIQUE SHOCK EXPANSION WAVES Prandtl-Meyer Expansion Waves (continue-1) M ach W ave θd µ µ π − 2 θµ π d−− 2 V VdV + V Vd Md 12 −=θ Integrating this equation gives ∫ −= 2 1 12 M M V Vd Mθ Using the definition of Mach Number: V = M. a a ad M Md V Vd += For a Calorically Perfect Gas 20 2 0 2 1 1 M T T a a − +==      γ MdMM a ad 1 2 2 1 1 2 1 −       − + − −= γγ M Md MV Vd 2 2 1 1 1 − + = γ ∫ − + − = 2 1 2 2 2 1 1 1 M M M Md M M γ θ
  • 52. 52 SOLO OBLIQUE SHOCK EXPANSION WAVES Prandtl-Meyer Expansion Waves (continue-2) The integral ∫ − + − = 2 1 2 2 2 1 1 1 M M M Md M M γ θ ( ) ∫ − + − = M Md M M M 2 2 2 1 1 1 γ ν is called the Prandtl-Meyer Function and is given the symbol ν. Performing the integration we obtain ( ) ( ) ( )1tan1 1 1 tan 1 1 2121 −−− + − − + = −− MMM γ γ γ γ ν Deflection Angle ν and Mach Angle μ as functions of Mach Number       = − M 1 sin 1 µ Finally ( ) ( )12 MM ννθ −= Return to Table of Content
  • 53. 53 Movement of Shocks with Increasing Mach Number Drag rises due to pressure Increase across a Shock Wave •Subsonic Flow - Local airspeed is less than sonic •Transonic Flow - Local airspeed is less than sonic at some points, greater than sonic elsewhere •Supersonic Flow - Local Airspeed is greater than sonic everywhere SOLO AERODYNAMICS
  • 54. 54 Movement of Shocks with Increasing Mach Number ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )87654321 ∞∞∞∞∞∞∞∞ MMMMMMMM SOLO AERODYNAMICS
  • 55. 55 Upper Surface Lower Surface Upper Surface Lower Surface Upper Surface Lower Surface Upper Surface Lower Surface Upper Surface Lower Surface ( c) Shock on upper surface Upper Surface Lower Surface (d ) Shocks on both surfaces Shock Movement of Shocks with Increasing Mach Number SOLO AERODYNAMICS
  • 56. 56 Movement of Shocks with Increasing Mach Number The Mach Number at witch M=1 appears on the Airfoil Upper Surface is called the Critical Mach Number for this Airfoil. The Critical Mach Number can be calculated as follows. Assuming an isentropic flow through the flow-field we have ( )1/ 2 2 2 1 1 2 1 1 − ∞ ∞             − + − + = γγ γ γ A A M M p p p∞, M∞ - Pressure and Mach Number upstream the Airfoil pA, MA- Pressure and Mach Number at a point A on the Airfoil Critical Mach Number The Pressure Coefficient Cp is computed using ( )             −             − + − + =      −= − ∞ ∞∞∞ 1 2 1 1 2 1 1 2 1 2 1/ 2 2 γγ γ γ γγ A A pA M M Mp p M C Definition of Critical Mach Number. Point A is the location of minimum pressure on the top surface of the Airfoil. SOLO AERODYNAMICS
  • 57. 57 Movement of Shocks with Increasing Mach Number Critical Mach Number This relation gives a unique relation between the upstream values of p∞, M∞ and the respective values pA, MA at a point A on the Airfoil. Assume that point A is the point of minimum pressure, therefore maximum velocity, on the Airfoil and that this maximum velocity corresponds to MA = 1. Then by definition M∞ = Mcr . ( )             −             − + − + =      −= − ∞ ∞∞∞ 1 2 1 1 2 1 1 2 1 2 1/ 2 2 γγ γ γ γγ A A pA M M Mp p M C ( )             −             − + − + = − 1 2 1 1 2 1 1 2 1/ 2 γγ γ γ γ cr cr p M M C cr 2 0 1 ∞− = M C C p p ( )             −             − + − + = − 1 2 1 1 2 1 1 2 1/ 2 γγ γ γ γ cr cr p M M C cr 2 0 1 ∞− = M C C p p To find the Mcr we need on other equation describing Cp at subsonic speeds. We can use the Prandtl-Glauert Correction or the Karman-Tsien Rule or Laiton’s Rule SOLO AERODYNAMICS
  • 58. 58 Movement of Shocks with Increasing Mach Number Critical Mach Number AirfoilThickAirfoilMediumAirfoilThin AirfoilThickAirfoilMediumAirfoilThin crcrcr ppp MMM CCC 000 The point of minimum pressure, therefore maximum velocity, does not correspond to the point of maximum thickness of the Airfoil. This is because the point of minimum pressure is defined by the specific shape of the Airfoil and not by a local property. The Critical Mach Number is a function of the thickness of the Airfoil. For the thin Airfoil the Cp0 is smaller in magnitude and because the disturbance in the Flow is smaller. Because of this the Critical Mach Number of the thin Airfoil is greater SOLO AERODYNAMICS
  • 59. 59 Movement of Shocks with Increasing Mach Number Drag Divergence Mach Number The Drag at small Mach number, due to Profile Drag with Induced Drag =0 (αi = 0) is constant (points a, b, and c) until M∞ = Mcr (point c). As the velocity increase above Mcr (point d), a finite region of supersonic flow (Weak Shock boundary)appears on the Airfoil. The Mach Number in this bubble of supersonic flow is slightly above Mach 1, typically 1.02 to 1.05. If M∞ increases more, We encounter a point, e, at which is a sudden increase in Drag. The Value of M∞ at which the sudden increase in Drag starts is defined as the Drag-divergence Mach Number, Mdrag-divergence 1. At this point Shock Waves appear on the Airfoil. The Shock Waves are dissipative phenomena extracting energy (Drag) from the kinetic energy of the Airfoil. In addition the sharp increase of the pressure across the Shock Wave create a strong adverse pressure gradient, causing the Flow to separate From the Airfoil Surface creating Drag increase. Beyond the Drag-divergence Mach Number, the Drag Coefficient becomes very large, increasing by a factor of 10 or more. As M∞ approaches unity (point f) the Flow on both the top and the SOLO AERODYNAMICS
  • 60. 60 Movement of Shocks with Increasing Mach Number Summary of Airfoil Drag The Drag of an Airfoil can be described as the sum of three contributions: wpf DDDD ++= where D – Total Drag of the Airfoil Df – Skin Friction Drag Dp – Pressure Drag due to Flow Separation Dw – Wave Drag (present only at Transonic and Supersonic Speeds; zero for Subsonic Speeds below the Drag-divergence Mach Number) In terms of the Drag Coefficients, we can write: wDpDfDD CCCC ,,, ++= The Sum: pDfD CC ,, + Profile Drag Coefficient SOLO AERODYNAMICS
  • 61. 61 Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2 SOLO Return to Table of Content AERODYNAMICS
  • 62. 62 AERODYNAMICS Drag Variation with Mach Number SOLO Return to Table of Content
  • 63. 63 AERODYNAMICS Swept Wings Drag Variation Adolf Busemann and Alfred Betz, discovered around 1930 that Drag at Transonic and Supersonic Speeds could be reduced using Swept Back Wings. Assume Mcr for Wing = 0.7 Airfoil Section with Mcr = 0.7 Airfoil Section with Mcr = 0.7 Airfoil ³ sees´ only this component of velocity Mcr for swept wing Adolph Busemann (1901 – 1986) also NACA Colorado U. Albert Betz (1885 – 1968 ), Λ = cos _ cr sweptcr M M From the Figure we see that if Λ is the Swept Angle, than Supersonic L.E. Subsonic L.E. Mach Cone For Supersonic Flow M∞ 1 •If the Leading Edge of Swept Wing is outside the Mach Cone, the component of the Mach Number normal to the Leading Edge is Supersonic. As a result a Strong Oblique Shock Wave will be created on the Wing. •If the Leading Edge of Swept Wing is inside the Mach Cone, the component of the Mach Number normal to the Leading Edge is Subsonic. As a result a Weaker Oblique Shock Wave will be created on the Wing and a Lower Drag will result. SOLO
  • 64. 64 SOLO Wings in Compressible Flow 64 Swept Wings The Swept Wing Theory was first presented by Adolf Busemann at the Fifth Volta Conference in Roma 1935. Busemann made use of so called “Independence Principle”: “The air forces on a sufficient long, narrow Wing Panel are independent of the component of the flight velocity in the direction of the Wing Leading Edge (disregarding friction). The air forces the depend only on the reduced component velocity perpendicular to the Wing Leading Edge” Adolph Busemann (1901 – 1986). The Wing angles relative to Flow Direction are: α – Angle of Attack Λ – Swept Angle The Flow Mach components are: forcesairaffectingnotELtoparallelM forcesairaffecting PlaneWingtheinELtonormalM PlaneWingtonormalM ..sincos ..coscos sin Λ       Λ ∞ ∞ ∞ α α α We have: ( ) ( )[ ] ( ) Λ = Λ = Λ=       Λ =      Λ = Λ−=Λ+= − ∞ ∞− ∞∞∞∞ coscos : cos: cos tan tan coscos sin tan: cossin1coscossin: 11 2/1222/122 τ τ α α α α ααα c t cc M M MMMM e e e e Section A-A Section B-B
  • 65. 65 SOLO Wings in Compressible Flow 65 Swept Wings Section A-A Section B-B ( ) bcM L CL 2 2/ ∞∞ = ργ The Total Lift is: ( ) ( )[ ] ( ) Λ = Λ = Λ=       Λ =      Λ = Λ−=Λ+= − ∞ ∞− ∞∞∞∞ coscos : cos: cos tan tan coscos sin tan: cossin1coscossin: 11 2/1222/122 τ τ α α α α ααα c t cc M M MMMM e e e e Therefore: ( ) ( )α222 cossin1/ Λ−== ∞∞ eLeeLL CMMCC ( ) ( ) ( )ΛΛ == ∞∞∞∞ cos/cos2/2/ 22 bcM L bcM L C eeee eL ργργ and: The Friction Drag is ignored the Tangential Component of Velocity does not contribute to the Drag and the Pressure Drag is normal to the Leading Edge. If D is the Total Pressure Drag the component in the M∞ direction is only D cosΛ. ( ) ( ) ( ) ( )ΛΛ = Λ = ∞∞∞∞ cos/cos2/ ; 2/ cos 22 bcM D C bcM D C e DD ργργ or: ( ) ( )α222 cossin1cos/ Λ−Λ== ∞∞ eDeeDD CMMCC
  • 66. 66 SOLO Wings in Compressible Flow 66 Swept Wings Oblique Wing aircraft, AD-1 was built and flown by NASA.. Oblique Wing concept was developed in the USA by R.T. Jones. Robert Thomas Jones (1910–1999) Oblique Wing Flight Demonstration by the AD-1.
  • 68. 68 Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2 AERODYNAMICS Swept Wings Drag Variation SOLO
  • 70. 70 AERODYNAMICS Swept Wings Drag Variation Comparison of the Transonic Drag Polar for an Unswept Wing with that for a Swept Wing (data from Schlichting) SOLO
  • 71. 71 SOLO Wings in Compressible Flow Profile Drag Coefficients versus Mach Number for an Un-swept and a Swept-back Wing (φ=45°), t/c=0.12, AR=4 Swept Wings
  • 73. 73 SOLO Return to Table of Content Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
  • 74. 74 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 75. 75 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 76. 76 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 77. 77 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO Return to Table of Content
  • 78. 78 SOLO Return to Table of Content Ray Whitford, “Design for Air Combat”
  • 79. 79 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO Return to Table of Content
  • 80. 80 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane Richard T. Whitcomb (1921 – 2009) SOLO
  • 81. 81 German aerodynamicist named Dr. Adolf Busemann, who had come to work at Langley after World War II, gave a technical symposium on transonic airflows. In a vivid analogy, Busemann described the stream tubes of air flowing over an aircraft at transonic speeds as pipes, meaning that their diameter remained constant. At subsonic speeds, by comparison, the stream tubes of air flowing over a surface would change shape, become narrower as their speed increased. This phenomenon was the converse, in a sense, of a well-known aerodynamic principle called Bernoulli's theorem, which stated that as the area of an airflow was made narrower, the speed of the air would increase. This principle was behind the design of venturis,9 as well as the configuration of Langley's wind tunnels, which were necked down in the test sections to generate higher speeds.10 But at the speed of sound, Busemarm explained, Bernoulli's theorem did not apply. The size of the stream tubes remained constant. In working with this kind of flow, therefore, the Langley engineers had to look at themselves as pipefitters. Busemann's pipefitting metaphor caught the attention of Whitcomb, who was in the symposium audience. Soon after that Whitcomb was, quite literally, sitting with his feet up on his desk one day, contemplating the unusual shock waves he had encountered in the transonic wind tunnel. He thought of Busemann's analogy of pipes flowing over a wing-body shape and suddenly, as he described it later, a light went on. Richard T. Whitcomb (1921 – 2009) Adolph Busemann (1901 – 1986) also NACA Colorado U. Origin of Transonic Area Rule http://history.nasa.gov/SP-4219/Chapter5.html SOLO
  • 82. 82 Richard T. Whitcomb (1921 – 2009) Adolph Busemann (1901 – 1986) also NACA Colorado U. Origin of Transonic Area Rule http://history.nasa.gov/SP-4219/Chapter5.html In practical terms, the area rule concept meant that something had to be done in order to compensate for the dramatic increase in cross- sectional area where the wing joined the fuselage. The simplest solution was to indent the fuselage in that area, creating what engineers of the time described as a Coke bottle or Marilyn Monroe shaped design. The indentation would need to be greatest at the point where the wing was the thickest, and could be gradually reduced as the wing became thinner toward its trailing edge. If narrowing the fuselage was impossible, as was the case in several designs that applied the area rule concept, the fuselage behind or in front of the wing needed to be expanded to make the change in crosssectional area from the nose of the aircraft to its tail less dramatic. Throughout the first quarter of 1952, Whitcomb conducted a series of experiments using various area-rule based wing-body configurations in Langley's 8-Foot High-Speed Tunnel. As he expected, indenting the fuselage in the area of the wing did, indeed, significantly reduce the amount of drag at transonic speeds. In fact, Whitcomb found that indenting the body reduced the drag-rise increments associated with the unswept and delta wings by approximately 60 percent near the speed of sound, virtually eliminating the drag rise created by having to put wings on a smooth, cylindrical shaped body. http://www.youtube.com/watch?v=xZWBVgL8I54 http://www.youtube.com/watch?v=Cn0lSoreB1g SOLO
  • 83. 83 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 84. 84 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 85. 85 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 86. 86 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 87. 87 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO
  • 89. 89 Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2 AERODYNAMICSSOLO Return to Table of Content
  • 91. 91 Nguyen X. Vinh, “Flight Mechanics of High Performance Aircraft”, Cambridge University,1993 AERODYNAMICSSOLO
  • 92. 92 Examples of airfoils in nature and within various vehicles Lift and Drag curves for a typical airfoil SOLO
  • 95. 95 Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2 AERODYNAMICSSOLO
  • 96. 96 Stengel, Aircraft Flight Dynamics, Princeton, MAE 331, Lecture 2 AERODYNAMICSSOLO Return to Table of Content
  • 97. 97 Flow regimes for a slender bodySOLO
  • 98. 98 )A)- Flow field in wing-tail plane, influence of angle of attackSOLO
  • 100. 100 ))B)- Flow field in wing-tail plane, influence ofB)- Flow field in wing-tail plane, influence of control deflectioncontrol deflection δδ for pitchfor pitch SOLO
  • 102. 102 CHARACTERISTICSCHARACTERISTICS Summary of aerodynamic designSummary of aerodynamic design SOLO
  • 103. 103 ))C)- Flow field in wing-tail plane, influence ofC)- Flow field in wing-tail plane, influence of control deflectioncontrol deflection ξξ for rollfor roll SOLO
  • 104. 104 Types of missile roll control skid-to-turn, bank-to-turnTypes of missile roll control skid-to-turn, bank-to-turnSOLO Return to Table of Content
  • 105. 105 Density Profile Mach 1.2, Color Contours Modified to see Detail on Shock Waves More Fun With CFD – RM-10SOLO
  • 106. 106 Density Profiles, Mach 2.41, simulated altitude of 11,000 ft )Re=76.4x106 ) More Fun With CFD – RM-10SOLO
  • 107. 107 Density Profiles, Mach 2.41 – color contours modified to see detail in shock waves More Fun With CFD – RM-10SOLO
  • 108. 108 Density Profiles, Mach 1.62 – rotated, with plot to show distribution around fins More Fun With CFD – RM-10SOLO
  • 109. 109 The Effect of Leading Edge Slat, Flap, and Trailing Edge Flap Upon Angle of Attack of Basic Wing Darrol Stinton “ The Design of the Aircraft”SOLO
  • 110. 110High Angles of Attack Flows )Development of a High Resolution CFD) SOLO
  • 111. 111High Angles of Attack Flows )Development of a High Resolution CFD) SOLO
  • 112. 112 Three-Element Airfoil Pressure Coefficient and Streamlines at Maximum Lift M=0.2 )Re=4.1x106 ) SALSA Computation AERODYNAMICSSOLO
  • 113. 113Inviscid Transonic Flow Solution Over a 2-D Airfoil at M=0.75 )Re=1000) AERODYNAMICSSOLO
  • 114. 114Inviscid Supersonic Flow Solution Over a 2-D Airfoil at M=1.50 )Re=1000) AERODYNAMICSSOLO
  • 116. 116 Linearized Flow Equations 1. Irrotational Flow SOLO Assumptions 2. Homentropic 3. Thin bodies ( )0  =×∇ u       = ∂ ∂ =∇ 00..;. t s seieverywhereconsts This implies also inviscid flow ( )~τ = 0 Changes in flow velocities due to body presence are small were - flow velocity as a function of position and time - flow entropy as a function of position and time ( )tzyxu ,,,  ( )tzyxs ,,,
  • 117. 117 SOLO )C.L.M) For an inviscid flow conservation of linear momentum gives:( )~τ = 0 Assume that body forces are conservative and stationary were - flow pressure as a function of position and time( )tzyxp ,,, - flow density as a function of position and time( )tzyx ,,,ρ ( ) Gpuuu t u uu t u tD uD     ρ ∂ ∂ ρ ∂ ∂ ρρ +−∇=      ×∇×−      ∇+=      ∇⋅+= 2 2 1 or ( ) G p uuu t u   + ∇ −=×∇×−      ∇+ ∂ ∂ ρ 2 2 1 Euler’s Equation 0 = ∂ Ψ∂ Ψ−∇= t G  - Body forces as a function of position( )zyxG ,,  Leonhard Euler 1707-1783 Linearized Flow Equations
  • 118. 118 SOLO Let integrate the Euler’s Equation between two points )1) and )2) ( ) ( ) ( ) ∫∫∫∫∫∫ ⋅Ψ∇+ ⋅∇ +×∇⋅×−⋅      ∇+⋅ ∂ ∂ =⋅      Ψ∇+ ∇ +×∇×−      ∇+ ∂ ∂ = 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 0 rd rdp uurdrdurdu t rd p uuuu t    υρ We can chose the path of integration as follows: - along a streamline ) and are collinear; i.e.: )rd  u  0  =×urd - along any path, if the flow is irrotational ( )0  =×∇ u to obtain: ( ) ( ) 0 2 1 =×∇⋅×∫ uurd  Assuming that the flow is irrotational we can define a potential , such that: ( )0  =×∇ u ( )tr ,  Φ Φ∇=u  Let use the identity to obtain: ( ) rdFtrFd constt  ⋅∇== , ( ) 2 1 2 2 1 2 2 1 2 1 0         Ψ+++ ∂ Φ∂ =      Ψ∇++      +Φ ∂ ∂ = ∫∫ ∞ p p pd u t pd udd t ρρ Bernoulli’s Equation for Irrotational and Inviscid Flow Daniel Bernoulli 1700-1782 Linearized Flow Equations
  • 119. 119 SOLO For an isentropic ideal gas we have 2 2 11 a ad T Tdd p pd − = − == γ γ γ γ ρ ρ γ where ρ γ γ ρρ p TR d pdp a s === ∂ ∂ =2 is the square of the speed of sound In this case 2 2 2 1 1 1 2 ad a adppd RTa RTp − = − = = = γργ γ ρ γ ρ and [ ]222 1 1 1 1 2 2 ∞− − = − = ∫∫ ∞∞ aaad pd a a p p γγρ Using the Bernoulli’s Equation we obtain ( ) ( ) ( ) ( )      Ψ−Ψ+−+ ∂ Φ∂ −−=−=− ∞∞∞ ∫ ∞ 2222 2 1 11 Uu t dp aa p p γ ρ γ ( ) 2 1 2 2 1 2 2 1 2 1 0         Ψ+++ ∂ Φ∂ =      Ψ∇++      +Φ ∂ ∂ = ∫∫ ∞ p p pd u t pd udd t ρρ Bernoulli’s Equation for Irrotational and Inviscid Flow Linearized Flow Equations
  • 120. 120 SOLO Let use the conservation of mass )C.M.) equation )C.M.) 0=⋅∇+ u tD D  ρ ρ or tD D u ρ ρ 1 −=⋅∇  Let go back to Bernoulli’s Equation ( ) ( )      Ψ−Ψ+−+ ∂ Φ∂ −= ∞∞∫ ∞ 22 2 1 Uu t pd p p ρ and use the Leibnitz rule of differentiation: ( ) ( )uxFdxuxF xd d x x ,, 0 =∫ to obtain ρρ 1 =∫ ∞ p p pd pd d Now we can compute tD Da tD D d pd tD pD tD pDpd pd dpd tD D p p p p ρ ρ ρ ρρρρρ 2 11 ===         = ∫∫ ∞∞ Therefore ( ) ( )      Ψ−Ψ+−+ ∂ Φ∂ =−=−=⋅∇ ∞∞∫ ∞ 22 22 2 1111 Uu ttD D a pd tD D atD D u p p ρ ρ ρ  Since ( )[ ] 0=Ψ−Ψ= ∞∞ tD D u tD D we have             ∇⋅+ ∂ ∂ ⋅+ ∂ Φ∂ =            ∇⋅+ ∂ Φ∂ ∇⋅+ ∂ ∂ ⋅+ ∂ Φ∂ = =      + ∂ Φ∂       ∇⋅+ ∂ ∂ =      + ∂ Φ∂ =⋅∇ Φ∇= 2 2 1 2 1 2 11 2 11 2 2 2 2 2 2 2 2 2 2 2 2 u u t u u ta u u t u t u u ta u t u ta u ttD D a u u        GOTTFRIED WILHELM von LEIBNIZ 1646-1716 Linearized Flow Equations
  • 121. 121 SOLO             ∇⋅+ ∂ ∂ ⋅+ ∂ Φ∂ =            ∇⋅+ ∂ Φ∂ ∇⋅+ ∂ ∂ ⋅+ ∂ Φ∂ = =      + ∂ Φ∂       ∇⋅+ ∂ ∂ =      + ∂ Φ∂ =⋅∇ Φ∇= 2 2 1 2 1 2 11 2 11 2 2 2 2 2 2 2 2 2 2 2 2 u u t u u ta u u t u t u u ta u t u ta u ttD D a u u        Let substitute Φ∇=u              Φ∇⋅Φ∇∇⋅Φ∇+Φ∇ ∂ ∂ ⋅Φ∇+ ∂ Φ∂ =Φ∇⋅∇ 2 1 2 1 2 2 2 tta ( ) ( ) ( )      Ψ−Ψ+−Φ∇⋅Φ∇+ ∂ Φ∂ −−= ∞∞∞ 222 2 1 1 U t aa γ Special cases 0≈Φ∇⋅∇ Laplace’s equation ∞∞ Ua )subsonic flow) we can approximate the first equation by 1 2 ( ) ( ) 2 2 t uu t uuu ∂ Φ∂ ⋅ ∂ ∂ +⋅∇⋅  we can approximate the first equation by 0 1 2 2 2 = ∂ Φ∂ −Φ∇⋅∇ ta Wave equation Pierre-Simon Laplace 1749-1827 Linearized Flow Equations
  • 122. 122 SOLO Note The equation       + ∂ Φ∂       ∇⋅+ ∂ ∂ =⋅∇ 2 2 2 11 u t u ta u  can be written as Φ=      Φ∇⋅+ ∂ Φ∂       ∇⋅+ ∂ ∂ =      + ∂ Φ∂       ∇⋅+ ∂ ∂ =Φ∇ 2 2 22 2 2 2 11 2 11 tD D a u t u ta u t u ta c c  where the subscript c on and on is intended to indicate that the velocity is treated as a constant during the second application of the operators and . cu  2 2 tD Dc t∂∂/ ( )∇⋅u  This equation is similar to a wave equation. End Note Linearized Flow Equations
  • 123. 123 SOLO Let compute the local pressure coefficient: 2 2 1 : ∞∞ ∞− = U pp C p ρ We have:           −        =           −        =           −      =      −= − ∞∞ =− ∞ ∞ ∞ = − ∞ ∞ ∞       = = ∞ ∞ ∞ ∞ ∞∞∞ − ∞∞ ∞∞∞ 1 2 1 2 1 1 2 1 2 1 2 2 2 /1 2 2 2 2 1 22 2 1 γ γ γ γ γ γ γ ρ γ γ ρ γ γ a a Ma a a U T T U TR p p U p C aUMTRa T T p p TRp p Let use the equation ( ) ( ) ( )      Ψ−Ψ+−Φ∇⋅Φ∇+ ∂ Φ∂ −−= ∞∞∞ 222 2 1 1 U t aa γ to compute ( ) ( ) ( )      Ψ−Ψ+−Φ∇⋅Φ∇+ ∂ Φ∂− −= ∞∞ ∞∞ 2 22 2 2 11 1 U taa a γ Finally we obtain: ( ) ( ) ( )           −             Ψ−Ψ+−Φ∇⋅Φ∇+ ∂ Φ∂− −= − ∞∞ ∞∞ 1 2 11 1 2 1 2 22 γ γ γ γ U taM Cp Linearized Flow Equations
  • 124. 124 SOLO Assuming a stationary flow and neglecting the body forces :      = ∂ ∂ 0 t ( )0=Ψ             Φ∇⋅Φ∇∇⋅Φ∇=Φ∇⋅∇ 2 11 2 a ( ) ( )222 2 1 ∞∞ −Φ∇⋅Φ∇ − −= Uaa γ ( ) ( )           −       −Φ∇⋅Φ∇ − −= − ∞ ∞∞ 1 2 1 1 2 1 2 22 γ γ γ γ U aM Cp Φ∇=u  Linearized Flow Equations
  • 125. 125 SOLO 1 0 332211 323121 =⋅=⋅=⋅ =⋅=⋅=⋅ →→→→→→ →→→→→→ eeeeee eeeeee General Coordinates ( )321 ,, uuu →→→ ∂ Φ∂ + ∂ Φ∂ + ∂ Φ∂ =Φ∇ 3 33 2 22 1 11 111 e uh e uh e uh ( ) ( ) ( )      ∂ ∂ + ∂ ∂ + ∂ ∂ =       ++⋅∇=⋅∇ →→→ 321 3 213 2 132 1321 332211 1 Ahh u Ahh u Ahh uhhh eAeAeAA  Using we obtainΦ∇=:A              ∂ Φ∂ ∂ ∂ +      ∂ Φ∂ ∂ ∂ +      ∂ Φ∂ ∂ ∂ = =Φ∇⋅∇=Φ∇ 33 21 322 13 211 32 1321 2 1 uh hh uuh hh uuh hh uhhh where We have for ( ) ( )321321 ,,,,, uuuAuuu  Φ Linearized Flow Equations
  • 126. 126 SOLO zzyyxx Φ+Φ+Φ=Φ∇=Φ∇⋅∇ 2       Φ+Φ+Φ∇⋅      Φ+Φ+Φ=      Φ∇⋅Φ∇∇⋅Φ∇ →→→ 222 2 1 2 1 2 1 111 2 1 zyxzyx zyx ( ) ( ) ( )=ΦΦ+ΦΦ+ΦΦΦ+ ΦΦ+ΦΦ+ΦΦΦ+ΦΦ+ΦΦ+ΦΦΦ= zzzyzyxzxz yzzyyyxyxyxzzxyyxxxx yzzyxzzxxyyxzzzyyyxxx ΦΦΦ+ΦΦΦ+ΦΦΦ+ΦΦ+ΦΦ+ΦΦ= 222 22             Φ∇⋅Φ∇∇⋅Φ∇=Φ∇⋅∇ 2 11 2 a ( ) ( )222 2 1 ∞∞ −Φ∇⋅Φ∇ − −= Uaa γ ( ) 0 12 2 22111 222 222 2 2 2 2 2 =Φ−ΦΦ+ΦΦ+ΦΦ−Φ ΦΦ − Φ ΦΦ −Φ ΦΦ −Φ        Φ −+Φ         Φ −+Φ        Φ − ttztzytyxtxyz zy xz zx xy yx zz z yy y xx x aaa aaaaa ( ) ( ) ( )      Ψ−Ψ+−Φ+Φ+Φ+ ∂ Φ∂ −−= ∞∞∞ 222222 2 1 1 U t aa zyxγ We finally obtain Cartesian Coordinates ( )zuyuxu === 321 ,, Linearized Flow Equations Return to Table of Content
  • 127. 127 SOLO Cylindrical Coordinates ( )θ=== 321 ,, uruxu →→→→→→ ++=++= zryrxxzzyyxxR 1sin1cos1111 θθ  →→→→→ +−= ∂ ∂ += ∂ ∂ = ∂ ∂ zryr R zy r R x x R 1cos1sin1sin1cos1 θθ θ θθ  r R h r R h x R h = ∂ ∂ == ∂ ∂ == ∂ ∂ = θ  :1:1: 321 →→→→ →→→→→→ =+−= ∂ ∂ ∂ ∂ = =+= ∂ ∂ ∂ ∂ == ∂ ∂ ∂ ∂ = θθθ θ θ θθ 11cos1sin: 11sin1cos:1: 2 21 zy R R e rzy r R r R ex x R x R e       1 0 332211 323121 =⋅=⋅=⋅ =⋅=⋅=⋅ →→→→→→ →→→→→→ eeeeee eeeeee We have Linearized Flow Equations
  • 128. 128 SOLO Cylindrical Coordinates )continue – 1) ( )θ=== 321 ,, uruxu →→→→→→ Φ+Φ+Φ= ∂ Φ∂ + ∂ Φ∂ + ∂ Φ∂ =Φ∇ 321321 11 e r eee r e r e x rx θ θ 2 2 22 1 θΦ+Φ+Φ=Φ∇⋅Φ∇ r rx → →→       ΦΦ+ΦΦ+ΦΦ+       Φ−ΦΦ+ΦΦ+ΦΦ+      ΦΦ+ΦΦ+ΦΦ=       Φ+Φ+Φ∇=      Φ∇⋅Φ∇∇ 322 2 2 3212 2 2 22 11 111 1 2 1 2 1 e rr e rr e r r rrxx rrrrxrxxrxrxxx rx θθθθθ θθθθθ θ θθ θ θθ Φ+Φ+Φ+Φ= ∂ Φ∂ + ∂ Φ∂ + ∂ Φ∂ + ∂ Φ∂ =             ∂ Φ∂ ∂ ∂ +      ∂ Φ∂ ∂ ∂ +      ∂ Φ∂ ∂ ∂ = =Φ∇⋅∇=Φ∇ 22 2 22 2 2 2 2 1111 11 rrrrrrx rr r rx r xr rrrxx Linearized Flow Equations
  • 129. 129 SOLO Cylindrical Coordinates )continue – 2) ( )θ=== 321 ,, uruxu Then equation             Φ∇⋅Φ∇∇⋅Φ∇+Φ∇ ∂ ∂ ⋅Φ∇+ ∂ Φ∂ =Φ∇⋅∇ 2 1 2 1 2 2 2 tta becomes ( ){             ΦΦ+ΦΦ+ΦΦ+       Φ−ΦΦ+ΦΦ+ΦΦ+          ΦΦ+ΦΦ+ΦΦ      Φ+Φ+Φ+ ΦΦ+ΦΦ+ΦΦ+Φ=Φ+Φ+Φ+Φ → → →→→→ 322 2 2 32 12321 22 11 11 11 2 111 e rr e rr e r e r ee arr rrxx rrrrxrx xrxrxxxrx ztzytyxtxttrrrxx θθθθθ θθθ θθθ θθ or ( ) 0 2 112 / 1 1/ 1 1 11 22 222 2 22 2 22 22 2 2 2 =ΦΦ+ΦΦ+ΦΦ− Φ −       ΦΦΦ+ΦΦΦ+ΦΦΦ−         Φ +Φ+Φ        Φ −+Φ        Φ −+Φ        Φ − ztzytyxtx tt rrxxrxrx rrr r xx x aa rra a r ra r raa θθθθ θ θθ θ Linearized Flow Equations
  • 130. 130 SOLO Cylindrical Coordinates )continue – 3) ( )θ=== 321 ,, uruxu becomes ( ) ( ) ( )      Ψ−Ψ+−Φ∇⋅Φ∇+ ∂ Φ∂ −−= ∞∞∞ 222 2 1 1 u t aa γ In cylindrical coordinates, equation ( ) ( )      Ψ−Ψ+      −Φ+Φ+Φ+Φ−−= ∞∞∞ 22 2 2222 1 2 1 1 U r aa rxt θγ Assuming a stationary flow and neglecting body forces      = ∂ ∂ 0 t ( )0=Ψ 0 112 / 1 1/ 1 1 11 222 2 22 2 22 22 2 2 2 =      ΦΦΦ+ΦΦΦ+ΦΦΦ−         Φ +Φ+Φ        Φ −+Φ        Φ −+Φ        Φ − rrxxrxrx rrr r xx x rra a r ra r raa θθθθ θ θθ θ ( )       −Φ+Φ+Φ − −= ∞∞ 22 2 2222 1 2 1 U r aa rx θ γ Linearized Flow Equations Return to Table of Content
  • 131. 131 Linearized Flow EquationsSOLO Boundary Conditions 1. Since the Small Perturbations are not considering the Boundary Layer the Flow must be parallel at the Wing Surface. The Wing Surface S is defined by zU )x,y) – Upper Surface zL )x,y) – Lower Surface 0  =⋅ S un n  - Normal at the Wing Surface 22 1/111       ∂ ∂ +      ∂ ∂ +      + ∂ ∂ − ∂ ∂ −= y z x z zy y z x x z n UUUU U  ( ) ( ) ( ) ( ) zwUyvxuUzwUyvxuUu 1'1'1'1'sin1'1'cos ++++≅++++= ∞∞∞∞ ααα  ( ) ( ) 0,,''' =++ ∂ ∂ − ∂ ∂ +− ∞∞ U UU zyxwU x z v x z uU α For Upper Surface ( ) ( )       − ∂ ∂ ≅ ∂ ∂ + ∂ ∂ += ∞∞ α x z U x z v x z uUzyxw U onPerturbati Small UU U '',,' Therefore ( ) ( ) ( ) Sonyxallfor x z Uzyxw x z Uzyxw L L U U , ,,' ,,'              − ∂ ∂ ≅       − ∂ ∂ ≅ ∞ ∞ α α Section AA (enlarged) Wake region
  • 132. 132 Linearized Flow EquationsSOLO Boundary Conditions )continue -1) 1. Flow must be parallel at the Wing Surface. The Wing Surface S is defined by zU )x,y) – Upper Surface zL )x,y) – Lower Surface Since the Small Perturbation gives Linear Equation we can divide the Airfoil in the Camber Distribution zC )x,y) and the Thickness Distribution zt )x,y) by: ( ) ( ) ( ) Sonyxallfor x z Uyxw x z Uyxw C C t t , 0,,' 0,,'              − ∂ ∂ = ∂ ∂ ±=± ∞ ∞ α ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]   −= += ⇔    −= += 2/,,, 2/,,, ,,, ,,, yxzyxzyxz yxzyxzyxz yxzyxzyxz yxzyxzyxz LUt LUC tCL tCU Because of the Linearity the complete solution can be obtained by summing the Solutions for the following Boundary Conditions Superposition of • Angle of Attack •Camber Distribution •Thickness Distribution Section AA (enlarged) Wake region ( ) ( ) ( ) ( ) ( ) ( ) ( ) Sonyxallfor x z x z Uyxwyxwyxw x z x z Uyxwyxwyxw tC tCL tC tCU , 0,,'0,,'0,,' 0,,'0,,'0,,'              ∂ ∂ −− ∂ ∂ =−+=±       ∂ ∂ +− ∂ ∂ =++=± ∞ ∞ α α
  • 133. 133 Linearized Flow EquationsSOLO Boundary Conditions (continue -2) 2. Disturbances Produced by the Motion must Die Out in all portion of the Field remote from the Wing and its Wake Normally this requirement is met by making ϕ→0 when y→ ±0, z → ±0, x→-∞ Subsonic Leading Edge Flow Subsonic Trailing Edge Flow Supersonic Leading Edge Flow Supersonic Trailing Edge Flow 3. Kutta Condition at the Trailing Edge of a Steady Subsonic Flow There cannot be an infinite change in velocity at the Trailing Edge. If the Trailing Edge has a non-zero angle, the flow velocity there must be zero. At a cusped Trailing Edge, however, the velocity can be non-zero although it must still be identical above and below the airfoil. Another formulation is that the pressure must be continuous at the Trailing Edge. http://nylander.wordpress.com/category/engineering/ Kutta Condition does not apply to Supersonic Flow since the shape and location of the Trailing Edge exert no influence on the flow ahead.
  • 134. 134 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u '2u ∞+Uu '1∞U ( ) ( ) ' ' '2' ' '0 ''2'0 ' 222 1 33 2 11 22 22 11 ρρρ φ += += +≈+= +=Φ += ++=+= += ∞ ∞ ∞∞∞ ∞ ∞∞ ∞ ppp aaaaaa xU uu uuUUuuu uUu O Small Perturbation Assumptions:             ∇⋅+ ∂ ∂ ⋅+ ∂ Φ∂ =⋅∇ 2 2 1 2 2 2 2 u u t u u ta u    (C.M.) +(C.L.M) (C.M.) +(C.L.M) 12 1 12 1 2 2 2 2 − += − ++ ∂ ∂ ∞ ∞ γγ φ a U a u t Bernoulli 121 − ∞ − ∞∞∞       =      =      = γ γ γ γ γ ρ ρ a a T T p p Isentropic Chain Development of the Flow Equations: Flow Equations: ( ) '' 2 1 φφ ∇=+∇⋅∇=⋅∇ ∞ xUu  ( ) 1 1 2 2 1 12 12 2 2 '' ' 1 2 1 x u a U x u uU a u u a ∂ ∂ ≅+ ∂ ∂ +≅      ∇⋅ ∞ ∞ ∞ ∞   ( ) t u UuUU tt u t u u ∂ ∂ =+ ∂ ∂ ≅ ∂ ∂ = ∂ ∂ ⋅ ∞∞∞ ' 2'22 1 1 2 2  ( )  ∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞∞ ++ ∂ ∂ =⇒ − += − + +++ ∂ ∂ ρ γ φ γγ φ p a puU t a U aaa uUU t 2 1 2 2 2 1 2 '' ' 0 12 1 1 '2 '2 2 1' ∞∞∞∞∞∞∞∞ − = − ==⇒ − = − == a a T T p p a ad T Tdd p pd ' 1 2' 1 '' 1 2 1 γ γ γ γ ρ ρ γ γ γ γ γ ρ ρ γ Isentropic Chain Bernoulli Linearized Flow Equations
  • 135. 135 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u '2u ∞+Uu '1∞U Small Perturbation Flow Equations: (C.M.) +(C.L.M) 52.18.00 '' 2 '1 ' 2 2 1 1 12 2 2 ≤≤≤≤      ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ ∞∞ ∞ MM tt u U x u U a φ φ ( ) '' ,,,'' 321 φ φφ ∇= = u xxxt  Bernoulli       + ∂ ∂ −= ∞∞ ' ' ' 1uU t p φ ρ ∞∞∞∞ − = − == a a T T p p ' 1 2' 1 '' γ γ γ γ ρ ρ γIsentropic Chain Linearized Flow Equations
  • 136. 136 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Three Dimensional Flow (Thin Wings at Small Angles of Attack) α U Up xd ud θ= L Low xd ud θ−= ∞U x z ( ) 0 ''' 1 2 2 2 2 2 2 2 = ∂ ∂ + ∂ ∂ + ∂ ∂ − ∞ zyx M φφφ (1) ( )zyx ,,'φ(2) z w y v x u ∂ ∂ = ∂ ∂ = ∂ ∂ = ' ', ' ', ' ' φφφ (3) α−=≅ + ∞∞ S xd zd U w uU w ' ' ' (4) x UuUp ∂ ∂ −=−= ∞∞∞∞ ' '' φ ρρ(5) ' 2 1 1 '' 1 2' 1 '' 2 M M M U u M a a T T p p ∞ ∞ ∞ ∞ ∞∞∞∞ − + −=−= − = − == γ γ γ γ γ γ γ ρ ρ γ(6)         ∂ ∂ + ∂∂ ∂ + ∂ ∂ =∇ ∞∞∞ 2 2 2 2 2 2 2 2 '1'2'1 ' tUxtUxM φφφ φ ( ) '' ,,,'' φ φφ ∇= = u zyxt        + ∂ ∂ −= ∞∞ ' ' ' uU t p φ ρ Steady Three Dimensional Flow Small Perturbation Flow Equations: 0 ' 2 2 = ∂ ∂ = ∂ ∂ tt 52.1 8.00 ≤≤ ≤≤ ∞ ∞ M M
  • 137. 137 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Three Dimensional Flow (Thin Wings at Small Angles of Attack) 0 ''' 2 2 2 2 2 2 2 = ∂ ∂ + ∂ ∂ + ∂ ∂ zyx φφφ β(1) Steady Three Dimensional Flow Subsonic Flow M∞ 1 01: 22 −= ∞Mβ ( ) ( ) ( ) ( ) α ξ α φ α ξ α φ −=−= ∂ ∂ = −=−= ∂ ∂ = ∞∞ ∞∞ LowerLower Lower UperUper Upper d zd xd zd zUU w d zd xd zd zUU w '1' '1' 3 4 3 4 Transform of Coordinates ( ) ( )       = = = =−= ∞ ςηξφφ ς η ξβξ ,,,,' 1 2 zyx z y Mx           ∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ 2 2 2 2 2 2 2 2 2 2 22 2 '' '' 1'1' ς φφ ς φφ η φφ η φφ ξ φ β φ ξ φ β φ zz yy xx ( ) ( ) SMdcMydycS bb ∞∞ −=−== ∫∫ 2 0 2 0 11 ηη ( ) ( )ηcMyc 2 1 ∞−= ∞∞ − = − == 22 22 11 M AR SM b S b AR 22 1 2 1 12 ∞∞∞∞ − = ∂ ∂ − −= ∂ ∂ −= M C UMxU C p p ξ φφ Section AA (enlarged) Wake region so 02 2 2 2 2 2 = ∂ ∂ + ∂ ∂ + ∂ ∂ ς φ η φ ξ φ Laplace’s Equation like in Incompressible Flow Similarity Rules
  • 138. 138 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack) incpC M 2 1 1 ∞− incLC M 2 1 1 ∞− 22 1 2 1 1 ∞∞ − =      − Md Cd M inc L α α incMC M 2 1 1 ∞− inc0α 4 1 =      inc N c x incMC M 02 1 1 ∞− incLsC M 2 1 1 ∞− incsα LsC sα 0MC c xN MC 0α αd Cd L LC pCPressure Distribution Lift Lift Slope Zero-Lift Angle Pitching Moment Neutral-Point Position Zero Moment Angle of Smooth Leading-Edge Flow Lift Coefficient of Smooth Leading-Edge Flow Aerodynamic Coefficients of a Profile in Subsonic Incident Flow Based on Subsonic Similarity Rules
  • 139. 139 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) α U Up xd ud θ= L Low xd ud θ−= ∞U x y ( ) 0 '' 1 2 2 2 2 2 = ∂ ∂ + ∂ ∂ − ∞ yx M φφ(1) ( )yx,'φ(2) y v x u ∂ ∂ = ∂ ∂ = ' ', ' ' φφ (3) α==≅ + ∞∞ S xd yd U v vU v ' ' ' (4) x UuUp ∂ ∂ −=−= ∞∞∞∞ ' '' φ ρρ(5) ' 2 1 1 '' 1 2' 1 '' 2 M M M U u M a a T T p p ∞ ∞ ∞ ∞ ∞∞∞∞ − + −=−= − = − == γ γ γ γ γ γ γ ρ ρ γ(6)       ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ ∞∞ ∞ 2 2 1 1 12 2 2 '' 2 '1 ' tt u U x u U a φ φ ( ) '' ,,,'' 321 φ φφ ∇= = u xxxt        + ∂ ∂ −= ∞∞ ' ' ' uU t p φ ρ Steady Two Dimensional Flow Small Perturbation Flow Equations: 0 ' 2 2 = ∂ ∂ = ∂ ∂ tt 52.1 8.00 ≤≤ ≤≤ M M Linearized Flow Equations
  • 140. 140 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) 0 '' 2 2 2 2 2 = ∂ ∂ + ∂ ∂ yx φφ β(1) Steady Two Dimensional Flow Subsonic Flow M∞ 1 01: 22 −= ∞Mβ ( ) ( ) ( ) ( ) α φ α φ −= ∂ ∂ = −= ∂ ∂ = ∞∞ ∞∞ Lower Lower Uper Upper xd yd yUU v xd yd yUU v '1' '1' 3 4 3 4 ∞U α Transform of Coordinates ( ) ( )     = = = yx y x ,', φβηξφ βη ξ            ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ =      ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ = ∂ ∂ = ∂ ∂ ∂ ∂ =      ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ = ∂ ∂ = ∂ ∂ 2 2 2 2 2 2 2 2 ' , 1' 11' 111' η φφ ξ φ β φ η φη η φξ ξ φ β φ β φ ξ φ β η η φξ ξ φ β φ β φ yx yyyy xxxx so 02 2 2 2 = ∂ ∂ + ∂ ∂ η φ ξ φ Laplace’s Equation like in Incompressible Flow Linearized Flow Equations
  • 141. 141 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Subsonic Flow M∞ 1 (continue) The Airfoil is defined in (x,y) plane and by (ξ,η) ( ) ( )ξη gxfy AirfoilAirfoil =⇔= The above Transformation relates the Compressible Flow over an Airfoil in (x,y) Space to the Incompressible Flow in (ξ,η) over the same Airfoil. α η φφ −= ∂ ∂ = ∂ ∂ = ∞∞∞ Uper Upper xd yd UyUU v 1'1' α η φφ −= ∂ ∂ = ∂ ∂ = ∞∞∞ Lower Lower xd yd UyUU v 1'1' ( )yx,ρρ = x y η ξ ∞= ρρ Compressible Flow Incompressible Flow α η φ −= ∂ ∂ = ∞∞ Uper Upper xd fd UU v 1' α η φ −= ∂ ∂ = ∞∞ Lower Lower xd fd UU v 1' Linearized Flow Equations
  • 142. 142 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) 0 '1' 2 2 22 2 = ∂ ∂ − ∂ ∂ yx φ β φ (1) ( ) ( ) ( ) ( ) ( ) ( ) yxGyxGyx yxFyxFyx Lower Upper βννβφ βηηβφ +==+= −==−= :,' :,'(7) (8) Steady Two Dimensional Flow Supersonic Flow M∞ 1 01: 22 −= ∞Mβ α U Up xd yd θ= L Low xd yd θ−= ∞U x y 1 1 2 − = ∞Mxd yd 1 1 2 − −= ∞Mxd yd Flow Flow ( ) ( ) ( ) η β α d Fd Uxd yd U v Uper Upper ∞∞ −=−= 1 7 4' ( ) ( ) η φ d Fd xd d u Upper 73 ' ' ==         − − −= ∞ ∞ α Upper Upper xd yd M U u 1 ' 2 ( ) ( ) ( ) ν β α d Gd Uxd yd U v Lower Lower ∞∞ =−= 3 8 4 ' ( ) ( ) ν φ d Gd xd d u Lower 83 ' ' ==         − − = ∞ ∞ α Lower Lower xd yd M U u 1 ' 2         − − =−= ∞ ∞∞ ∞∞ α ρ ρ Upper UpperUpper xd yd M U uUp 1 '' 2 2         − − −=−= ∞ ∞∞ ∞∞ α ρ ρ Lower LowerLower xd yd M U uUp 1 '' 2 2 Linearized Flow Equations
  • 143. 143 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations ( )∫         −−= ∞ S S sd xd yd ppD αsin np α− Upper xd yd ∞U Upper xd yd ∞p∞p α( )∫         −−−= ∞ S S sd xd yd ppL αcos ( )∫         −−≅ ∞ S S sd xd yd ppD α ( )  Γ ∞∞∞ ∫∫ =         −−−≅ SS S sduUsd xd yd ppL 'ρα 1−α Uper xd yd 1−α Uper xd yd Kutta-Joukovsky Define: 2 2 1 : ∞∞ ∞− = U pp Cp ρ ( ) ( ) ∫∫ ∫∫         −−=         − − −≅         −=         − − ≅ ∞∞ ∞∞ ∞ ∞∞ ∞∞ ∞∞ ∞ ∞∞ S S p S S S S p S S sd xd yd CUsd xd yd U pp UL sd xd yd CUsd xd yd U pp UD αρα ρ ρ αρα ρ ρ 2 2 2 2 2 2 2 1 2 12 1 2 1 2 12 1 Linearized Flow Equations
  • 144. 144 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Subsonic Flow (M∞ 1) np α− Upper xd yd ∞U Upper xd yd ∞p∞p α We found: α−= ∞ xd fd U v' α ξ −= ∞ d gd U v ( ) ( )            −= −= = ∞ ∞ yxM yM x ,'1, 1 2 2 φηξφ η ξ ( ) 0 '' 1 2 2 2 2 2 = ∂ ∂ + ∂ ∂ − ∞ yx M φφ 02 2 2 2 = ∂ ∂ + ∂ ∂ η φ ξ φ y v x u ∂ ∂ = ∂ ∂ = ' ', ' ' φφ η φ ξ φ ∂ ∂ = ∂ ∂ = vu , vv M u u = − = ∞ ', 1 ' 2 '' uUp ∞∞−= ρ uUp ∞∞−= ρ xUU u U pp Cp ∂ ∂ −=−= − = ∞∞ ∞∞ ∞ '2'2 2 1 ' : 2 φ ρ ξ φ ρ ∂ ∂ −=−= − = ∞∞ ∞∞ ∞ UU u U pp Cp 22 2 1 : 2 0 2 1 ' ∞− = M p p 2 1 0 ∞− = M C C p p Compressible: Incompressible: Linearized Flow Equations
  • 145. 145 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Subsonic Flow (M∞ 1) np α− Upper xd yd ∞U Upper xd yd ∞p∞p α The Relation: ∫∫ ∫∫       − −=              −−≅               − − =              −≅ ∞ ∞∞ ∞∞ ∞ ∞∞ ∞∞ S p S S p S S p S S p c s dC M U c s d xd yd CUL c s d xd yd C M U c s d xd yd CUD 0 0 2 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 ρ αρ α ρ αρ 2 1 0 ∞− = M C C p p Prandtl-Glauert Compressibility Correction As earlier in 1922, Prandtl is quoted as stating that the Lift Coefficient increased according to (1-M∞ 2 )-1/2 ; he mentioned this at a Lecture at Göttingen, but without a proof. This result was mentioned 6 years later by Jacob Ackeret, again without proof. The result was finally established by H. Glauert in 1928 based on Linear Small Perturbation. Ludwig Prandtl (1875 – 1953) Hermann Glauert (1892-1934) Linearized Flow Equations Return to Critical Mach Number
  • 146. SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Several improved formulas where developed: ( )[ ] 2/11/1 0 0 222 p p p CMMM C C ∞∞∞ −++− = Karman-Tsien Rule Linearized Flow Equations ( ) 0 0 2222 12/ 2 1 11 p p p CMMMM C C       −      − ++− = ∞∞∞∞ γ Laitone’s Rule Comparison of several compressibility corrections compared with experimental results for NACA 4412 Airfoil at an angle of attack of α = 1◦ . Return to Table of Content
  • 147. 147 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) 0 '1' 2 2 22 2 = ∂ ∂ − ∂ ∂ zx φ β φ (1) ( ) ( ) ( ) ( ) ( ) ( ) zxFzxGzx zxFzxFzx Lower Upper βννβφ βηηβφ +==+= −==−= :,' :,'(7) (8) Steady Two Dimensional Flow Supersonic Flow M∞ 1 01: 22 −= ∞Mβ α U Up xd zd θ= L Low xd zd θ−= ∞U x z 1 1 2 − = ∞Mxd zd 1 1 2 − −= ∞Mxd zd Flow Flow ( ) ( ) ( ) η β α d Fd Uxd zd U w Upper Upper ∞∞ −=−= 3 7 4' ( ) ( ) η φ d Fd xd d u Upper 73 ' ' == ( ) ( ) ( ) ν β α d Gd Uxd zd U w Lower Lower ∞∞ ==−= 3 8 4 ' ( ) ( ) ν φ d Gd xd d u Lower 83 ' ' ==         − − −= ∞ ∞ α Upper Upper xd zd M U w 1 ' 2         − − = ∞ ∞ α Lower Lower xd zd M U w 1 ' 2         − − =−==− ∞ ∞∞ ∞∞∞ α ρ ρ Upper UpperUpperUpper xd zd M U wUppp 1 '' 2 2         − − −=−==− ∞ ∞∞ ∞∞∞ α ρ ρ Lower LowerLowerLower xd zd M U wUppp 1 '' 2 2 z w x u ∂ ∂ = ∂ ∂ = ' ', ' ' φφ (3) α−=≅ + ∞∞ S xd zd U w uU w ' ' ' (4)
  • 148. 148 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 α U Up xd zd θ= L Low xd zd θ−= ∞U x z 1 1 2 − = ∞Mxd zd 1 1 2 − −= ∞Mxd zd Flow Flow Pressure Distribution and Lift Coefficient         −+ − = − = ∞∞∞ α ρ 2 1 2 2/ '' 22 LowerUpper LowerUpper p xd zd xd zd MU pp C 1 4 2 − = ∞M cL α ( ) ( ) ( ) ( )         −+− − − − =         +      −      − − =      +      −= ∞∞ ∞ ∫∫∫∫      00 22 1 0 1 02 1 0 1 0 00 1 2 1 4 2 1 2 LowerLowerUpperUpper LowerUpper ppL zczzcz MM c x d xd zd c x d xd zd Mc x dC c x dCc LowerUpper α α         − − = ∞ α Upper p xd zd M C Upper 1 2 2         − − −= ∞ α Lower p xd zd M C Lower 1 2 2
  • 149. 149 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 α U Up xd zd θ= L Low xd zd θ−= ∞U x z 1 1 2 − = ∞Mxd zd 1 1 2 − −= ∞Mxd zd Flow Flow Wave Drag Coefficient                         −+              − − =              −−              −= ∫∫∫∫ ∞ 1 0 2 1 0 2 2 1 0 1 0 1 2 c x d xd zd c x d xd zd Mc x d xd zd C c x d xd zd Cc UpperUpperLower p Upper pD LowerUpperW αααα         − − = ∞ α Upper p xd zd M C Upper 1 2 2         − − −= ∞ α Lower p xd zd M C Lower 1 2 2 ( ) ( ) ( ) ( )                             +      −+              +      − − = ∫∫∫∫ =−=− ∞ 1 0 2 00 1 0 2 1 0 2 00 1 0 2 2 22 1 2 c x d xd zd c x d xd zd c x d xd zd c x d xd zd M Lower zcz LowerUpper zcz Upper LowerLowerUpperUpper      αααα ( )22 22 2 1 2 1 4 LowerUpperD MM C W εε α + − + − = ∞∞ ∫ ∫               =               = 1 0 2 2 1 0 2 2 : : c x d xd zd c x d xd zd Lower Lower Upper Upper ε ε
  • 150. 150 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 Wave Drag Coefficient Flat Plate         == 0 LowerUpper xd zd xd zd Double Wedge Airfoil 1 4 2 2 − = ∞M C WD α 022 == LowerUpper εε ( ) ( ) ( )kkc t ck c t k ck c t kc LowerUpper − =       − − +== 14 1 1 14 1 4 11 2 2 2 2 22 2 2 22 εε ( ) ( )       − − =        − − = cxck ck t ckx ck t xd zd cxck ck t ckx ck t xd zd LowerUpper 12 0 2 12 0 2 ( ) ( )kk ct MM C WD −− + − = ∞∞ 1 / 1 1 1 4 2 22 2 α
  • 151. 151 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 Wave Drag Coefficient Biconvex Airfoil ( ) ( )222 2/2/ ctRR +−= The Biconvex Airfoil is obtained by intersection of two Circular Arcs of radius R. c – the chord t – maximum thickness at x = c/2 ( ) ( ) ( )tcttcR tc 4/4/ 222 22 ≈+= θθθθ −≈−=≈= tan,tan LowerUpper xd zd xd zd 2 2 2/2 /2 3 2 1 0 2 1 0 2 2 3 2 34 11 : Lower ct ctUpperUpper Upper c t t c dR c xd xd zd cc x d xd zd ε θ θθε δ δ ==≈≈         =              = + − + −∫∫∫ c t R c xd zd MaxUpper 2 2/ , ≈≈≈         δδ ( ) 2 2 22 2 22 22 2 3 16 1 1 1 4 1 2 1 4 c t MMMM C LowerUpperDW − + − =+ − + − = ∞∞∞∞ α εε α
  • 152. 02/10/15 152 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 Wave Drag Coefficient Parabolic ProfileDesignation Double Wedge Profile Contour Side View Wave Drag ( )kk −13 1 2( )kk −1 1 ( ) ( ) xckck xcxt z 212 22 −+ − ±= ( )       − ± ± = cxckx ck t ckxx ck t z 12 0 2
  • 153. 153 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 Wave Drag Coefficient Wave Drag at Supersonic Incident Flow versus Relative Thickness Position for Double Wedge and Parabolic Profiles k ( )kk −1 1 ( )kk −13 1 2
  • 154. 154 SOLO Wings in Compressible Flow Double Wedge Modified Double Wedge Biconvex τ 2 1 2 122 1 2 ' 2 ==       = c t c t c A τ 3 2 3 2332 1 2 ' 2 == +      = c t c t c t c A
  • 155. 155 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Steady Two Dimensional Flow Supersonic Flow M∞ 1 Pitching Moment Coefficient The Pitching Moment Coefficient about the Leading Edge for any Thin Airfoil is given by xdx xd zd xd zd Mcc x d c x C c x d c x Cc c LowerUpper ppM LowerUpperLE ∫∫∫                 −+         − − −=            +            −=− ∞ 022 1 0 1 0 1 2 αα Thus      + − + − −= ∫∫ ∞∞ xdzxdz McM c c Lower c UpperM LE 00222 1 2 1 2α ( ) ( ) ( ) ( )[ ] xdzxdzczczcxdzzxxdzzxxdx xd zd xd zd c Lower c UpperLowerUpper c Lower cx xLower c Upper cx xUpper c LowerUpper ∫∫∫∫∫ −−−=−+−=         + = = = = 00 0 00000    Using integration by parts Symmetric Airfoil zUpper = -zLower 1 2 2 − −= ∞M cM α The distance of the Airfoil Center of Pressure aft of the Leading Edge is given by cc M M c c c c x L MN 2 1 1/4 1/2 2 2 =⋅ − − =⋅−= ∞ ∞ α α α L ∞U x Return to Table of Content
  • 156. 156 SOLO Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)                       −+         − − −=      −≅                       −+         − − =              −≅ ∫∫ ∫∫ ∞ ∞∞ ∞∞ ∞ ∞∞ ∞∞ c x d xd yd xd yd M U c s dCUL c x d xd yd xd yd M U c s d xd yd CUD c LowerUpperS p c LowerUpperS S p 0 2 2 2 0 22 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 αα ρ ρ αα ρ αρ α U Up xd yd θ= L Low xd yd θ−= ∞U x y 1 1 2 − = ∞Mxd yd 1 1 2 − −= ∞Mxd yd Flow Flow         − − ==− ∞ ∞∞ ∞ α ρ Upper UpperUpper xd yd M U ppp 1 ' 2 2         − − −==− ∞ ∞∞ ∞ α ρ Lower LowerLower xd yd M U ppp 1 ' 2 2 1 2 1 2 2 2 −         − −= −         − = ∞ ∞ M xd yd C M xd yd C Lower p Upper p Lower Upper α α We found: This relation was first derived by Jacob Ackeret in 1925, in a paper “Luftkrafte auf Flugel, die mit groserer als Schall-geschwingigkeit bewegt werden” (“Air Forces on Wings Moving at Supersonic Speeds”), that appeared in Zeitschhrift fur Flugtechnik und Motorluftschiffahrt, vol. 16, 1925, p.72 Jakob Ackeret (1898–1981) Linearized Flow Equations
  • 157. 157 AERODYNAMICS Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1) Supersonic Flow past a Symmetric Double-Edged Airfoil 1 2 3 4 SHOCK LINE SHOCK LINE SHOCK LINE SHOCK LINE EXPANSION EXPANSION Using Ackeret Theory we have ( ) ( ) ( ) ( ) 1 2 , 1 2 1 2 , 1 2 22 22 43 21 − − −= − + −= − + = − − = ∞∞ ∞∞ M C M C M C M C pp pp αδαδ αδαδ ( ) ( ) 1 4 2 1 1 4 2 1 1 4 222 1 2/1 2/1 0 3412 − = − + − =       −+      −=      = ∞∞∞ ∫∫∫ MMM c x dCC c x dCC c s dCC pppp S pX ααα ( ) ( ) ( ) ( ) 1 4 1 4 2 2 22 2 2/ 2 0 2/ 2/ 0 3412 3412 − = − ×=−+−=       −+      −=      = ∞ = ∞ −∫∫∫ MMc t CC c t CC c t c y dCC c y dCC c y dCC ct pppp ct pp ct pp S pX δδ δ XYXYD XYXYL CCCCC CCCCC +≈+= −≈−= ααα ααα α α 1 1 cossin sincos 1 4 1 4 1 4 1 4 2 2 2 21 2 2 2 1 − + − ≈ − − − ≈ ∞∞ ∞∞ MM C MM C D L δα αδα α α
  • 158. 158 AERODYNAMICS Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1)
  • 159. 159 pc− cx / 0.1 pc− cx / 0.1 pc− cx / 0.1 α δα δ ∞M δα ∞M ∞M δα = α ∞M Upper Surface Lover Surface Expansion Shock Shock Expansion Expansion Shock Expansion Shock Shock Expansion Expansion Shock Shock Shock Shock ∞M ∞M ( ) 1 2 2 − − = ∞M cp αδ ( ) 1 2 2 − + = ∞M cp αδ ( ) 1 2 2 − − = ∞M cp αδ ( ) 1 2 2 − + = ∞M cp αδ 1 4 2 − = ∞M cp α 1 4 2 − − = ∞M cp α ( ) 1 2 2 − + −= ∞M cp αδ ( ) 1 2 2 − − −= ∞M cp αδ ( ) 1 2 2 − + −= ∞M cp αδ ( ) 1 2 2 − − −= ∞M cp αδ Supersonic Flow past a Symmetric Biconvex Aerfoil AERODYNAMICS Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Two Dimensional Flow (Thin Airfoil at Small Angles of Attack) Drag (D) and Lift (L) Computations for Supersonic Flow (M∞ 1) 2 2 2 2 2 2 2 4 1 1 3 16 3 16 1 4 LD L C M M c t C c tD L Md Cd − + −       =       + = − = ∞ ∞ ∞ α α α
  • 160. 160 SOLO Linearized Flow Equations Small Perturbation Flow (Homentropic: , Isentropic )( )0~,0,0~,0 ==== τQqsd ( )0  =×∇ u Applications: Three Dimensional Flow (Thin Airfoil at Small Angles of Attack) Aerodynamic Coefficients of a Profile in Supersonic Incident Flow Based on the Linear Theory Supersonic Rules       − − = ∞ Xd Zd M α 1 1 2 1 4 2 − = ∞M 2 1 = 0DC 0α 0MC c xN αd Cd L pCPressure Distribution Lift Slope Neutral-Point Position Zero Moment Zero-Lift Angle 0= ( ) ∫− −= ∞ 1 02 1 4 XdZ M S Wave Drag L D Cd Cd 1 4 1 2 −−= ∞M ( ) ( ) ∫               +      − −= ∞ 1 0 22 2 1 4 Xd Xd Zd Xd Zd M tS
  • 161. 161 SOLO • Up to point A the flow is Subsonic and it follows Prandtl- Glauert Linear Subsonic Theory. • At point B (M∞=0.81) the flow on the Upper Surface exceeds the Sound Velocity and a Shock Wave occurs. On the Lower Surface the Flow is everywhere Subsonic. • At point C (M∞=0.89) the Flow velocity exceeds the Speed of Sound also on the Lower Surface and a Shock Wave occurs. • At point D (M∞=0.98) the two Shock Waves on the Upper and Lower Surface (weaker than at point C) are located at the Trailing Edge. The Lift is larger than at point C. • At point E (M∞=1.4) pure Supersonic Flow on both Surfaces. Transonic Flow past Airfoils Lift Coefficient of an Airfoil versus Mach Number. Solid Line – Measurement. Dashed Lines - Theory AERODYNAMICS Transonic Flow over an Airfoil at various Mach Numbers; Angle of Attack α=2°. The points A,B, C, D,E correspond to the Lift Coefficients.
  • 163. 163 Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane SOLO AERODYNAMICS
  • 164. 164 AERODYNAMICSSOLO Return to Table of Content Continue to Aerodynamics – Part III
  • 165. 165 I.H. Abbott, A.E. von Doenhoff “Theory of Wing Section”, Dover, 1949, 1959 H.W.Liepmann, A. Roshko “Elements of Gasdynamics”, John Wiley Sons, 1957 Jack Moran, “An Introduction to Theoretical and Computational Aerodynamics” Barnes W. McComick, Jr. “Aerodynamics of V/Stol Flight”, Dover, 1967, 1999 H. Ashley, M. Landhal “Aerodynamics of Wings and Bodies”, 1965 Louis Melveille Milne-Thompson “Theoretical Aerodynamics”, Dover, 1988 E.L. Houghton, P.W. Carpenter “Aerodynamics for Engineering Students”, 5th Ed. Butterworth-Heinemann, 2001 William Tyrrell Thomson “Introduction to Space Dynamics”, Dover References AERODYNAMICSSOLO
  • 166. 166 Holt Ashley “Engineering Analysis of Flight Vehicles”, Addison-Wesley, 1974 J.J. Bertin, M.L. Smith “Aerodynamics for Engineers”, Prentice-Hall, 1979 R.L. Blisplinghoff, H. Ashley, R.L. Halfman “Aeroelasticity”, Addison-Wesley, 1955 Barnes W. McCormick, Jr. “Aerodynamics, Aeronautics, And Flight Mechanics”, W.Z. Stepniewski “Rotary-Wing Aerodynamics”, Dover, 1984 William F. Hughes “Schaum’s Outline of Fluid Dynamics”, McGraw Hill, 1999 Theodore von Karman “Aerodynamics: Selected Topics in the Light of their Historical Development”, Prentice-Hall, 1979 L.J. Clancy “Aerodynamics”, John Wiley Sons, 1975 References (continue – 1) AERODYNAMICSSOLO
  • 167. 167 Frank G. Moore “Approximate Methods for Missile Aerodynamics”, AIAA, 2000 Thomas J. Mueller, Ed. “Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications”, AIAA, 2002 Richard S. Shevell “Fundamentals of Flight”, Prentice Hall, 2nd Ed., 1988 Ascher H. Shapiro “The Dynamics and Thermodynamics of Compressible Fluid Flow”, Wiley, 1953 Bernard Etkin, Lloyd Duff Reid “Dynamics of Flight: Stability and Control”, Wiley 3d Ed., 1995 H. Schlichting, K. Gersten, E. Kraus, K. Mayes “Boundary Layer Theory”, Springer Verlag, 1999 References (continue – 2) AERODYNAMICSSOLO
  • 168. 168 John D. Anderson “Computational Fluid Dynamics”, 1995 John D. Anderson “Fundamentals of Aeodynamics”, 2001 John D. Anderson “Introduction to Flight”, McGraw-Hill, 1978, 2004 John D. Anderson “Introduction to Flight”, 1995 John D. Anderson “A History of Aerodynamics”, 1995 John D. Anderson “Modern Compressible Flow: with Historical erspective”, McGraw-Hill, 1982 References (continue – 3) AERODYNAMICSSOLO Return to Table of Content
  • 169. February 10, 2015 169 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA
  • 170. 170 Ludwig Prandtl (1875 – 1953) University of Göttingen Max Michael Munk (1890—1986)[ also NACA Theodor Meyer (1882 - 1972 Adolph Busemann (1901 – 1986) also NACA Colorado U. Theodore von Kármán (1881 – 1963) also USA Hermann Schlichting (1907-1982) Albert Betz (1885 – 1968 ), Jakob Ackeret (1898–1981) Irmgard Flügge-Lotz (1903 - 1974) also Stanford U. Paul Richard Heinrich Blasius (1883 – 1970)
  • 171. 171 Hermann Glauert (1892-1934) Pierre-Henri Hugoniot (1851 – 1887) Gino Girolamo Fanno (1888 – 1962) Karl Gustaf Patrik de Laval (1845 - 1913) Aurel Boleslav Stodola (1859 -1942) Eastman Nixon Jacobs (1902 –1987) Michael Max Munk (1890 – 1986) Sir Geoffrey Ingram Taylor (1886 – 1975) ENRICO PISTOLESI (1889 - 1968) Antonio Ferri (1912 – 1975) Osborne Reynolds (1842 –1912)
  • 172. 172 Robert Thomas Jones (1910–1999) Gaetano Arturo Crocco (1877 – 1968) Luigi Crocco (1906-1986) MAURICE MARIE ALFRED COUETTE (1858 -1943) Hans Wolfgang Liepmann (1914-2009) Richard Edler von Mises (1883 – 1953) Louis Melville Milne-Thomson (1891-1974) William Frederick Durand (1858 – 1959) Richard T. Whitcomb (1921 – 2009) Ascher H. Shapiro (1916 — 2004)
  • 173. 173 John J. Bertin (1928 – 2008) Barnes W. McCormick (1926 - ) Antonio Filippone John D. Anderson, Jr. Holt Ashley )1923–2006( Milton Denman Van Dyke (1922 – 2010)
  • 174. 174

Notes de l'éditeur

  1. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  2. L.J. Clancy, “Aerodynamics”, Pitman International, 1975, pg.287
  3. John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  4. John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  5. John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  6. John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001, pp.612-619
  7. John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001, pp.612-619
  8. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975 J.D. Anderson, Jr., “Aircraft Performance and Design”, McGraw Hill, 1999
  9. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”,Prentice-Hall, 1979 J.D. Anderson, Jr., “Introduction to Flight”, McGraw Hill, 1978
  10. A.H. Shapiro, “The Dynamics and Thermodynamics of Compressible Flow”, Ronald Press, Vol II, 1954, pg. 710 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979, pg. 343 R.T. Jones, “Wing Theory” Princeton University Press, 1990, pp. 90-104
  11. A.H. Shapiro, “The Dynamics and Thermodynamics of Compressible Flow”, Ronald Press, Vol II, 1954, pg. 710 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979, pg. 343 R.T. Jones, “Wing Theory” Princeton University Press, 1990, pp. 90-104
  12. R.T. Jones, “Wing Theory” Princeton University Press, 1990, pg. 94
  13. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  14. H.Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, 1960, McGraw-Hill, 1979, pg. 276 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”,Prentice-Hall, 1979, pg. 297
  15. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airpline”, McGraw-Hill, 1979, pg. 277 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979, pg. 297 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineers”, Prentice-Hall, 5th Ed.,1979, 1989, 1998, 2002, 2009, pg. 485
  16. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  17. Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
  18. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay,1975
  19. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay,1975
  20. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  21. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  22. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay
  23. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  24. http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Bernoulli_Daniel.html
  25. H. Ashley, “Engineering Analysis of Flight Vehicles”, Addison Wesley, 1974
  26. H. Ashley, “Engineering Analysis of Flight Vehicles”, Addison Wesley, 1974
  27. H. Ashley, “Engineering Analysis of Flight Vehicles”, Addison Wesley, 1974
  28. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane” McGraw-Hill, 1979, pg. 230
  29. John D. Anderson, Jr., “Modern Compressible Flow – with Historical Perspective” , McGraw-Hill, 1982, pp.237
  30. John D. Anderson, Jr., “Modern Compressible Flow – with Historical Perspective” , McGraw-Hill, 1982, pp.237 John D._Anderson, “Fundamentals_of_Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  31. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  32. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  33. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  34. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  35. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  36. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979, pp. 242
  37. Aerodynamic Characteristics of Wings at Supersonic Speeds, R.M. Snow, E.A. Bonney, 1947, AD634865, pg. 37 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979, pg. 340 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineers”, Prentice-Hall, 5th Ed.,1979, 1989, 1998, 2002, 2009, pg. 541
  38. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, Ch. 12, “Compressible Potential Flow Theory”
  39. John D. Anderson, Jr., “Modern Compressible Flow – with Historical Perspective” , McGraw-Hill, 1982, pp.238
  40. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, pp. 303-311
  41. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, pp. 303-311
  42. L.J. Clancy, “Aerodynamics”, Pitman International Text, 1975, pp. 315-319
  43. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane” McGraw-Hill, 1979, pg. 230
  44. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979, pp.249-250 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979, pp.289-295
  45. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975 J.D. Anderson, Jr., “Aircraft Performance and Design”, McGraw Hill, 1999
  46. Brenda B. Kulfan, “Aerodynamic of Sonic Flight”, Boeing Commercial Airplane
  47. http://en.wikipedia.org/wiki/Ludwig_Prandtl http://en.wikipedia.org/wiki/Michael_Max_Munk http://en.wikipedia.org/wiki/Theodor_Meyer http://en.wikipedia.org/wiki/Adolf_Busemann http://en.wikipedia.org/wiki/Theodore_von_K%C3%A1rm%C3%A1n http://en.wikipedia.org/wiki/Albert_Betz http://en.wikipedia.org/wiki/Irmgard_Fl%C3%BCgge-Lotz
  48. http://aerosociety.com/Assets/Docs/Publications/The%20Journal%20of%20Aeronautical%20History/2011-02HermannGlauert_AckroydandRiley.pdf http://homepages.abdn.ac.uk/h.tan/pages/teaching/explosion-engineering/Hugoniot.pdf http://www.potto.org/gasDynamics/node58.html http://en.wikipedia.org/wiki/Gustaf_de_Laval http://en.wikipedia.org/wiki/Aurel_Stodola http://en.wikipedia.org/wiki/Eastman_Jacobs http://en.wikipedia.org/wiki/G._I._Taylor http://web.dimnp.unipi.it/it/personalita-del-passato/enrico-pistolesi
  49. http://www.nap.edu/readingroom.php?book=biomems&amp;page=rjones.html http://www.caltech.edu/content/hans-w-liepmann-94